用户名: 密码: 验证码:
石墨烯—锡基复合材料的制备及其电化学储锂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨由于性能稳定、循环寿命长被认为是优秀的负极材料之一,但它安全性不佳、理论比容量较低且高倍率储锂性能较差。锡基材料由于具有安全性高、质量及体积比容量高、毒性较低等优点被认为是很有前景的石墨替代材料,但锡基材料在充放电过程中巨大的体积变化造成容量迅速衰减,限制了其应用。本文通过加入石墨烯制备SnS-石墨烯复合材料,提高锡基材料的低倍率循环性能,并对其进行水热处理制备SnO2-石墨烯基复合材料,提高材料循环性能和倍率性能。进一步制备Sn-石墨烯基复合材料,提高材料的充放电性能和首次库伦效率,并探讨其可能的作用机制。
     采用修饰的Hummers法制备了氧化石墨烯,并通过还原处理制得石墨烯。所制备的石墨烯具有良好的多孔结构,使其成为制备石墨烯-锡基复合材料的优良模板。采用溶剂热法制备出SnS纳米颗粒及SnS纳米棒,具有一维纳米棒结构的SnS纳米棒相对SnS纳米颗粒具有更好的储锂性能。联合沉淀-溶剂热法制备出SnS纳米棒-石墨烯及SnS颗粒-石墨烯纳米复合物,并比较了石墨烯含量对SnS颗粒-石墨烯储锂性能的影响。实验结果表明在较低的充放电倍率下,石墨烯含量为15%的SnS颗粒-石墨烯具有较高的比容量和循环性能,该复合材料的储锂性能优于单纯的SnS电极和单纯的石墨烯电极。分别利用氮气吸脱附技术、电化学交流阻抗及透射电镜对制备的SnS颗粒-石墨烯纳米复合物的储锂机制进行研究。并利用SnS和SnS-GNS与电解质溶液的作用机制以及电子的转移机制示意图解释了其增强SnS储锂性能的作用机制。
     采用更加简单、经济的均匀沉淀法制备了SnS-热处理石墨烯复合材料,研究其储锂性能,制备出电化学储锂性能较好的SnS-热处理石墨烯前躯体。以高倍率储锂性能较好的SnS-热处理石墨烯为前躯体,制备了SnO2-石墨烯,该复合材料在500mA g-1电流下充放电循环100次后的可逆容量为597mAh g-1。为了抑制SnO2-石墨烯表面SnO2的体积膨胀,采用一个简单的低温水热法制备出硫包覆SnO2-石墨烯复合材料,该复合材料的储锂性能优于单纯的SnO2电极、单纯的石墨烯电极和SnO2-石墨烯复合材料。在500mA g-1电流下充放电循环200次后该复合材料的可逆容量为815mAh g-1。倍率性能测试表明其具有优异的大电流性能,在4000mA g-1电流下可逆容量仍有580mAh g-1。分别利用循环伏安测试和电化学交流阻技术对低温水热法制备的硫包覆SnO2-石墨烯复合材料的储锂机制进行研究,并利用石墨烯和S对锡基复合材料作用机制示意图解释了其增强的电化学储锂性能的机制。
     为了进一步提高石墨烯-锡基复合材料的首次库伦效率,采用低温沉淀法制备了Sn-石墨烯复合材料,研究了其储锂性能,该复合材料在500mA g-1电流下充放电循环的首次库伦效率为70.3%,较石墨烯-锡的硫化物及氧化物复合材料均有所提高,60次充放电循环后的可逆容量为430mAh g-1。采用电泳沉积制备了三维Sn-石墨烯复合材料,进一步提高了Sn-石墨烯基材料的可逆容量,该复合材料在500mA g-1电流下充放电循环60次后,仍有520mAh g-1的比容量。为了进一步提高材料的循环性能,采用一个简单的低温共沉淀法制备了Sn-Co-石墨烯,该复合材料在500mA g-1电流下充放电循环60次后仍有560mAh g-1的比容量,并且具有优良的倍率性能。最后,利用循环伏安分析并提出了Sn-石墨烯提高石墨烯-锡基复合材料首次充放电库伦效率的可能作用机制,并利用密度泛函理论计算对Sn-石墨烯增强Sn电化学储锂性能可能的机理进行了分析。
Graphite has been considered as one of the excellent anode materials because of its high stability and long service life. However, it suffers from safety issues, low theoretical capacity and poor high rate lithium storage performance. Tin-based materials have been considered as promising substitutes for graphite owing to their good safety, high weight capacity and volume capacity, and low toxicity. Nevertheless, the application of tin-based materials has been limited due to the fast capacity fading, which arises from the large volume variation during the charge-discharge cycling. In this work, graphene has been utilized to prepare SnS-graphene composite material, with enhanced low rate lithium storage capability. The as-prepared SnS-graphene is treated hydrothermally to fabricate SnO2-graphene. And SnO2-graphene composites further enhance the cyclic performance and rate capability of tin-based materials. To increase the coulombic efficiency of tin-based materials, Sn-graphene composite material has been prepared, and the enhanced lithium storage mechanisms have been discussed.
     Graphene oxide was synthesized by a modified Hummers' method, and graphene was obtained by reduction of graphene oxide. The as-prepared graphene is an excellent template for the preparation of graphene-tin based composite material owing to its open porous structure. SnS nanopartices and SnS nanorods were synthesized via a solvothermal method. SnS nanorods exhibited superior lithium storage properties to SnS nanoparticles. The SnS nanorods-graphene and SnS nanoparticles-graphene were prepared by a precipitation method followed by the solvothermal treatment. The effect of graphene content on lithium storage capability of SnS nanoparticles-graphene was also discussed. The results showed that the SnS nanoparticles-graphene with15wt.%graphene exhibited superior capacity and cycling performance at low rate. The composite material also showed superior lithium storage capability compared with bare SnS and pure graphene. The lithium storage mechanism of the as-prepared SnS nanoparticles-graphene was investigated through Brunauer-Emmett-Teller analysis, electrochemical impedance spectroscopy measurements and TEM analysis. Mechanism for interaction between SnS and electrolytes, SnS-GNS and electrolytes and mechanism of electron transfer within SnS and SnS-GNS were also proposed to explain the enhanced lithium storage capability of SnS-GNS.
     SnS-graphene composite material was prepared via a facile and economic homogeneous precipitation method. The lithium storage properties of the composites were also investigated. SnO2-graphene composites were prepared with the optimized SnS-graphene precursors. The as-prepared composites exhibited a reversible capacity of597mAh g-1after100cycles at a current density of500mA g-1. To further inhibit the expansion of SnO2on the surface of the composites, a facile low temperature hydrothermal method was developed to fabricate sulfur coated SnO2-graphene composites. The composite electrode exhibited superior lithium storage properties compared to bare SnO2, bare graphene, and SnO2-graphene. The reversible capacity of the composite material was815mAh g-1after200cycles at500mA g-1. Rate capability tests indicated that the composites exhibited excellent high current properties, and the reversible capacity was as high as580mAh g-1even at4000mA g-1. The lithium storage mechanism of sulfur coated SnO2-graphene was investigated by cyclic voltammetry and electrochemical impedance spectroscopy, and mechanism about the effect of graphene and sulfur on SnO2-based composite materials was also proposed.
     To further increase the coulombic efficiency of graphene-tin based composites, a low temperature precipitation method was devoted to preparing Sn-graphene composite material. The lithium storage performance was also investigated. The composites exhibited an initial coulombic efficiency of70.3%at500mA g-1, which was higher than that of graphene-tin sulfide and tin oxide. After60cycles, the reversible capacity was430mAh g-1. The three dimensional porous Sn-graphene composites were prepared through electrophoretic deposition method to improve the reversible capacity of Sn-graphene-based composites, and a reversible capacity of520mAh g-1was obtained after60cycles at500mA g-1. To further improve the reversible capacity of tin-graphene composites, a facile low temperature co-precipitation method was developed to fabricate Sn-Co-graphene composites. The Sn-Co-graphene composite material exhibited a reversible capacity of560mAh g-1after60cycles at500mA g-1and a good rate capability. Finally, the possible mechanism of higher coulombic efficiency of Sn-graphene compared with other graphene-tin-based materials was proposed. And the mechanism of the enhanced lithium storage performance of Sn-graphene compared with Sn was investigated by density functional theory.
引文
1Etacheri V, Marom R, Elazari R, et al. Challenges in the development ofadvanced Li-ion batteries: a review[J]. Energy&Environmental Science,2011,4:3243-3262.
    2Disma F, Aymard L, Dupont L. Effect of mechanical grinding on the lithiumintercalation process in graphites and soft carbons[J]. Journal of TheElectrochemical Society,1996,143:3959-3972.
    3Marom R, Amalraj S, Leifer N, et al. A review of advanced and practicallithium battery materials[J]. Journal of Materials Chemistry,2011,21:9938-9954.
    4Nobili F, Meschini I, Mancini M, et al. High-performance Sn@carbonnanocomposite anode for lithium-ion batteries: Lithium storage processescharacterization and low-temperature behavior[J]. Electrochimica Acta,2013,107:85-92.
    5Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect inatomically thin carbon films[J]. Science,2004,306:666-669.
    6Armand M, Murphy D W, Broadhead J, et al. Materials for advancedbatteries[M]. Plenum Press: New York,1980:145.
    7Sato M, Lijima T, Susuki K, et al. Development of lithium ion battery[C].Electrochemical Society Fall Meeting. Sealtle,1990.
    8Kang X. Nonaqueous liquid electrolytes for lithium-based rechargeablebatteries[J]. Chemical Reviews,2004,104:4303-4417.
    9郭炳馄,徐徽,王先友,等.锂离子电池[M].湖南:中南大学出版社,2005:188-203.
    10郑青军,李国勤,刘人敏.锂离子电池碳阳极的容量及嵌锂机理[J].电池,1998,28:178-180.
    11Fey G T, Lu C Z, Kumar T P, et al. Mechano-thermal nanoparticulatecoatings for enhancing the cycle stability of LiCoO2[J]. Journal of Physicsand Chemistry of Solids,2006,67:2337-2344.
    12Muto S, Tatsumi K, Kojima Y, et al. Effect of Mg-doping on the degradationof LiNiO2-based cathode materials by combined spectroscopic methods[J].Journal of Power Sources,2012,205:449-455.
    13Chen Q, Wang Y, Zhang T, et al. Electrochemical performance ofLaF3-coated LiMn2O4cathode materials for lithium ion batteries[J].Electrochimica Acta,2012,83:65-72.
    14Shui M, Zheng W, Shu J, et al. Synthesis, spectral character, electrochemicalperformance and in situ structure studies of Li1+xV3O8cathode materialprepared by tartaric acid assisted sol-gel process[J]. Materials ResearchBulletin,2012,47:2455-2459.
    15Zhang S, Wu Q, Deng C, et al. Synthesis and characterization of Ti Mn andTi Fe codoped Li3V2(PO4)3as cathode material for lithium ion batteries[J].Journal of Power Sources,2012,218:56-64.
    16Zaghib K, Dubé J, Dallaire A, et al. Enhanced thermal safety and high powerperformance of carbon-coated LiFePO4olivine cathode for Li-ion batteries[J]. Journal of Power Sources,2012,219:36-44.
    17Yang Y S, Wang C Y, Chen M M, et al. Facile synthesis of mesophasepitch/exfoliated graphite nanoplatelets nanocomposite and its application asanode materials for lithium-ion batteries[J]. Journal of Solid State Chemistry,2010,183:2116-2120.
    18Kottegoda I R M, Idris N H, Lu L, et al. Synthesis and characterization ofgraphene-nickel oxide nanostructures for fast charge-discharge application[J]. Electrochimica Acta,2011,56:5815-5822.
    19Xue X, Ma C, Cui C, et al. High lithium storage performance ofα-Fe2O3/graphene nanocomposites as lithium-ion battery anodes[J]. SolidState Sciences,2011,13:1526-1530.
    20Lian P, Zhu X, Xiang H, et al. Enhanced cycling performance ofFe3O4-graphene nanocomposite as an anode material for lithium-ionbatteries[J]. Electrochimica Acta,2010,56:834-840.
    21Wang G, Liu T, Xie X, et al. Structure and electrochemical performance ofFe3O4/graphene nanocomposite as anode material for lithium-ion batteries[J].Materials Chemistry and Physics,2011,128:336-340.
    22Wang G, Liu T, Luo Y, et al. Preparation of Fe2O3/graphene composite andits electrochemical performance as an anode material for lithium ionbatteries[J]. Journal of Alloys and Compounds,2011,509: L216-L220.
    23Mai Y, Wang X, Xiang J, et al. CuO/graphene composite as anode materialsfor lithium-ion batteries[J]. Electrochimica Acta,2011(56):2306-2311.
    24Wang X, Zhou X, Yao K, et al. A SnO2/graphene composite as a highstability electrode for lithium ion batteries[J].Carbon,2011,49:133-139.
    25Kim H, Seo D, Kim S, et al. Highly reversible Co3O4/graphene hybrid anodefor lithium rechargeable batteries[J]. Carbon,2011,49:326-332.
    26Zhu N, Liu W, Xue M, et al. Graphene as a conductive additive to enhancethe high-rate capabilities of electrospun Li4Ti5O12for lithium-ion batteries[J]. Electrochimica Acta,2010,55:5813-5818.
    27Wang H, Cui L, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacityanode material for lithium ion batteries[J]. Journal of the AmericanChemical Society,2010,132:13978-13980.
    28Kim J, Sohn H, Kim H et al. Enhanced cycle performance of SiO-Ccomposite anode for lithium-ion batteries[J]. Journal of Power Sources,2007,170:456-459.
    29Doh C, Shin H, Kim D, et al. Improved anode performance of thermallytreated SiO/C composite with an organic solution mixture[J].Electrochemistry Communications,2008,10:233-237.
    30Chang K, Chen W. In situ synthesis of MoS2/graphene nanosheet compositeswith extraordinarily high electrochemical performance for lithium ionbatteries[J]. Chemical Communications,2011,47:4252-4254.
    31Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a highcapacity lithium-ion-storage material[J]. Science,1997,276:1395.
    32Vaughey J, O'Hara J, Thackeray M, Intermetallic insertion electrodes with azinc blende-type structure for Li Batteries: a study of LixInSb (0≤x≤3)articles[J]. Electrochemical and Solid-State Letters,2000,3:13-16.
    33Derrien G, Hassoun J, Panero S, et al. Nanostructured Sn-C composite as anadvanced anode material in high-performance lithium-ion batteries[J].Advanced Materials,2007,19:2336-2340.
    34Chen Z, Cao Y, Qian J, et al. Facile synthesis and stable lithium storageperformances of Sn-sandwiched nanoparticles as a high capacity anodematerial for rechargeable Li batteries[J]. Journal of Materials Chemistry,2010,20:7266-7271.
    35Lee K T, Jung Y S, Oh S M, Synthesis of tin-encapsulated spherical hollowcarbon for anode material in lithium secondary batteries[J]. Journal of theAmerican Chemical Society,2003,125:5652-5653.
    36Cui G, Hu Y S, Zhi L, et al. A one-step approach towardscarbon-encapsulated hollow tin nanoparticles and their application in lithiumbatteries[J]. Small,2007,3:2066-2069.
    37Zhang W M, Hu J S, Guo Y G, et al. Tin-nanoparticles encapsulated inelastic hollow carbon spheres for high-performance anode material inlithium-ion batteries[J]. Advanced Materials,2008,20:1160-1165.
    38Kim M G, Sim S, Cho J, Novel core-shell Sn-Cu anodes for lithiumrechargeable batteries prepared by a redox-transmetalation reaction[J].Advanced Materials,2010,22:5154-5158.
    39Hu R, Liu H, Zeng M, et al. Core/shell and multi-scale structures enhancethe anode performance of a Sn-C-Ni composite thin film in a lithium ionbattery[J] Journal of Materials Chemistry,2011,21:4629-4635.
    40Lee H, Cho J. Sn78Ge22@carbon core Shell nanowires as fast andhigh-capacity lithium storage media[J]. Nano Letters,2007,7:2638-2641.
    41Chen S, Chen P, Wu M, et al. Graphene supported Sn-Sb@carbon core-shellparticles as a superior anode for lithium ion batteries[J]. ElectrochemistryCommunications,2010,12:1302-1306.
    42Wang G, Wang B, Wang X, et al. Sn/graphene nanocomposite with3Darchitecture for enhanced reversible lithium storage in lithium ion batteries[J]Journal of Materials Chemistry,2009,19:8378-8384.
    43Gou X, Chen J, Shen P, Synthesis,characterization and application of SnSx(x=1,2) nanoparticles[J]. Materials Chemistry and Physics,2005,93:557-566.
    44Zhai C, Du N, Zhang H, et al. Multiwalled carbon nanotubes anchored withSnS2nanosheets as high-performance anode materials of lithium-ionbatteries[J]. ACS Applied Materials and Interfaces,2011,3:4067-4074.
    45Zhong H, Yang G, Song H, et al. Vertically aligned graphene-like SnS2ultrathin nanosheet arrays: excellent energy storage, catalysis,photoconduction, and field-emitting performances[J]. The Journal ofPhysical Chemistry C,2012,116:9319-9326.
    46Chang K, Wang Z, Huang G, et al. Few-layer SnS2/graphene hybrid withexceptional electrochemical performance as lithium-ion battery anode[J].Journal of Power Sources,2012,201:259-266.
    47Panda S K, Datta A, Dev A, et al. Surfactant-assisted synthesis of SnSnanowires grown on tin foils[J]. Crystal Growth and Design,2006,6:2177-2181.
    48Kumar G G, Reddy K, Nahm K S, et al. Synthesis and electrochemicalproperties of SnS as possible anode material for lithium batteries[J]. Journalof Physics and Chemistry of Solids,2012,73:1187-1190.
    49Kang J G, Park J G, Kim D W, Superior rate capabilities of SnS nanosheetelectrodes for Li ion batteries[J]. Electrochemistry Communications,2010,12:307-310.
    50Vaughn II D D, Hentz O D, Chen S R, et al. Formation of SnS nanoflowersfor lithium ion batteries[J]. Chemical Communications,2012,48:5608-5610.
    51Zhang Y, Lu J, Shen S, et al. Ultralarge single crystal SnS rectangularnanosheets[J]. Chemical Communications,2011,47:5226-5228.
    52Cai J, Li Z, Shen P, Porous SnS nanorods/carbon hybrid materials as highlystable and high capacity anode for Li-ion batteries[J]. ACS AppliedMaterials and Interfaces,2012,4:4093-4098.
    53Li Y, Tu J, Huang X, et al. Nanoscale SnS with and without carbon-coatingsas an anode material for lithium ion batteries[J]. Electrochimica Acta,2006,52:1383-1389.
    54Li Y, Tu J, Huang X, et al. Net-like SnS/carbon nanocomposite film anodematerial for lithium ion batteries[J]. Electrochemistry Communications,2007,9:49-53.
    55Courtney I A. The physics and chemistry of metal oxide composites asanode materials for lithium-ion batteries[D]. Dathousie University,1999.
    56Courtney I A, J R Dahn, Electroehemical and in situ X-ray diffractionstudies of the reaction of lithium with tin oxide composites[J]. Journal ofThe Electrochemical Society,1997,144:2045-2052.
    57Courtney I A, W R McKinnon, J R Dah, On the aggregation of tin in SnOcomposite glasses caused by the reversible reaction with lithium[J]. Journalof The Electrochemical Society,1999,146:59-65.
    58Yu A, Free R, Mesoporous tin oxides as lithium intercalation anodematerials[J]. Journal of Power Sources,2002,104:97-100.
    59Iqbal M Z, Wang F, Zhao H, et al. Structural and electrochemical propertiesof SnO nanoflowers as an anode material for lithium ion batteries[J]. ScriptaMaterialia,2012,67:665-668.
    60Ning J, Dai Q, Jiang T, et al. Facile synthesis of tin oxide nanoflowers: apotential high-capacity lithium-ion-storage material[J]. Langmuir,2009,25:1818-1821.
    61Chao S, Yen Y, Song Y, et al. In situ transmission X-ray microscopy studyon working SnO anode particle of Li-ion batteries[J]. Journal of TheElectrochemical Society[J].2011,158: A1335-A1339.
    62Xie J, Yang J, Zhou X. A hybrid nanostructure encapsulating SnO2nanoparticles as the anode material for lithium ion batteries with highelectrochemical performance[J]. RSC Advances,2014,4:572-577.
    63Guo H, Mao R, Tian D, et al. Morphology-controlled synthesis of SnO2/Chollow core-shell nanoparticle aggregates with improved lithium storage[J].Journal of Materials Chemistry A,2013,1:3652-3658.
    64Lou X, Wang Y, Yuan C, et al. Template-free synthesis of SnO2hollownanostructure with high lithium storage capacity[J]. Advanced Materials,2006,18:2325-2329.
    65Bose A, Kalpana D, Thangadurai P, et al. Synthesis and characterization ofnanocrystalline SnO2and fabrication of lithium cell using nano-SnO2[J].Journal of Power Sources,2002,107:138-141.
    66Zhao N, Yang L, Zhang P, et al. Polycrystalline SnO2nanowires coated withamorphous carbon nanotube as anode material for lithium ion batteries[J].Materials Letters,2010,64:972-975.
    67Cui L, Shen J, Cheng F, et al. SnO2nanoparticles@polypyrrole nanowirescomposite as anode materials for rechargeable lithium-ion batteries[J].Journal of Power Sources,2011,196:2195-2201.
    68Wen Z, Wang Z, Zhang Z, et al. In situ growth of mesoporous SnO2onmultiwalled carbon nanotubes: A novel composite with porous-tubestructure as anode for lithium batteries[J]. Advanced Functional Materials,2007,17:2772-2778.
    69Xu M, Zhao M, Wang F, et al. Facile synthesis and electrochemicalproperties of porous SnO2micro-tubes as anode material for lithium-ionbattery[J]. Materials Letters,2010,64:921-923.
    70Liu J, Li Y, Huang X, et al. Direct growth of SnO2nanorod array electrodesfor lithium-ion batteries[J]. Journal of Materials Chemistry,2009,19:1859-1864.
    71Wang C, Du G, St hl K, et al. Ultrathin SnO2nanosheets: orientedattachment mechanism, nonstoichiometric defects, and enhanced lithium-ionbattery performances[J]. The Journal of Physical Chemistry C,2012,116:4000-4011.
    72Xia G, Li N, Li D, et al. Molten-salt decomposition synthesis of SnO2nanoparticles as anode materials for lithium ion batteries[J]. MaterialsLetters,2011,65:3377-3379.
    73Ui K, Kawamura S, Kumagai N, Fabrication of binder-free SnO2nanoparticle electrode for lithium secondary batteries by electrophoreticdeposition method[J]. Electrochimica Acta,2012,76:383-388.
    74Liu R, Li N, Li D, et al. Template-free synthesis of SnO2hollowmicrospheres as anode material for lithium-ion battery[J]. Materials Letters,2012,73:1-3.
    75Wang Z, Wang Z, Madhavi S, et al. α-Fe2O3-mediated growth and carbonnanocoating of ultrafine SnO2nanorods as anode materials for Li-ionbatteries[J]. Journal of Materials Chemistry,2012,22:2526-2531.
    76Branci C, Benjelloun N, Sarradin J, et al. Vitreous tin oxide-based thin filmelectrodes for Li-ion micro-batteries[J]. Solid State Ionics,2000,135:169-174.
    77Chouvin J, Branci C, Sarradin J, et al. Lithium intercalation in tin oxide[J].Journal of Power Sources,1999,81:277-281.
    78Sarradin J, Benjelloun N, Taillades G. Tin/tin oxide thin film electrodes forlithium-ion batteries[J]. Journal of Power Sources,2001,97-98:208-210.
    79Zhu X, Guo Z, Zhang P, et al. Highly porous reticular tin-cobalt oxidecomposite thin film anodes for lithium ion batteries[J]. Journal of MaterialsChemistry,2009,19:8360-8365.
    80Xu W, Canfield N, Wang D, et al. A three-dimensional macroporousCu/SnO2composite anode sheet prepared via a novel method[J]. Journal ofPower Sources,2010,195:7403-7408.
    81Xia G, Li N, Li D, et al. Preparation of novel SnO2-B2O3core-shellnanocomposite and their lithium storage ability[J]. Materials Letters,2012,79:58-60.
    82Zhou W, Cheng C, Liu J, et al, Epitaxial growth of branched α-Fe2O3/SnO2nano-heterostructures with improved lithium-ion battery performance[J].Advanced Functional Materials,2011,21:2439-2445.
    83Zeng W, Zheng F, Li R, et al. Template synthesis of SnO2/α-Fe2O3nanotubearray for3D lithium ion battery anode with large areal capacity[J].Nanoscale,2012,4:2760-2765.
    84Wang Y, Su F, Lee J Y, et al. Crystalline carbon hollow Spheres, crystallinecarbon-SnO2hollow spheres, and crystalline SnO2hollow spheres: synthesisand performance in reversible Li-ion storage[J]. Chemistry of Materials,2006,18:1347-1353.
    85Chen J, Cheah Y, Chen Y, et al. SnO2nanoparticles with controlled carbonnanocoating as high-capacity anode materials for lithium-ion batteries[J].The Journal of Physical Chemistry C,2009,113:20504-20508.
    86Wang F, Song X, Yao G, et al. Carbon-coated mesoporous SnO2nanospheres as anode material[J]. Scripta Materialia,2012,66:562-565.
    87Nam S, Kim S, Wi S, et al. The role of carbon incorporation in SnO2nanoparticles for Li rechargeable batteries[J]. Journal of Power Sources,2012,211:154-160.
    88Zhang H, Song H, Chen X, et al. Preparation and electrochemicalperformance of SnO2@carbon nanotube core-shell structure composites asanode material for lithium-ion batteries[J]. Electrochimica Acta,2012,59:160-167.
    89Chen G, Wang Z, Xia D. One-pot synthesis of carbon nanotube@SnO2-Aucoaxial nanocable for lithium-ion batteries with high rate capability[J].Chemistry of Materials,2008,20:6951-6956.
    90Zhang H, Feng C, Zhai Y, et al. Cross-stacked carbon nanotube sheetsuniformly loaded with SnO2nanoparticles: a novel binder-free andhigh-capacity anode material for lithium-ion batteries[J]. AdvancedMaterials,2009,21:2299-2304.
    91Wu P, Du N, Zhang H, et al. CNTs@SnO2@C coaxial nanocables withhighly reversible lithium storage[J]. The Journal of Physical Chemistry C,2010,114:22535-22538.
    92Lee Y, Jo M, Song K, et al. Hollow Sn-SnO2nanocrystal/graphitecomposites and their lithium storage properties[J]. ACS Applied Materialsand Interfaces,2012,4:3459-3464.
    93Liu H, Huang J, Li X, et al. SnO2nanorods grown on graphite as a highcapacity anode material for lithium ion batteries[J]. Ceramics International,2012,38:5145-5149.
    94Wu P, Du N, Zhang H, et al. Self-templating synthesis of SnO2-carbonhybrid hollow spheres for superior reversible lithium ion storage[J]. ACSApplied Materials and Interfaces,2011,3:1946-1952.
    95Ding S, Zhang D, Wu H, et al. Synthesis of micro-sized SnO2@carbonhollow spheres with enhanced lithium storage properties[J]. Nanoscale,2012,4:3651-3654.
    96Zhao G, Wen T, Chen C, et al. Synthesis of graphene-based nanomaterialsand their application in energy-related and environmental-related areas[J].RSC Advances,2012,2:9286-9303.
    97Paek S M, Yoo E, Honma I. Enhanced cyclic performance and lithiumstorage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Letters,2009,9:72-75.
    98Zhao B, Zhang G, Song J, et al. Bivalent tin ion assisted reduction forpreparing graphene/SnO2composite with good cyclic performance andlithium storage capacity[J]. Electrochimica Acta,2011,56:7340-7346.
    99Lian P, Zhu X, Liang S, et al. High reversible capacity of SnO2/graphenenanocomposite as an anode materialfor lithium-ion batteries[J].Electrochimica Acta,2011,56:4532-4539.
    100Li Y, Lv X, Lu J, et al. Preparation of SnO2-nanocrystal/graphene-nanosheetscomposites and their lithium storage ability[J]. The Journal of PhysicalChemistry C,2010,114:21770-21774.
    101Du Z, Yin X, Zhang M, et al. In situ synthesis of SnO2/graphenenanocomposite and their application as anode material for lithium ionbattery[J]. Materials Letters,2010,64:2076-2079.
    102Zhang L, Jiang L, Yan H, et al. Mono dispersed SnO2nanoparticles on bothsides of single layer graphene sheets as anode materials in Li-ion batteries[J].Journal of Materials Chemistry,2010,20:5462-5467.
    103Zhong C, Wang J, Chen Z, et al. SnO2-graphene composite synthesized viaan ultrafast and environmentally friendly microwave autoclave method andits use as a superior anode for lithium-ion batteries[J]. The Journal ofPhysical Chemistry C,2011,115:25115-25120.
    104Wang D, Kou R, Choi D, et al. Ternary self-assembly of ordered metaloxide-graphene nanocomposites for electrochemical energy storage[J]. ACSNano,2010,4:1587-1595.
    105Chen Z, Zhou M, Cao Y, et al. In situ generation of few-layer graphenecoatings on SnO2-SiC core-shell nanoparticles for high-performancelithium-ion storage[J]. Advanced Energy Material,2012,2:95-102.
    106Li X, Meng X, Liu J, et al. Tin oxide with controlled morphology andcrystallinity by atomic layer deposition onto graphene nanosheets forenhanced lithium storage[J]. Advanced Functional Materials,2012,22:1647-1654.
    107Ding S, Luan D, Boey F, et al. SnO2nanosheets grown on graphene sheetswith enhanced lithium storage properties[J]. Chemical Communications,2011,47:7155-7157.
    108Liu H, Huang J, Li X, et al. Flower-like SnO2/graphene composite forhigh-capacity lithium storage[J]. Applied Surface Science,2012,258:4917-4921.
    109Chen S, Wang Y, Ahn H,, et al. Microwave hydrothermal synthesis of highperformance tin-graphene nanocomposites for lithium ion batteries[J].Journal of Power Sources,2012,216:22-27.
    110Zou Y, Wang Y, Sn@CNT nanostructures rooted in graphene with high andfast Li-storage capacities[J]. ACS nano,2011,5:8108-8114.
    111Liang S, Zhu X, Lian P C, et al. Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries[J].Journal of Solid State Chemistry,2011,184:1400-1404.
    112Feng B, Xie J, Cao G, et al. Facile synthesis of ultrafine CoSn2nanocrystalsanchored on graphene by one-pot route and the improved electrochemicalLi-storage properties[J]. New Journal of Chemistry,2013,37:474-480.
    113Wang D, Li X, Yang J, et al. Hierarchical nanostructured core-shell Sn@Cnanoparticles embedded in graphene nanosheets: spectroscopic view andtheir application in lithium ion batteries[J]. Physical Chemistry ChemicalPhysics,2013,15:3535-3542.
    114Yue W, Yang S, Liu Y, et al. A facile synthesis of mesoporous graphene-tincomposites as high-performance anodes for lithium-ion batteries[J].Materials Research Bulletin,2013,48:1575-1580.
    115Duan B, Wang W, Zhao H, et al. Nano-Sn/mesoporous carbon parasiticcomposite as advanced anode material for lithium-ion battery[J]. Journal ofThe Electrochemical Society,2012,159: A2092-A2095.
    116Hu R Z, Liu H, Zeng M Q, et al. Core/shell and multi-scale structuresenhance the anode performance of a Sn-C-Ni composite thin film in alithium ion battery[J]. Journal of Materials Chemistry,2011,21:4629-4635.
    117Chen S Q, Chen P, Wu M H, et al. Graphene supported Sn-Sb@carboncore-shell particles as a superior anode for lithium ion batteries[J].Electrochemistry Communications,2010,12:1302-1306.
    118Shin N R, Kang Y M, Song M S, et al. Effects of Cu substrate morphologyand phase control on electrochemical performance of Sn-Ni alloys for Li-ionbattery[J]. Journal of Power Sources,2009,186:201-205.
    119Nam D, Kim R, Lee C, et al. Highly reversible Sn-Co alloy anode usingporous Cu foam substrate for Li-ion batteries[J]. Journal of TheElectrochemical Society,2012,159: A1822-A1826.
    120Yang C, Zhang D, Zhao Y, et al. Nickel foam supported Sn-Co alloy film asanode for lithium ion batteries[J]. Journal of Power Sources,2011,196:10673-10678.
    121Xue L, Fu Z, Yao Y, et al. Three-dimensional porous Sn-Cu alloy anode forlithium-ion batteries[J]. Electrochimica Acta,2010(55):7310-7314.
    122Huang T, Yao Y, Wei Z, et al. Sn-Co-artificial graphite composite as anodematerial for rechargeable lithium batteries[J]. Electrochimica Acta,2010,56:476-482.
    123Noh M, Kwon Y, Lee H, et al. Amorphous carbon-coated tin anode materialfor lithium secondary battery[J]. Chemistry of Materials,2005,17:1926-1929.
    124Yu Y, Yang Q, Teng D, et al. Reticular Sn nanoparticle-dispersedPAN-based carbon nanofibers for anode material in rechargeable lithium-ionbatteries[J]. Electrochemistry Communications,2010,12:1187-1190.
    125Zhang W, Hu J, Guo Y, et al. Tin-nanoparticles encapsulated in elastichollow carbon spheres for high-performance anode material in lithium-ionbatteries[J]. Advanced Material,2008,20:1160-1165.
    126Deng D, Lee J Y. Reversible storage of lithium in a rambutan-like tin-carbonelectrode[J]. Angewandte Chemie International Edition,2009,48:1660-1663.
    127Wang C, Wang D, Wang Q, et al. Fabrication and lithium storageperformance of three-dimensional porous NiO as anode for lithium-ionbattery[J]. Journal of Power Sources,2010,195:7432-7437.
    128Avellaneda D, Nair M, Nair P, Photovoltaic structures using chemicallydeposited tin sulfide thin films[J]. Thin Solid Films,2009,517:2500-2502.
    129Devika M, Reddy N, Ramesh K, et al. Low resistive micrometer-thick SnS:Ag films for optoelectronic applications[J]. Journal of The ElectrochemicalSociety,2006,153: G727-733.
    130Li Y, Xie H, Tu J, Nanostructured SnS/carbon composite forsupercapacitor[J]. Materials Letters,2009,63:1785-1787.
    131Hummer W S, Richard E O. Preparation of graphite oxide[J]. Journal of theAmerican Chemical Society,1958,80:1339-1340.
    132Wu Z S, Ren W C, Gao L B, et al. Synthesis of high-quality graphene with apre-determined number of layers[J]. Carbon,2009,47:493-499.
    133Zhu X J, Zhu Y W, Murali S, et al. Nanostructured reduced grapheneoxide/Fe2O3composite as a high-performance anode material for lithium ionbatteries[J]. ACS nano,2011,5:3333-3338.
    134Chang K, Chen W X, Single-layer MoS2/graphene dispersed in amorphouscarbon: towards high electrochemical performances in rechargeable lithiumion batteries[J]. Journal of Materials Chemistry,2011,21:17175-17184.
    135Chang K, Chen W X, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances forlithium ion batteries[J]. ACS nano,2011,5:4720-4728.
    136Reddy N K, Devika M, Ahsanulhaq Q, et al. Growth of orthorhombic SnSnanobox structures on seeded substrates[J]. Crystal Growth and Design,2010,10:4769-4772.
    137He M, Yuan Li, Hu X, et al. A SnO2@carbon nanocluster anode materialwith superior cyclability and rate capability for lithium-ion batteries[J].Nanoscale,2013,5:3298-3305.
    138Zhang C, Peng X, Guo Z, et al. Carbon-coated SnO2/graphene nanosheets ashighly reversible anode materials for lithium ion batteries[J]. Carbon,2012,50:1897-1903.
    139Y Su, S Li, D Wu, et al. Two-dimensional carbon-coated graphene/metaloxide hybrids for enhanced lithium storage[J]. ACS Nano,2012,6:8349-8356.
    140Lian P, Wang J, Cai D, el al. Porous SnO2@C/graphene nanocomposite with3D carbon conductive network as a superior anode material for lithium-ionbatteries[J]. Electrochimica Acta,2014,116:103-110.
    141Fu M, Ni L, Du N. Self-templated porous hierarchical SnO2ceramics withenhanced lithium storage capacity[J]. Journal of Alloys and Compounds,2014,591:65-71.
    142Song H, Li N, Cui H, et al. Monodisperse SnO2nanocrystals functionalizedmultiwalled carbon nanotubes for large rate and long lifespan anodematerials in lithium ion batterie[J]. Electrochimica Acta,2014,120:46-51.
    143Zhou X, Huang B, Zou Y, et al. Cotton-templated fabrication of hierarchicalSnO2mesoporous microtubes as the anode material of lithium ion battery[J].Materials Letters,2014,120:279-282.
    144Tian Q, Zhang Z, Chen J, et al. Carbon nanowires@ultrathin SnO2nanosheets@carbon composite and its lithium storage properties[J]. Journalof Power Sources,2014,246:587-595.
    145Tran T, McCormac K, Li J, et al. Electrospun SnO2and TiO2compositenanofibers for lithium ion batteries[J]. Electrochimica Acta,2014,117:68-75.
    146Liu R, Li D, Tian D, et al. Promotional role of B2O3in enhancing hollowSnO2anode performance for Li-ion batteries[J]. Journal of Power Sources,2014,251:279-286.
    147Lu H, Li N, Zheng M, et al. Microwave-assisted synthesis of graphene-SnO2nanocomposite for rechargeable lithium-ion batteries[J]. Materials Letters,2014,115:125-128.
    148Chen L, Wu P, Wang H, et al. Highly loaded SnO2/mesoporous carbonnanohybrid with well-improved lithium storage capability[J]. Journal ofPower Sources,2014,247:178-183.
    149Courtney I A, Dunlap R A, Dahn J R. In-situ Sn119Mossbauer effect studiesof the reaction of lithium with SnO and SnO:0.25B2O3:0.25P2O5glass[J].Electrochimica Acta,1999,45:51-58.
    150Zhang H, Zhang X, Zhang D, et al. One-step electrophoretic deposition ofreduced graphene oxide and Ni(OH)2composite films for controlledsyntheses supercapacitor electrodes[J]. The Journal of Physical Chemistry B,2013,117:1616-1627.
    151Lovell T, Himo F, Han W G. Density functional methods applied tometalloenzymes[J]. Coordination Chemistry Reviews,2003,238:211-232.
    152Siegbahn P E M. The performance of hybrid DFT for mechanisms involvingtransition metal complexes in enzymes[J]. JBIC Journal of BiologicalInorganic Chemistry,2006,11(6):695-701.
    153Cramer C J, Truhlar D G. Density functional theory for transition metals andtransition metal chemistry[J]. Physical Chemistry Chemical Physics,2009,11(46):10757-10816.
    154Ding Z J, Zhao L, Suo L M, et al. Towards understanding the effects ofcarbon and nitrogen-doped carbon coating on the electrochemicalperformance of Li4Ti5O12in lithium ion batteries: a combined experimentaland theoretical study[J]. Physical Chemistry Chemical Physics,2011,13,15127-15133.
    155耿巍.几种石墨烯复合材料性质与应用的第一性原理计算[D].兰州,兰州大学,2013:49-51.
    156Miao L, Wu J B, Jiang J J, et al. First-principles study on the synergisticmechanism of SnO2and graphene as a lithium ion battery anode[J]. TheJournal of Physical Chemistry C,2013,117,23-27.
    157Ru Q, Peng W, Zhang Z W, et al. First-principles calculations andexperimental studies of Sn-Zn alloys as negative electrode materials forlithium-ion batteries[J]. Rare Metals,2011,30(2):160-165.
    158Shin H, Kim K K, Benayad A, et al. Efficient reduction of graphite oxide bysodium borohydride and its effect on electrical conductance[J]. AdvancedFunctional Materials,2009,19:1987-1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700