用户名: 密码: 验证码:
雾对短空气间隙与绝缘子交流放电特性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运行经验表明,雾中外绝缘放电对我国电网的安全和稳定运行构成了巨大威胁。国内外采用蒸汽雾研究了输电线路绝缘子的电气特性,但尚未系统开展自然雾及其电导率对输电线路外绝缘影响的研究。因此,系统研究输电线路绝缘子与空气间隙交流雾闪特性及其影响规律有助于更深入地认识雾闪的本质规律,对湿雾天气中输电线路外绝缘防雾闪和保障电网的安全运行具有重要的参考意义。
     在国家重大基础研究发展计划973项目的资金支持与国内外研究成果的基础上,论文在重庆大学高电压实验室和雪峰山试验站对输电线路绝缘子与棒-板短空气间隙交流雾闪特性进行了系统的研究分析,得到的主要成果有:
     根据雪峰山试验站自然环境的测量结果,统计近4年试验站的月平均雾天气分布与雾物理特征,使用最小二乘法拟合液态水含量、雾滴浓度综合影响的能见度计算公式;采用雾发生装置产生模拟雾方法开展了瓷、玻璃绝缘子交流雾闪试验,其结果较蒸汽雾闪络电压高6.8%~7.2%;比较分析了染污方式对复合绝缘子交流雾闪特性的影响,即定量涂层法与喷涂法试验结果的百分偏差为7.1%~9.3%,可忽略染污方法对污秽特征指数的影响。
     基于人工模拟与自然环境试验,分析了雾物理特征(雾的水含量、雾水电导率与雾水温度)以及环境参数对棒-板短空气间隙交流击穿电压的影响规律。结果表明,雾的水含量在1~3g/m3时,击穿电压增大了5.1%;而雾的水含量在3~4g/m3时无明显变化;雾水电导率从100μS/cm增加至5150μS/cm时,击穿电压减小了2.7%~9.1%。
     根据试验结果及其分析,提出了浓雾地区雾水电导率对绝缘子交流闪络电压的附加影响规律,即绝缘子表面污秽度达Ⅲ级及以上严重污秽等级时(盐密≥0.15mg/cm2),雾水电导率不影响其闪络电压;而对于Ⅰ级及以下污秽等级(盐密≤0.06mg/cm2),雾水电导率从0.01mS/cm升至3.0mS/cm时将导致绝缘子交流闪络电压降低4.1%~25.6%。即严重污秽时可以不考虑雾水电导率的影响,清洁、轻度污秽时却存在明显影响;清洁、轻污秽绝缘子在高电导率浓雾环境中的交流闪络电压须进行校正,随着雾水电导率的增加(0.01~3.0mS/cm),校正系数K为1.00~0.80,雾水电导率对憎水性绝缘子交流闪络电压的影响小于亲水性绝缘子。
     根据测量结果,分析了绝缘子表面凝露与湿润特性,基于此建立了雾水电导率影响的附加盐密与预染污盐密的综合等值盐密计算模型,并提出了盐密、雾水电导率附加盐密综合影响的绝缘子交流闪络电压计算模型,模型计算结果与试验结果很吻合,百分偏差小于6.8%;分析了0级污秽时雾水电导率对四种绝缘子交流闪络电压梯度的影响。研究结果可为重污染浓雾地区绝缘子的污秽等级划分提供参考建议。
     根据雪峰山试验站基地开展的自然雾中绝缘子交流闪络试验结果,提出了盐密和环境温度综合影响的绝缘子交流闪络电压计算公式,与重庆大学青藏铁路高海拔沿线的试验结果吻合;提出与冻雾闪相比,复合绝缘子凝雾交流闪络时贯穿绝缘子两端的闪络电弧的持续时间明显变短,这主要由于冻雾时绝缘子伞群表面粗糙度发生改变,电弧将融化其表面冻结的雾滴而延长闪络时间,使电弧的形状极不规则,而呈现出弯曲或摇摆的剧烈燃烧现象。
According to operation experience, discharge of external insulation in fogconditions poses a significant threat to the safety and stable operation of power grid inChina. The flashover performance of insulators wetting by steam fog in a climatechamber has been extensively studied by researchers. However, there is little researchon the flashover performance of transmission line external insulation influenced bynatural fog and its conductivity. Therefore, the investigation of the ac flashoverperformance of insulators and air gaps in fog conditions and their influential factors cannot only make the fog flashover well understood, but also provide very importantreference for the prevention of flashover of transmission lines in fog conditions and thesafety operation of the power grid.
     Supported by the National Basic Research Program of China (973Program:2009CB724503) and based on the existing studies at home and abroad, a large numberof tests have been carried out in the laboratory and Xuefeng Mountain test station ofChongqing University to investigate the flashover performance of rod-plane air gapsand several types of transmission line insulators in fog conditions. The mainconclusions in the thesis are as follows:
     According to the meteorological observation at Xuefeng Mountain test station, themonthly average foggy days and the characteristic parameters are obtained. By usingthe least square method, the visibility formula combining the effect of liquid watercontent and droplet concentration is proposed. With the use of ultrasonic fog nozzles,the artificial fog is generated and applied to investigate the ac flashover performance ofceramic and glass insulators in fog conditions. The test results obtained by the methodof steam fog and artificial fog proposed in this thesis are compared. The effect ofdifferent polluting methods on the flashover performance of composite insulators in fogconditions is analyzed. The deviations Δ1%of ac flashover voltage between quantitativebrushing method and spraying method are ranged in7.1%-9.3%at various SDDs.Moreover, the differences on exponents a characterizing the influence of SDD on theflashover voltage are negligible for the specimen whichever polluting method is used.
     Based on the tests in artificial chamber and Xuefeng Mountain test station, thispaper analyzed and summarized the influence of the fog characteristic parameters(water content, fog-water conductivity or temperature) and environmental factors on the AC discharge voltage of air-gap various separations. The results show that as the waterconcentration ranges from1to3g/m3, the discharge voltage increases by5.1%.However, as the water concentration ranges from3to4g/m3, the discharge voltage hasno obvious change. As the fog-water conductivity increases from100to5150μS/cm,the discharge voltage decreases by2.7%~9.1%.
     According to the test results and analysis, the effect of the fog-water conductivityon the ac flashover voltage of insulators in the area with heavy fog is put forward. It isproposed that the fog-water conductivity does not affect the flashover voltage if thecontamination degree on insulator surface is not smaller than0.15mg/cm2. While the acfog flashover voltage decreases by4.1%-25.6%with the fog-water conductivityincreasing from0.01to3.0mS/cm if the contamination degree is not larger than grade0.06mg/cm2. This means the effect of fog-water conductivity can be ignored in thecondition of severe pollution. On the contrary, the effect of fog-water conductivityshould be taken into account in light pollution conditions. The flashover voltage of theinsulator should be corrected for the clean or slightly polluted insulators in fog areaswith high conductivity and high concentration. The correction coefficient K ranges from1.0to0.8as the fog-water conductivity γ increasing from0.01to3.0mS/cm. The effectof fog-water conductivity on the flashover voltage of hydrophobic insulator is less thanthe hydrophilic insulators.
     According to the test results, the wetting characteristics of the surface pollutionlayers of insulators and condensation growth model are analyzed. The model tocalculate the equivalent salt deposit density reflecting the fog-water conductivity andpre-polluting salt density is established. Based on that, the formula to calculate the acflashover voltage of insulators in fog conditions is proposed by considering the effect offog water conductivity and equivalent salt deposit density. It is shown that thecalculation results have a good agreement with the test results, and the difference issmaller than6.8%. The fog flashover voltage gradient of the leakage distance of fourdifferent types of insulators under various fog water conductivities are investigated inthe0degree pollution condition. The results can provide valuable reference forcontamination classification of insulators under regions with the severe contaminationand heavy fog.
     According to a mass of fog flashover results of insulators under the natural fogconditions at natural testing station of Chongqing University, the flashover voltageformula is proposed by considering the effects of the salt density and ambient temperature. It is shown that the calculation results are consistent with the test resultsbased on Qinghai-Tibet railway of Chongqing University. It is proposed the duration ofarc throughout the composite insulator in condensation ceter was significantly lowerthan ones of the freezing fog flashover due to the fact of the change of the surfaceroughness of insulator sheds, which leads the arc melt the frozen fog droplets on thesurface of shed and extends its flashover time. Moreover, the discharge arc presentsvery irregular shapes bends, and has red burning flame or sway violently characteristics.
引文
[1]刘岩,刘启新.“三华”电网知识简介[J].应用能源技术,2011,(10):34-35.
    [2]赵遵廉.中国电网的发展与展望[J].中国电力,2004,37(1):1-6.
    [3]时宗波,贺克斌,陈雁菊,等.雾过程对北京市大气颗粒物理化特征的影响[J].环境科学,2008,29(3):551-556.
    [4]国家统计局环境保护部.中国环境2011统计年鉴[M].北京:中国统计出版社,2011.
    [5]喻华玉,徐文澄,沈刚.高压电气设备防污闪及带电清扫技术[M].北京:中国电力出版社,2006.
    [6]刘兆林.1996年末华东电网雾闪故障分析及对策[J].电网技术,1997,21(8):63-66.
    [7]郝兰荣.1999年3月北京地区冰闪和雾闪事故分析[J].华北电力技术,1999,(11):45-48.
    [8]曹佳滨,张宏伟,朱新滨.大雾对输变电设备外绝缘的影响不容忽视[J].黑龙江电力,2002,24(2):125-126.
    [9]王三峰.大雾引起闪络事故分析[J].农村电气化,2006,(10):31-32.
    [10]白彦红.大气污染程度对空气绝缘子电气设备影响的试验研究[D].广州:华南理工大学,2012:10.
    [11]李耀中,董新胜.新疆疆南电网大面积污闪事故原因分析及防污措施探讨[J].新疆电力技术,2011,(3):6-8.
    [12]宿志一.雾霾天气对输变电设备外绝缘的影响[J].电网技术,2013,37(8):2286-2292.
    [13]孙弈敏.灾害性浓雾[M].北京:气象出版社,1994:6-11.
    [14]中华人民共和国国家标准. GB311.1-1983,高压输变电设备的绝缘配合[S].北京:中华人民共和国国家能源局,1983.
    [15] G. Hahn, P. Zacke, A. E'ischer, et al. Humidity influence on switching impulse breakdown ofa50cm rod-plane gap[J]. IEEE Transactions on Power Apparatus and Systems,1976,95(4):1145-1156.
    [16] M. Boutlendj, N. L. Allen, H. A. Lightfoot, et al. Positive DC corona and sparkover in shortand long rod-plane gaps under variable humidity conditions[J]. Science Measurement andTechnology, IEE Proceedings,1991,138(3):31-36.
    [17]中华人民共和国国家标准, GB/T16927.1-1997,高电压试验技术(第一部分部分):一般试验条件和要求[S].北京:中华人民共和国国家能源局,1997.
    [18]孙才新,司马文霞,舒立春.大气环境与外绝缘[M].北京:中国电力出版社,2002.
    [19] G. Labaune, F. Issac, J. P. Moreau. Simulation in the laboratory of the attachment of a leaderto a floating structure[J]. Rev. Phys. Appl.,1990,25(1):131-137.
    [20] F. A. M. Rizk. Effect of floating conducting objects on critical switching impulse breakdownof air insulation[J]. IEEE Transactions on Power Delivery,1995,10(2):1360-1366.
    [21] R. Sarathi, M. Krishnamurthi, P. Reji. Breakdown characteristics of a short air gap withconducting particle under composite voltages[C].1997IEEE Annual Report Conference onElectrical Insulation and Dielectric Phenomena, Minneapolis,1997:19-22.
    [22] Mamoru Kubuki, Ryuichi Yoshimoto, Masanori Hara. DC flashover characteristics withfloating electrodes in air gaps[C]. Proceeding of the4th International Conference onProperties and Applications of Dielectric Materials, Brisbane Australia,1994,3(8):52-55.
    [23] Mamoru Kubuki, Ryuichi Yoshimoto. Breakdown characteristics in air gaps with artificialfloating metals under dc voltage[J]. IEEE Transactions on Dielectrics and ElectricalInsulation,1995,2(1):155-166.
    [24] M. Kubuki, R. Yoshimoto, K. Yoshizumi. Estimation of dc breakdown mechanisms in airgaps containing floating metallic particales[J]. IEEE Transactions on Dielectrics andElectrical Insulation,1997,4(1):92-101.
    [25] A. Castel lani, A. Bondiou-Clergerie, P. Lalande. Laboratory study of the bi-leader processfrom an electrically floating conductor part1: general results[J]. IEE Proc. Sci. Meas.Technol.,1998,145(5):185-192.
    [26] A. Castel lani, A. Bondiou-Clergerie, P. Lalande. Laboratory. Study of the bi-leader processfrom an electrically floating conductor. part2: bi-leader properties[J]. IEE Proc. Sci. Meas.Technol.,1998,145(5):193-199.
    [27] Kazutoshi Asano, Kyoko Yatsuzuka. Bipolar dc corona discharge from a floatingfilamentary metal particle[J]. IEEE Trans. on Industry Applications,2002,38(1):57-63.
    [28] Yusuke Kudo, Toshiyuki Sugimoto. DC Corona Discharge from a Wire Particle Foated witha Microgap in Parallel Plate Electrodes[J]. IEEE Transactions on Industry Applications,2006,42(4):909-915.
    [29] J. Zeleny. Electrical discharges from pointed conductors[J]. Phys. Rev.1920,16(2):102-125.
    [30] W. A. Macky. Some investigations on the deformation and breaking of water drops in strongelectric fields[J]. Proc. R. Soc.,1931,133:565-587.
    [31] W. N. English. Corona from a water drop[J]. Physical Review,1948,74:179-189.
    [32] L. B. Loeb. Electrical coronas[M]. University of California Press, Berkeley,1965.
    [33] L. B. Loeb. The mechanisms of stepped and dart leaders in cloud-to-ground lightningstrokes[J]. Geophysical Research,1966,71(20):4711-4721.
    [34] G. A. Dawson. Pressure dependence of water-drop corona onset and its atmosphericimportance[J]. Geophysical Research,1969,74(28):6859-6868.
    [35] C. N. Richard, G. A. Dawson. The hydrodynamic instability of water drops falling atterminal velocity in vertical electric fields[J]. Geophysical Research,1971,76(15):3445-3455.
    [36] S. Coquillat, S. Chauzy. Computed conditions of corona emission from raindrops[J].Geophysical Research,1994,99(8):16897-16905.
    [37] Sylvain Coquillat, Bruno Combal, Serge Chauzy. Corona emission from raindrops in strongelectric fields as a possible discharge initiation: comparison between horizontal and verticalfield configurations[J]. Geophysical Research,2003,108(7):1-16.
    [38] Pierre Tardiveau, Emmanuel Marode. Point-to-plane discharge dynamics in the presence ofdielectric droplets[J]. Journal of Physics D: Applied Physics,2003,36(2):1204-1211.
    [39] M. P. BoussatonT, S. Coquillat, S. Chauzy, J. F. Georgis. Influence of water conductivity onmicro-discharges from raindrops in strong electric fields[J]. Atmospheric Research,2005,76(3):330-345.
    [40]叶齐政,万辉,李劲.气中液滴群在均匀场中的局部电场分析[J].高压电器,2001,37(6):14-16.
    [41]王晓明,赵莹.等离子体反应器多相介质电场畸变分析[J].高电压技术,2005,31(5):41-46.
    [42]杨长河.气水混合两相体放电现象及机制的理论与实验研究[D].武汉:华中科技大学,2005.
    [43]覃世勋,叶齐政,程虎,等.气液混合两相体中脉冲放电现象的研究[J].高压电器,2007,43(2):97-99.
    [44]胡毅,王力农,邵瑰玮,等.风雨对导线-杆塔空气间隙工频放电特性的影响[J].高电压技术,2008,34(5):845-850.
    [45]蒋兴良,刘伟,奚思建,等.降雨对棒-板短空气间隙正极性直流放电特性的影响[J].高电压技术,2011,37(2):261-267,2011.
    [46]蒋兴良,奚思建,刘伟,等.降雨对棒-板(棒-棒)空气间隙交流放电特性的影响[J].重庆大学学报,2012,35(1):52-58,2012.
    [47] R. T. Harrold. Physical aspects of vapor-mist dielectrics [J]. IEEE Transactions on ElectricalInsulation,1986,22(1):63-69.
    [48] M. Yashima, H. Fujinami, T. Takuma. Breakdown characteristics of gases mixed withtetrachlorethylene mist under nearly uniform fields[J]. IEEE Transactions on ElectricalInsulation,1990,25(2):371-379.
    [49] M. Yashima, H. Fujinami, T. Takuma. Flashover characteristics of vapor-mist dielectricsunder lightning impulse and means to increase the flashover voltage[J]. ElectricalEngineering Japan,1993,113(7):11-12.
    [50] H. Goshima, T. Suzuki, N. Hayakawa, et al. Dielectric breakdown characteristics ofcryogenic nitrogen gas above liquid nitrogen[J]. IEEE Transactions on Electrical Insulation,1994,1(3):538-544.
    [51] P. Tardiveau, C. Boyer, F. Jorand,C. Postel, S. Pasquiers. Optical and electricalcharacterization of pulsed dielectric barrier discharges in heterogeneous structures[J]. IEEETransactions on Plasma Science,2005,33(2):314-315.
    [52] P. Tardiveau, E. Marode, A. Agneray. Tracking an individual streamer branch among othersin a pulsed induced discharge[J]. Journal of Physics D: Applied Physics,2002,35(21):2823-2829.
    [53]杜伯学,刘勇.人工盐雾环境下环氧树脂的绝缘特性[J].高电压技术,2006,32(6):9-11.
    [54]邓鹤鸣,何正浩,许宇航,等.雾霾对冲击放电路径影响特性的分析[J].高电压技术,2009,35(11):2669-2673.
    [55]邓鹤鸣,何正浩,许宇航,等.水滴大小对放电开始和发展过程的影响[J].中国电机工程学报,2010,28(30):120-124.
    [56] A. H. Cookson. Electrical breakdown for uniform fields in compressed gases[J].Proceedings of the Institution of Electrical Engineers,1970,117(1):269-280.
    [57]司马文霞,吴亮,杨庆.沙尘对电力系统外绝缘电气特性影响分析[J].高电压技术,2008,34(1):16-20.
    [58] R. Sundararajan, R. W. Nowlin. Effect of altitude on the flashover voltage of contaminatedinsulators[C]. IEEE Annual Report of the Conf. on Electrical Insulation and DielectricPhenomena, Millbrae, America,1996,2:433-436.
    [59] H. P. Mercure. Insulator pollution performance at high altitudes: major trends[J]. IEEETransactions on Power Delivery,1989,4(2):1461-1468.
    [60] X. Jiang, L. Chen, Z. Zhang, et al. Effect of arc-levitating from polluted insulators’ surfacein the low air pressure on its DC flashover performance[J]. IET Generation, Transmission&Distribution,2011,5(7):729-734.
    [61]蒋兴良,舒立春,孙才新.电力系统污秽与覆冰绝缘[M].北京:中国电力出版社,2009.
    [62]李庆峰,范峥,吴穹,等.全国输电线路覆冰情况调研及事故分析[J].电网技术,2008,32(9):33-36.
    [63]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社,2001.
    [64]蒋兴良,董冰冰,张志劲,等.绝缘子覆冰闪络研究进展[J].高电压技术,2014,40(2):317-335.
    [65]舒立春.复杂环境中绝缘子交流闪络特性及校正方法研究[D].重庆:重庆大学,2002.
    [66]周龙武.强暴雨污秽绝缘子串闪络模型与闪络特性研究[D].重庆:重庆大学,2013.
    [67]关志成,王绍武,梁曦东,等.我国电力系统绝缘子污闪事故及其对策[J].高电压技术,2000,26(6):37-39.
    [68] F. A. M. Rizk, A. Q. Rezazada. Modeling of altitude effects on AC flashover of pollutedhigh voltage insulators [J]. IEEE Transaction on Power Delivery,1997,12(2):810-822.
    [69]苑吉河.输电线路绝缘子(串)交流污闪特性及放电过程的研究[D].重庆:重庆大学,2008.
    [70] G. N. Ramos, M. T. R. Campillo, K. Naito. A study on the characteristics of variousconductive contaminants accumulated on high voltage insulators [J]. IEEE Transaction onPower Delivery,1993,8(4):1842-1850.
    [71] Artificial pollution tests on high voltage insulators to be used on A.C.systems [S]. IECStandard60507,1991.
    [72]中国国家标准化管理委员会.交流系统用高压绝缘子的人工污秽试验[S].北京, GB/T4585-2004.
    [73]张鑫.悬式绝缘子交/直流污秽试验方法比[D].重庆:重庆大学,2009.
    [74] B. Dong, X. Jiang, J. Hu, et al. Effects of artificial polluting methods on ac flashover voltageof composite insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(2):714-722.
    [75] S. Venkataraman, R. S. Gorur. Extending the applicability of insulator flashover models byregression analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2007,14(2):368-374.
    [76] Swedish. Transmission Research Institute. Guide1,92/1Hydrophobicity ClassificationGuide [S].
    [77]黄晓明.基于图像分析技术的复合绝缘子憎水性判断方法研究[D].北京:华北电力大学,2008.
    [78]田建华,袁建州.合成绝缘表面憎水性分级方法介绍[J].华北电力技术,1998,5:33-35.
    [79]中国国家标准化管理委员会.高压交流系统用复合绝缘子人工污秽试验[S].北京,DL/T859-2004.
    [80] M. Farzaneh, W. A. Chisholm, Insulators for icing and polluted environments[M].Wiley-IEEE Press,2010.
    [81]张志劲.低气压下绝缘子(长)串污闪特性及直流放电模型研究[D].重庆:重庆大学,2007.
    [82] X. Jiang, B. Dong, Q. Hu, et al. Effect of ultrasonic fog on ac flashover voltage of pollutedporcelain and glass insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2013,20(2):429-434.
    [83] WMO, International Meteorological Vocabulary182(WMO, Geneva1992).
    [84] I. Gultepe, J. A. Milbrandt. Microphysical observations and mesoscale model simulation ofa warm fog case during FRAM project [J]. Pure Appl Geophy,2007,164(11):61-1178.
    [85] S. Niu, C. Lu, H. Yu, et al. Fog research in China: an overview[J]. Advances in AtmosphericScience,2010,27(3):639-661.
    [86]岳岩裕.春季南海海雾微观特征和雾水化学组分的观测研究[D].南京:南京信息工程大学,2013:5.
    [87]尹金方.东亚区域云和降水微物理特征及云微物理参数化方案构建[D].杭州:浙江大学,2013.
    [88]王丽萍,陈少勇,董安祥.中国雾区的分布及其季节变化[J].地理学报,2005,60(4):689-697.
    [89]张苏平,鲍献文.近十年中国海雾的研究进展[J].中国海洋大学学报,2008,38(3):359-366.
    [90]江敦双,张苏平,陆惟松.青岛海雾的气候特征和预测研究[J].海洋湖沼通报,2008,3:7-12.
    [91] I. Gultepe.2004: Canadian plans for upcoming fog studies, COST722Expert Meeting,15-16October2004, Available at http://cost.cordis.lu/src/home.cfm. Toulouse, France.
    [92]李子华,刘端阳,封洋,等.中国雾水化学研究进展[J].气象学报(自然科学版),2011,69(3):544–554.
    [93]赵琦,孟小星,陈刚才,等.“十五”期间重庆雾水化学特征研究[J].西南大学学报(自然科学版),2007,29(8):146–149.
    [94] Arthur Robert Von Hippel. Dielectric materials and applications[M]. New York: TechnologyPress of MIT and Wiley,1954.
    [95] H. G.斯蒂弗.徐华舫译.高速流体中的凝结现象[M].北京:科学出版社,1988
    [96] Frenkel H. Kineic theory of liquids. Clarendon Press, Oxford,1946.
    [97] Volmer M. Kinetik der. Phasenbilding. Steinkopff, Dresden,1939.
    [98] Oswatitsch K Z. angew. Math. u. Mech.1942,22,1-4.
    [99] M. A. Salama, R. Bartnikas, M. M. Sallam. A tentative tracking model based on energybalance criteria[J]. IEEE Transactions on Power Delivery,1998,13(3):824-833.
    [100] ASHRAE.1991-1999. HV AC Applications[M]. Atlanta, GA: American Society of Heating,Refrigerating and Air-conditioning Engineers.
    [101] J. A. Goff. Saturation pressure of water on the new Kelvin temperature scale[C],Transactions of the American society of heating and ventilating engineers, presented at thesemi-annual meeting of the American society of heating and ventilating engineers, MurrayBay, Que. Canada,1957,347-354.
    [102] J. A. Goff, S. Gratch. Low-pressure properties of water from-160to212F[C], inTransactions of the American society of heating and ventilating engineers, presented at the52nd annual meeting of the American society of heating and ventilating engineers, NewYork,1946,95-122.
    [103] Smithsonian Met. Tables,5th ed.,1984,350.
    [104] C. J. Gibbins. A survey and comparison of relationships for the determination of thesaturation vapour pressure over plane surfaces of pure water and of pure ice[J]. AnnalesGeophys,1990,8:859-886.
    [105] W. P. Elliott, D. J. Gaffen. Effects of conversion algorithms on reported upper air dewpointdepressions, Bull. American Meteorological Society,1993,74:1323-1325.
    [106] A. Detwiler. Extrapolation of the Goff-Gratch formula for vapor pressure over liquid waterat temperatures below0°C[J]. Apply Meteorological,1983,22(3):503-504.
    [107] N. Fukuta, C. M. Gramada. Vapor pressure measurement of supercooled water[J].Atmospheric Science,2003,60:1871-1875.
    [108] C. Textier, B. Kouadri. Model of the formation of a dry band on an NaCl-pollutedinsulation[J]. IEE Proceedings: Part A,1986,133(5):285-290.
    [109] IEEE Working Group on Insulator Contamination. Application of insulators in acontaminated environment[J]. IEEE Transactions on Power Apparatus and Systems,1979,98(5):1676-1695.
    [110]张军,何宏舟,郑捷庆.静电雾化过程中雾滴空间电荷密度的实验测试[J].工程热物理学报,2011,32(12):2064-2067.
    [111] J. W. Gallagher, E. C. Beaty, J. Dutton. An annotated compilation and appraisal of electronswarm data in electronegative gases[J]. Physical and Chemical Reference Data,1983,12(1):109-152.
    [112]杨津基.气体放电[M].北京:科学出版社,1983.
    [113]黄俊.自然雾中棒板空气间隙放电特性与放电机理分析[D].重庆:重庆大学,2013.
    [114] R. Morrow, J. J. Lowke. Streamer propagation in air[J]. Physics D: Applied Physics,1997,30(4):614-627.
    [115] B. M. Smirnov. Negative ions[M]. USA: McGraw-Hill Inc.,1982.
    [116]高树香,陈宗柱.气体导电[M].南京:南京工学院出版社,1988.
    [117]冯允平.高电压技术中的气体放电及其应用[M].北京:水利电力出版社,1990.
    [118] N. Y. Babaeva, G. V. Naidis. Two-dimensional modelling of positive streamer dynamics innon-uniform electric fields in air[J]. Physics D: Applied Physics,1996,29(9):2423-2431.
    [119] A. Paul Abraham, B. R. Prabhakar. Effect of humidity and temperature on the dc breakdownof rob-rob and rob-plane gaps[J]. IEEE Transactions on Electrical Insulation,1992,27(2):207-213.
    [120] G. Montoya, I. Ramirez, J. I. Montoya. Correlation among ESDD, NSDD and leakagecurrent in distribution insulators[J]. IEE Proceedings Generation Transmission andDistribution,2004,151(3):334-340.
    [121]曹婉真,夏又新.电解质[M].西安:西安交通大学出版社,1991.
    [122] M.Leclerc,夏艾生.污秽绝缘子表面的湿润过程[J].中国电瓷,1984,(5):43-48.
    [123] W. A. Chisholm, P. G. Buchan, aT. Jarv. Accurate measurement of low insulatorcontamination levels[J]. IEEE Transactions on Power Delevery,1994,9(3):1552-1557.
    [124] M. A. Salam, H. Ahmad, A. S. Ahmad, et al. Study of creepage distance of the contaminatedinsulator in correlation with salt deposit density[C]. Annual Report Conference on ElectricalInsulation and Dielectric Phenomena, Victoria, British Columbia, Canada,2000,1:215-217.
    [125]张重午译, C.Ⅱ.梅尔赫列夫, E. A.索洛莫尼克著.大气污秽地区线路与变电所的绝缘
    [M].北京:电力工业出版社,1981,15-16.
    [126]中国国家标准化管理委员会.高压架空线路和发电厂、变电所环境污区分级及外绝缘选择标准[S]. GB/T16434-1996.
    [127]李宝泉,李锁彦.110kV大新线耐张杆瓷绝缘子串污闪跳闸分析[J].河北电力技术,2006,25(5):12,44.
    [128]钱茂华,崔国顺,关志成.用局部表面电导率划分污秽等级[J].电瓷避雷器,1994,(6):12-14.
    [129]宿志一.用饱和盐密确定污秽等级及绘制污区分布图的探讨[J].电网技术,2004,28(8):16-19.
    [130] J. W. Rose. Dropwise condensation theory[J]. International Journal of Heat and MassTransfer,1981,24(2):191-194
    [131]吴玉庭,杨春信,袁修干,等.珠状凝结换热的数学物理模型及数值模拟[J].计算物理,2001,18(4):334-340.
    [132] IEEE Standard738.2006. IEEE Standard for calculating the current temperaturerelationship of bare overhead conductors [S]. Piscataway, NJ: IEEE Press.
    [133]刘小欢.典型伞型结构绝缘子积污特性及其交流污闪特性研究[D].重庆:重庆大学,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700