用户名: 密码: 验证码:
火电空冷系统跨尺度热质传递的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空冷技术具有明显的节水优势,是富煤贫水地区火力发电的重要选择。火电厂空冷机组的流动换热性能不仅取决于翅片的换热效率,还受到翅片管束、空冷凝汽器单元、空冷岛、电厂主要构筑物、气象和地形地貌条件等多个尺度层次的制约。最大尺度和最小尺度之间的跨度为106-107m,是典型的系统多尺度问题。火电厂空冷系统中流动传热规律的研究所采用的实验和数值方法需要消耗巨大的计算时间和计算资源。在同时考虑所有尺度层次相互作用机制的情况下,数值计算中所采用的多重网格法建立的模型容易受到大小尺度区域之间界面上网格耦合的限制,伺时庞大的模型很容易超出现有计算机的计算能力。
     在自然环境风影响下,引入本征正交分解(POD)方法对二维空冷凝汽器单元的流场和温度场等变量建立了低维模型,快速预测了新工况下的变量分布,并对其流动传热规律进行了分析。其中低维模型基本模态的权系数采用三次样条插值和通量守恒两种方法求得,并分析了各自的优缺点。用优化的本征正交分解补集(PODc)法得到了适合整个参数研究范围的鲁棒低维模型。
     用本征正交分解方法的低维模型得到的凝汽器单元变量场,在保持与数值模拟结果相近精度的情况下,计算效率得到了明显提高,大大节省了计算时间和计算资源。引入的本征正交分解方法对于处理火电厂空冷系统中凝汽器结构和自然环境风综合作用下所表现出的复杂流动传热问题是非常有效的。该方法为空冷机组流动换热规律的研究、空冷系统的结构优化以及运行的实时操作控制等提供了很好的手段。
     针对三维凝汽器单元中流动换热性能对环境风向有着高度依赖性的特点,提出本征正交分解备用(PODs)法与本征正交分解补集(PODc)法相结合的PODs-c方法来处理环境风向角较小工况下凝汽器单元中由于大变量梯度产生的各种湍流涡引起的强烈非线性问题,计算精度得到了显著提高。提出的PODs-c方法有效拓展了用本征正交分解的低维模型处理空冷凝汽器单元中流动换热问题的参数研究范围。
     针对火电厂空冷系统中多尺度流动传热问题,提出本征正交分解与计算流体力学相结合的跨尺度模拟方法。该方法中采用正交分解法对小尺度区域的各变量建立低维模型并快速准确得预测其流动换热状态,在大小尺度区域的跨尺度界面上,将低维解保留的小尺度传输信息作为边界条件,实现对大尺度区域流动和传输特性的数值模拟。
     采用提出的跨尺度模拟方法来研究包含2×30个小尺度凝汽器单元的空冷岛和大尺度的电厂主要构筑物以及地形地貌影响下的流动换热特性。揭示出了自然环境风影响下空冷岛的热风回流以及背风侧空冷凝汽器的传热恶化等特征。
     提出的跨尺度模拟方法能够实现动力与运动的相互关联,并实现空冷系统中空气流动传热特性的跨尺度关联,从而揭示出不同尺度湍流涡的相互作用机制。相较于多重网格数值模拟技术,显著得节省了计算时间和计算资源,却能得到了与之相近精度的模拟结果。该方法也可用于解决其他领域存在的多尺度问题。
Air-cooled condensers with obvious water conservation benefit can be an important alternative for power plant near coal mines where water source is of shortage over the past few decades. The flow and heat transfer performance not only depends on heat transfer efficiency among fins, it is also restricted by finned tube bundles, air cooled condensers (ACC), air cooled island, main structures of power plant, and the meteorological and the geographic conditions. The smallest and largest length scale in this typical multi-scale system have bridged106-107m order of magnitude. The experiment and numerical simulation methods adopted by flow and heat transfer research of air cooling system in power plant always consume gigantic calculating time and resource. Moreover, considered simultaneously interacting mechanism among all length scale levels, the established models used multi-grid method in numerical simulation were easily restricted by the mesh interconnection on the interfaces between large and small scale regions. And the gigantic models were easy to exceed the calculating ability of the existing computer.
     Influenced by the natural environmental wind, the reduced order models based proper orthogonal decomposition (POD) method were established about air side velocity and temperature fields of two-dimensional air cooled condenser. In order to analyze the flow and heat transfer laws, the variable fields at new cases were predicted quickly and accurately. The weight coefficients for POD modes were obtained by cubic spline interpolation and flux matching procedure, and analyzed the respective possessing advantages and disadvantages. In order to obtain the robust reduced order models over the whole researching range of parameter, the improved complementary POD(PODc) approach was adopted in the present research.
     The calculating efficiencies of variable fields have been improved obviously in air cooled condenser, and the calculating time and resources were significantly saved through the reduced order models based POD method with similar precision to mutlti-grid CFD simulating results. The introduced POD method is very effective to deal with the complex flow and heat transfer problem in air cooled condenser of power plant under the comprehensive influence of ACC structure and ambient wind. The present investigation may provide a rapid and reliable approach for the research of flow-thermo rules, structure optimization, and real-time operation control of air cooling system in power generating unit.
     Due to the high dependence of flow and heat transfer performance of three-dimensional ACC onto the natural wind angle, combined procedure (PODs-c) of spare POD (PODs) with complementary POD (PODc) was reformulated to treat the high nonlinear issue with large variable gradients generating kinds of vortices in ACC at the relative small natural direction angle cases. And the calculating precisions have been obviously improved. The reformulated PODs-c effectively extends the researching parameter range of flow and heat transfer for ACC utilized reduced order models based POD.
     In order to deal with the multi-scale flow and heat transfer problem of air cooling system in power plant, a cross scale modeling methodology combined POD and CFD was proposed in the present paper. Reduced order models based proper orthogonal decomposition were established about variables in small-scale region, and the flow and heat transfer status were predicted quickly and accurately. On the cross scale interfaces between large and small scale regions, numerical simulation of flow and transport characteristics on large-scale region were realized, with the boundary condition of the reserving transport information from reduced order solution in small scale region.
     The proposed cross scale modeling methodology was adopted to research the flow and heat transfer characteristic of air cooling system crossing two neighbor characteristic lengths, including that of the air cooling island region containing2x30air cooled condensers with small length scale, and the large-scale one consisted of power plant buildings and the geomorphology. The hot plume recirculation of the air cooling island caused by environmental natural wind, as well as the heat transfer deterioration of downwind ACC cells were revealed.
     The cross scale relationship of air flow and heat transfer characteristic, as well as the interdependent relationship between kinematic and dynamic in air cooling system were realized adopted the present cross scale modeling methodology. And interacting mechanism among different length scale turbulent vortex were revealed. The calculating time and resources were significantly saved through the present cross scale modeling methodology with similar precision to multi-grid CFD simulating technique. The cross scale modeling methodology can be used to solve the existing multi-scale problem in other fields, and the researched achievement exerts positive contribution to the research of multi-scale science.
引文
[1]温高.发电厂空冷技术[M]:中国电力出版社;2008.
    [2]杜小泽,金衍胜,姜剑波,et a1.火电厂直接空冷凝汽器传热性能实验研究[J].工程热物理学报,2009,30(1):99-101.
    [3]冯丽丽,杜小泽,杨勇平,et a1.椭圆管矩形翅片间空气流动的扰流特征[J].工程热物理学报,2011,32(001):119-122.
    [4]Feng L, Du X, Yang Y, et al. Study on heat transfer enhancement of discontinuous short wave finned flat tube[J]. Science China Technological Sciences,2011,54(12): 3281-3288.
    [5]Du X, Feng L, Yang Y, et al. Experimental study on heat transfer enhancement of wavy finned flat tube with longitudinal vortex generators[J]. Applied Thermal Engineering,2013,50(1):55-62.
    [6]Duvenhage K, Vermeulen J A, Meyer C J, et al. Flow distortions at the fan inlet of forced-draught air-cooled heat exchangers[J]. Applied Thermal Engineering,1996, 16(8-9):741-752.
    [7]Meyer C J, Kroger D G. Numerical investigation of the effect of fan performance on forced draught air-cooled heat exchanger plenum chamber aerodynamic behaviour[J]. Applied Thermal Engineering,2004,24(2-3):359-371.
    [8]Duvenhage K, Kroger D G. The influence of wind on the performance of forced draught air-cooled heat exchangers[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,62(2-3):259-277.
    [9]Bredell J R, Kroger D G, Thiart G D. Numerical investigation of fan performance in a forced draft air-cooled steam condenser[J]. Applied Thermal Engineering,2006, 26(8-9):846-852.
    [10]Hotchkiss P J, Meyer C J, von Backstrom T W. Numerical investigation into the effect of cross-flow on the performance of axial flow fans in forced draught air-cooled heat exchangers[J]. Applied Thermal Engineering,2006,26(2-3): 200-208.
    [11]Meyer C J. Numerical investigation of the effect of inlet flow distortions on forced draught air-cooled heat exchanger performance[J]. Applied Thermal Engineering,2005,25(11-12):1634-1649.
    [12]陈懋章.粘性流体动力学基础[M]:高等教育出版社;2002.
    [13]Yang L, Tan H, Du X, et al. Thermal-flow characteristics of the new wave-finned flat tube bundles in air-cooled condensers[J]. International Journal of Thermal Sciences,2012,53(0):166-174.
    [14]Yang L J, Du X Z, Yang Y P. Space characteristics of the thermal performance for air-cooled condensers at ambient winds[J]. International Journal of Heat and Mass Transfer,2011,54(15-16):3109-3119.
    [15]Du X, Liu L, Xi X, et al. Back pressure prediction of the direct air cooled power generating unit using the artificial neural network model [J]. Applied Thermal Engineering,2011,31(14-15):3009-3014.
    [16]Liu L, Du X, Xi X, et al. Experimental analysis of parameter influences on the performances of direct air cooled power generating unit[J]. Energy,2013,56(0): 117-123.
    [17]Gu Z, Chen X, Lubitz W, et al. Wind tunnel simulation of exhaust recirculation in an air-cooling system at a large power plant[J]. International Journal of Thermal Sciences,2007,46(3):308-317.
    [18]Bredell J R, Kroger D, Thiart G. Numerical investigation of fan performance in a forced draft air-cooled steam condenser[J]. Applied Thermal Engineering,2006, 26(8):846-852.
    [19]Meyer C, Kroger D. Numerical investigation of the effect of fan performance on forced draught air-cooled heat exchanger plenum chamber aerodynamic behaviour[J]. Applied Thermal Engineering,2004,24(2):359-371.
    [20]Conradie A, Kroger D. Performance evaluation of dry-cooling systems for power plant applications [J]. Applied Thermal Engineering,1996,16(3):219-232.
    [21]Pieve M, Salvadori G. Performance of an air-cooled steam condenser for a waste-to-energy plant over its whole operating range[J]. Energy Conversion and Management,2011,52(4):1908-1913.
    [22]Gao X, Zhang C, Wei J, et al. Performance prediction of an improved air-cooled steam condenser with deflector under strong wind[J]. Applied Thermal Engineering, 2010,30(17):2663-2669.
    [23]Duvenhage K, Kroger D. The influence of wind on the performance of forced draught air-cooled heat exchangers[J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,62(2):259-277.
    [24]Gu Z, Li H, Zhang W, et al. Wind tunnel simulation on re-circulation of air-cooled condensers of a power plant[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93(6):509-520.
    [25]Duvenhage K, Vermeulen J, Meyer C, et al. Flow distortions at the fan inlet of forced-draught air-cooled heat exchangers[J]. Applied Thermal Engineering,1996, 16(8):741-752.
    [26]陶文铨.传热与流动问题的多尺度数值模拟:方法与应用[M]:科学出版社;2008.
    [27]Petrov Y V, Karihaloo B L, Bratov V V, et al. Multi-scale dynamic fracture model for quasi-brittle materials[J]. International Journal of Engineering Science,2012, 61(0):3-9.
    [28]Xu Q, Chen J, Li J, et al. Multi-scale numerical model for simulating concrete material based on fractal theory[J]. Acta Mechanica Solida Sinica,2013,26(4): 344-352.
    [29]Lin H, Ramgulam R, Arshad H, et al. Multi-scale integrated modelling for high performance flexible materials[J]. Computational Materials Science,2012,65(0): 276-286.
    [30]Dalmazzone S, La Notte A. Multi-scale environmental accounting: Methodological lessons from the application of NAMEA at sub-national levels[J]. Journal of Environmental Management,2013,130(0):405-416.
    [31]Illera J C, von Wehrden H, Wehner J. Nest site selection and the effects of land use in a multi-scale approach on the distribution of a passerine in an island arid environment[J]. Journal of Arid Environments,2010,74(11):1408-1412.
    [32]Southern J, Pitt-Francis J, Whiteley J, et al. Multi-scale computational modelling in biology and physiology[J]. Progress in Biophysics and Molecular Biology,2008, 96(1-3):60-89.
    [33]Qu Z, Garfinkel A, Weiss J N, et al. Multi-scale modeling in biology:How to bridge the gaps between scales?[J]. Progress in Biophysics and Molecular Biology, 2011,107(1):21-31.
    [34]Tseng Y-h, Chien M-h. Parallel Domain-decomposed Taiwan Multi-scale Community Ocean Model (PD-TIMCOM)[J]. Computers & Fluids,2011,45(1): 77-83.
    [35]Leslie W G, Robinson A R, Haley Jr P J, et al. Verification and training of real-time forecasting of multi-scale ocean dynamics for maritime rapid environmental assessment J]. Journal of Marine Systems,2008,69(1-2):3-16.
    [36]Young C-C, Tseng Y-H, Shen M-L, et al. Software development of the Taiwan Multi-scale Community Ocean Model (TIMCOM)[J]. Environmental Modelling & Software,2012,38(0):214-219.
    [37]Chen Q, Zhai Z, Wang L. Computer modeling of multiscale fluid flow and heat and mass transfer in engineered spaces[J]. Chemical Engineering Science,2007, 62(13):3580-3588.
    [38]Zhou L, Xuan Y, Li Q. Multiscale simulation of flow and heat transfer of nanofluid with lattice Boltzmann method[J]. International Journal of Multiphase Flow,2010,36(5):364-374.
    [39]柴立和.多尺度科学的研究进展[J].化学进展,2005,17(2):186-191.
    [40]孙宏伟.化学工程的发展趋势——认识时空多尺度结构及其效应[J].化工进展,2003,22(3):224-227.
    [41]Nie Q, Joshi Y. Multiscale thermal modeling methodology for thermoelectrically cooled electronic cabinets[J]. Numerical Heat Transfer, Part A:Applications,2007, 53(3):225-248.
    [42]Nie Q, Joshi Y. Multi-scale thermal modeling methodology for electronics cabinets[C]. Thermal and Thermomechanical Phenomena in Electronics Systems, 2006 ITHERM'06 The Tenth Intersociety Conference on:IEEE; 2006.678-684.
    [43]Tang L, Joshi Y K. A multi-grid based multi-scale thermal analysis approach for combined mixed convection, conduction, and radiation due to discrete heating[J]. Journal of heat transfer,2005,127(1):18-26.
    [44]Rambo J D. Reduced-order modeling of multiscale turbulent convection: application to data center thermal management[D]. Citeseer; 2006.
    [45]Rolander N. An approach for the robust design of air cooled data center server cabinets[D]. Georgia Institute of Technology; 2005.
    [46]Rambo J, Joshi Y. Reduced order modeling of steady turbulent flows using the POD[C]. ASME summer heat transfer conference, San Francisco, CA,2005.
    [47]Nie Q, Joshi Y. Reduced order modeling and experimental validation of steady turbulent convection in connected domains[J]. International Journal of Heat and Mass Transfer,2008,51(25):6063-6076.
    [48]Rolander N, Rambo J, Joshi Y, et al. Robust design of air-cooled server cabinets for thermal efficiency[C]. ASME; 2005.
    [49]Haider S I, Burton L, Joshi Y. A proper orthogonal decomposition based system-level thermal modeling methodology for shipboard power electronics cabinets[J]. Heat Transfer Engineering,2008,29(2):198-215.
    [50]Rambo J, Joshi Y. Reduced-order modeling of turbulent forced convection with parametric conditions[J]. International Journal of Heat and Mass Transfer,2007, 50(3-4):539-551.
    [51]Samadiani E, Joshi Y. Multi-parameter model reduction in multi-scale convective systems[J]. International Journal of Heat and Mass Transfer,2010,53(9-10): 2193-2205.
    [52]Rolander N, Rambo J, Joshi Y, et al. An approach to robust design of turbulent convective systems[J]. Journal of Mechanical Design,2006,128(4):844-855.
    [53]Samadiani E, Amur H, Krishnan B, et al. Coordinated Optimization of Cooling and IT Power in Data Centers[J]. Journal of Electronic Packaging,2010,132(3), 031006.
    [54]Samadiani E, Joshi Y. Reduced order thermal modeling of data centers via proper orthogonal decomposition:a review[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2010,20(5):529-550.
    [55]Samadiani E, Joshi Y. Proper Orthogonal Decomposition for Reduced Order Thermal Modeling of Air Cooled Data Centers[J]. Journal of Heat Transfer-Transactions of the Asme,2010,132(7),071402.
    [56]Nie Q H, Joshi Y. Reduced order modeling and experimental validation of steady turbulent convection in connected domains[J]. International Journal of Heat and Mass Transfer,2008,51(25-26):6063-6076.
    [57]Nie Q H, Joshi Y. Multiscale thermal modeling methodology for thermoelectrically cooled electronic cabinets[J]. Numerical Heat Transfer Part a-Applications,2008,53(3):225-248.
    [58]Meyer C, Kroger D. Air-cooled heat exchanger inlet flow losses[J]. Applied Thermal Engineering,2001,21(7):771-786.
    [59]Stinnes W, Von Backstrom T. Effect of cross-flow on the performance of air-cooled heat exchanger fans[J]. Applied Thermal Engineering,2002,22(12): 1403-1415.
    [60]Owen M, Kroger D. The effect of screens on air-cooled steam condenser performance under windy conditions[J]. Applied Thermal Engineering,2010,30(16): 2610-2615.
    [61]Liu P, Duan H, Zhao W. Numerical investigation of hot air recirculation of air-cooled condensers at a large power plant[J]. Applied Thermal Engineering,2009, 29(10):1927-1934.
    [62]Ge Z, Du X, Yang L, et al. Performance monitoring of direct air-cooled power generating unit with infrared thermography[J]. Applied Thermal Engineering,2011, 31(4):418-424.
    [63]Yang L, Du X, Yang Y. Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant[J]. International Journal of Thermal Sciences,2011,50(10):2050-2061.
    [64]Zhang W, Yang L, Du X, et al. Thermo-flow characteristics and air flow field leading of the air-cooled condenser cell in a power plant[J]. Science China Technological Sciences,2011,54(9):2475-2482.
    [65]Weinan E, Engquist B. Multiscale modeling and computation[J]. Notices of the AMS,2003,50(9):1062-1070.
    [66]Nie X, Chen S, Robbins M O, et al. A continuum and molecular dynamics hybrid method for micro-and nano-fluid flow[J]. Journal of Fluid Mechanics,2004,500: 55-64.
    [67]O'Connell S T, Thompson P A. Molecular dynamics-continuum hybrid computations:a tool for studying complex fluid flows[J]. Physical Review E,1995, 52(6):R5792-R5795.
    [68]Dupuis A, Kotsalis E, Koumoutsakos P. Coupling lattice Boltzmann and molecular dynamics models for dense fluids[J]. Physical Review E,2007,75(4): 046704.
    [69]Wang Y-c, He G-w. A dynamic coupling model for hybrid atomistic-continuum computations[J]. Chemical Engineering Science,2007,62(13):3574-3579.
    [70]Flekkoy E, Wagner G, Feder J. Hybrid model for combined particle and continuum dynamics[J]. Europhysics Letters,2000,52(3):271-276.
    [71]Xiao S, Belytschko T. A bridging domain method for coupling continua with molecular dynamics[J]. Computer methods in applied mechanics and engineering, 2004,193(17):1645-1669.
    [72]Luan H, Xu H, Chen L, et al. Numerical illustrations of the coupling between the lattice Boltzmann method and finite-type macro-numerical methods[J]. Numerical Heat Transfer, Part B:Fundamentals,2010,57(2):147-171.
    [73]Nie X, Chen S, Robbins M O. Hybrid continuum-atomistic simulation of singular corner flow[J]. Physics of Fluids,2004,16(10):3579-3591.
    [74]Wu J-S, Lian Y-Y, Cheng G, et al. Development and verification of a coupled DSMC-NS scheme using unstructured mesh[J]. Journal of Computational Physics, 2006,219(2):579-607.
    [75]Hlushkou D, Kandhai D, Tallarek U. Coupled lattice-Boltzmann and finite-difference simulation of electroosmosis in microfluidic channels[J]. International journal for numerical methods in fluids,2004,46(5):507-532.
    [76]Holmes P, Lumley J L, Berkooz G. Turbulence, coherent structures, dynamical systems and symmetry[M]:Cambridge university press; 1998.
    [77]Chatterjee A. An introduction to the proper orthogonal decomposition[J]. Current science,2000,78(7):808-817.
    [78]Lucia D J, Beran P S, Silva W A. Reduced-order modeling:new approaches for computational physics[J]. Progress in Aerospace Sciences,2004,40(1):51-117.
    [79]Tarman I H, Sirovich L. Extensions to Karhunen-Loeve based approximation of complicated phenomena[J]. Computer methods in applied mechanics and engineering, 1998,155(3):359-368.
    [80]Graham M D, Kevrekidis I G. Alternative approaches to the Karhunen-Loeve decomposition for model reduction and data analysis[J]. Computers & chemical engineering,1996,20(5):495-506.
    [81]Rathinam M, Petzold L R. A new look at proper orthogonal decomposition[J]. SIAM Journal on Numerical Analysis,2003,41(5):1893-1925.
    [82]Liang Y, Lee H, Lim S, et al. Proper orthogonal decomposition and its applications-Part I:Theory[J]. Journal of Sound and Vibration,2002,252(3): 527-544.
    [83]Ma X, Karniadakis G E. A low-dimensional model for simulating three-dimensional cylinder flow[J]. Journal of Fluid Mechanics,2002,458(1): 181-190.
    [84]Ma X, Karniadakis G, Park H, et al. DPIV/T-driven convective heat transfer simulation[J]. International Journal of Heat and Mass Transfer,2002,45(17): 3517-3527.
    [85]Galletti B, Bruneau C-H, Zannetti L, et al. Low-order modelling of laminar flow regimes past a confined square cylinder[J]. Journal of Fluid Mechanics,2004,503: 161-170.
    [86]Noack B R, Eckelmann H. A low-dimensional Galerkin method for the three-dimensional flow around a circular cylinder[J]. Physics of Fluids,1994,6(1): 124-143.
    [87]Liberge E, Hamdouni A. Reduced order modelling method via proper orthogonal decomposition (POD) for flow around an oscillating cylinder[J]. Journal of Fluids and Structures,2010,26(2):292-311.
    [88]Amabili M, Touze C. Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells:comparison of POD and asymptotic nonlinear normal modes methods[J]. Journal of Fluids and Structures,2007,23(6):885-903.
    [89]Perrin R, Braza M, Cid E, et al. Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD[J]. Experiments in Fluids,2007,43(2-3):341-355.
    [90]Rowley C W, Colonius T, Murray R M. POD based models of self-sustained oscillations in the flow past an open cavity[J]. AIAA paper,1969:2000.
    [91]Gurka R, Liberzon A, Hetsroni G. POD of vorticity fields:A method for spatial characterization of coherent structures[J]. International journal of heat and fluid flow, 2006,27(3):416-423.
    [92]Park H, Lee W. Boundary optimal control of natural convection by means of mode reduction[J]. Journal of dynamic systems, measurement, and control,2002, 124(1):47-54.
    [93]Fang F, Pain C, Navon I, et al. A POD goal-oriented error measure for mesh optimization[J]. International journal for numerical methods in fluids,2010,63(2): 185-206.
    [94]Fang F, Pain C, Navon I, et al. A POD reduced order unstructured mesh ocean modelling method for moderate Reynolds number flows[J]. Ocean Modelling,2009, 28(1):127-136.
    [95]Fang F, Pain C, Navon I, et al. A POD reduced-order 4D-Var adaptive mesh ocean modelling approach[J]. International journal for numerical methods in fluids, 2009,60(7):709-732.
    [96]Fang F, Pain C, Navon I, et al. Reduced-order modelling of an adaptive mesh ocean model[J]. International journal for numerical methods in fluids,2009,59(8): 827-851.
    [97]Utturkar Y, Zhang B, Shyy W. Reduced-order description of fluid flow with moving boundaries by proper orthogonal decomposition[J]. International journal of heat and fluid flow,2005,26(2):276-288.
    [98]Kasnakoglu C, Serrani A, Efe M O. Control input separation by actuation mode expansion for flow control problems[J]. International Journal of Control,2008,81(9): 1475-1492.
    [99]Taylor J, Glauser M. Towards practical flow sensing and control via POD and LSE based low-dimensional tools[J]. Journal of fluids engineering,2004,126(3): 337-345.
    [100]Ravindran S. Control of flow separation over a forward-facing step by model reduction[J]. Computer methods in applied mechanics and engineering,2002, 191(41):4599-4617.
    [101]倪振华,江棹荣,谢壮宁.本征正交分解技术及其在预测屋盖风压场中的应用[J].振动工程学报,2007,20(1):1-8.
    [102]李璟,韩大建.本征正交分解法在屋盖结构风场模拟中的应用[J].工程力学,2009,(3):64-72.
    [103]Tamura Y, Suganuma S, Kikuchi H, et al. Proper orthogonal decomposition of random wind pressure field[J]. Journal of Fluids and Structures,1999,13(7): 1069-1095.
    [104]江棹荣,倪振华,谢壮宁.POD在大跨屋盖风致响应计算中的应用[J].土木工程学报,2007,40(6):1-6.
    [105]李方慧.大跨屋盖结构实用抗风设计[M]:黑龙江大学出版社;2008.
    [106]丁鹏,陶文铨.建立低阶模型的POD方法[J].工程热物理学报,2009,30(6):1019-1021.
    [107]Ding P, Wu X-H, He Y-L, et al. A fast and efficient method for predicting fluid flow and heat transfer problems[J]. Transctions-American Society of Mechanical Engineers Journal of Heat Transfer,2008,130(3):032502.
    [108]丁鹏,陶文铨.一种预测流动和传热问题的快速算法[J].西安交通大学学报,2007,41(3):271-273.
    [109]丁鹏,陶文铨.求解对流换热反问题的低阶模型[J].西安交通大学学报,2009,43(3):14-16.
    [110]阳祥,丁鹏,李增耀,et al.基于POD方法的湍流大尺度信息提取与分析[J].工程热物理学报,2010,(006):1019-1022.
    [111]Braud C, Heitz D, Arroyo G, et al. Low-dimensional analysis, using POD, for two mixing layer-wake interactions[J]. International journal of heat and fluid flow,2004, 25(3):351-363.
    [112]Anttonen J S, King P I, Beran P S. Applications of multi-POD to a pitching and plunging airfoil[J]. Mathematical and computer modelling,2005,42(3):245-259.
    [113]Mokhasi P, Rempfer D. Optimized sensor placement for urban flow measurement[J]. Physics of Fluids,2004,16(5):1758-1764.
    [114]John T, Guay M, Hariharan N, et al. POD-based observer for estimation in Navier-Stokes flow[J]. Computers & chemical engineering,2010,34(6):965-975.
    [115]GB50009-2001 Clause Explanation, National Standard of The People's Republic of China, Load Code for the Design of Building Structures [S], China Architecture & Building Press,2002.
    [116]Oliveira P J, Younis B A. On the prediction of turbulent flows around full-scale buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,86(2): 203-220.
    [117]AIJ Recommendations for Loads on Buildings[S], Architectural Institute of Japan, 1996,6.1-6.56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700