用户名: 密码: 验证码:
组合梁平面钢框架抗连续倒塌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑结构一旦发生连续性倒塌,必将造成严重的人员伤亡和巨大的经济损失。因此,结构的抗连续倒塌性能已引起学者和工程界的广泛重视。当结构中的竖向承重构件发生破坏,结构将通过由节点和梁组成的“悬索作用”来承担竖向荷载。在抗倒塌设计中采用承载力高、变形能力好的节点连接,可以充分的发挥悬索作用,保证结构将上部荷载充分并平稳的传递给周边构件。在正常使用荷载作用下,节点承受负弯矩的作用,而当柱失效后,“悬索作用”将在梁中产生拉结力,失效柱上方节点将承受正弯矩和拉力的共同作用,而相邻节点将承受负弯矩与拉力的共同作用。因此,结构体系中的节点性能的研究和设计将是结构抗连续倒塌设计中的关键指标之一。
     现有结构体系的连续倒塌性能研究多侧重于钢框架和钢筋混凝土框架,对组合梁钢框架的研究则较少。而对于抗连续倒塌体系中节点性能研究则通常采用简化的边界条件,针对组合节点在弯矩和拉力共同作用下的性能也关注较少。为此,本文对组合梁平面钢框架的连续倒塌性能和组合节点的受力性能进行了较为系统的试验研究和理论分析,具体包括以下四部分内容:
     (1)完成了2榀四跨单层组合梁平面钢框架的抗连续倒塌性能试验研究,考察了焊接刚性组合节点和平齐式端板连接半刚性组合节点对结构体系抗连续倒塌性能的影响。实测了失效柱柱顶荷载、位移以及框架水平位移,获得了框架梁梁端和跨中应变的分布与发展规律,得到了受荷过程中梁中拉力和弯矩的传递过程和规律,比较了梁柱连接方式对组合梁平面钢框架抗连续倒塌性能的影响。
     (2)完成了12个钢-混凝土组合节点的试验,考虑了刚性组合节点和平齐式端板半刚性组合节点在纯弯、拉弯和受拉三种工况下的受力机理。实测了组合节点的弯矩-拉力曲线、弯矩-转角曲线和拉力-位移曲线,获得了受荷全过程中梁端的应变分布、发展以及试件的变形特征。基于试验结果和已有的理论分析,提出了组合节点拉弯受力状态的承载力设计方法,并分析了组合节点在抗倒塌过程中不同受力阶段的工作机理。
     (3)采用ABAQUS建立了刚性连接和半刚性连接的组合梁平面钢框架有限元分析模型,在半刚性连接框架中采用混合单元建模,考虑螺栓断裂后能更精确模拟平齐式端板连接半刚性组合节点在结构体系中的受力性能。探讨了钢梁截面高度、混凝土板厚度、配筋率、节点连接刚度等参数对关键柱破坏后框架抗连续倒塌性能的影响。基于理论分析和试验研究,提出了组合梁平面钢框架简化分析模型及压拱效应模型,并推导了竖向荷载-位移计算方法。
     (4)建立了三层和九层组合梁平面钢框架有限元模型,对其进行了动力拆柱分析,研究不同层高、不同位置的关键柱破坏后相应节点和结构体系的动力响应和受力机理,确定影响范围及连接性能对结构抗连续倒塌性能的影响规律。通过分析最终提出可用于多层框架结构抗连续倒塌性能分析的简化模型。
The progressive collapse of buildings would result in significant casualties and property loss. Hence the study on the progressive collapse resistance of structures has drawn more attentions among researchers and engineers. Once the vertical load-resisting component in structure is damaged, the beams and joints above the damaged component would carry the vertical loads through “catenary action”. The joints with high moment-resistance and good ductility play an important role in the formation of catenary action and redistribution of internal load. Normally, the joints under service loads sustain hogging moment. Tensile loads would appear in the beams due to catenary action under column loss. Hence the joint would sustain bending moments combined with tension. The behavior of the joints under the combination of moment and tension is a key factor in the design of preventing progressive collapse.
     Previous studies were mainly focused on steel structures or reinforced concrete structures. Fewer attentions were paid to steel-concrete composite structures. Although some studies were conducted recently to investigate the performance of the connection under the scenario of column loss, only the beam-to-column connections were tested within a simplified boundary condition. Specially, the combination of bending moment and tension is rarely considered in the study of composite joint. In this paper, the experimental study and theoretical analysis have been carried on the progressive collapse behavior of planar steel frame with composite beam and the moment-tension performance of composite joint. The main research is listed as followed:
     (1) Two1-storey4-bay planar steel frame with composite beam were tested under the loss of middle column. The influence of fully welded rigid connection and flush endplate semi-rigid connection on the progressive collapse resistance of structures was considered in the test. The measurement included the vertical load and displacement of the loss column head, the horizontal displacement of frame column and the strains at the beam ends and the mid-span. The transfer mechanism of tension and moment in the loading process was achieved. The influence of beam-to-column connection configuration on the behavior of composite frame under column loss was also analyzed.
     (2) Ten tests of composite joints were conducted. Two joint types of rigid connection and semi-rigid connection and three load conditions of pure bending, bending combined with tension and pure tension were employed. The moment- rotation relationship curves, moment-tension relationship curves and tension-displacement relationship curves were drawn in the test. The strain distribution and development at the beam ends and the deformation of joints in loading process were also captured. Based on the test results, a moment-tension relationship formula for composite joints was proposed and the mechanism of composite joints in the collapse process was studied.
     (3) Finite element models for planar steel frame with composite beam were developed by using the software ABAQUS. For semi-rigid composite frame, the mixed-element method was considered and the material fracture was also considered. The influence of height of steel beam, depth of concrete slab, rebar ratio and connection rigidity on the performance of composite frame under column loss was studied by using the FE models. A mechanical model for planar steel frame with composite beam under column loss and an arch action model were proposed. The load-deformation formulae corresponding to the mechanical model and arch action model were also derived.
     (4) Finite element models for3-storey and9-storey planar steel frame with composite beam were developed. Based on the models, the dynamic column removal analysis was conducted. The dynamic response of the structure under different column losses was studied. The affected area under column loss and the influence of connection behavior were certified. A simplified model for analyzing progressive resistance of multi-storey was suggested.
引文
[1]汪光焘.大力发展节能省地型建筑、建设资源节约型社会[J].智能建筑与城市信息,2006,114(5):20-21.
    [2]朱昌廉,向昊.亚高层住宅发展趋势评价[J].住宅科技,2000,6:3-6.
    [3] Smith John William. Structural Robustness Analysis and the Fast FractureAnalogy[J]. Structural Engineering International,2006, Vol.12(2):118-123.
    [4]易伟健,何庆峰,肖岩.钢筋混凝土框架结构抗倒塌性能的试验研究[J].建筑结构学报,2007,28(5):104-117.
    [5]张其顺,徐金余,张国喜,绍宁.纽约世贸大厦倒塌原因分析及设计高层建筑应吸取的经验教训[J].工程力学(增刊),2002:636-639.
    [6]梁益,陆新征等.结构的连续倒塌:规范介绍和比较[C].第六届全国工程安全防护学术会议论文集,2007,195-200.
    [7] Hayes J.R., Woodson S.C., Pekelnicky R.G., Poland C.D., Corley W.G.,and Sozen M. Can Strengthening for Earthquake Improve Blast andProgressive Collapse Resistance[J]. Journal of Structural Engineering,ASCE,131(8):1157-1177.
    [8] Choi J.H., Chang D.K. Prevention of Progressive Collapse for BuildingStructures to Member Disappearance by Accidental Actions[J]. Journal ofLoss Prevention in the Process Industries,2009,22(6):1016-1019.
    [9] Yu H., Izzuddin B.A., Zha X.X. Progressive Collapse of Steel-framedBuildings: Influence of Modelling Approach[J]. Advanced SteelConstruction,2010,6(4):932-948.
    [10] Starossek U., Haberland M. Evaluating Measures of StructuralRobustness[C]. Proceedings of the2009Structures Congress,2009:1758-1765.
    [11] Naji A., Irani F. Simplified Procedure for Progressive Collapse Analysisof Steel Structures [J]. Advanced Materials Research,2011,255-260:482-486.
    [12] Kirkpatrick S.W., MacNeill R., Smith J.L. Methodologies for ProgressiveCollapse Analysis[C]. Proceedings of the2009Structures Congress,2009:1126-1135.
    [13] Kim J., Lee Y., Choi H. Progressive Collapse Resisting Capacity ofBraced Frames[J]. Structural Design of Tall and Special Buildings,2011,20(2):257-270.
    [14]于山,苏幼坡,马东辉等.钢筋混凝土建筑抗倒塌设计[J].地震工程与工程振动,2005,25(5):67-72.
    [15]李国强.多高层建筑钢结构设计[M].中国建筑工业出版社,2004.
    [16]赵鸿铁,张素梅.组合结构设计原理[M].教育出版社,2005.
    [17] Eurocode3: Design of Steel Structure,Part-1: General Rules and Rulesfor Building[S]. Commission of the European Communities,1993.
    [18] Fang L.X., Chan S.L., Wong Y.L. Numerical Analysis of CompositeFrames with Partial Shear-stud Interaction by one Element per Member[J].Engineering Structures,2000,22:1285-1300.
    [19] Uy B. Strength of Short Concrete Filled High Strength Steel BoxColumns[J]. Journal of Structural Steel Research,2001,57(2):75-81.
    [20] Hajjar J.F., Leon R.T., Gustafson M.A., Shield C.K. Seisimic Response ofComposite Moment-Resisting Connections Ⅱ: Behavior[J]. Journal ofStructural Engineering,1998,124(8):877-885.
    [21] Joh C.B., Chen W.F. Seismic Behavior of Steel Moment Connections withComposite Slab[J]. International Journal of Steel Structures,2001,1(3):175-183.
    [22] Loh H.Y., Uy B., Bradford M.A. The Effects of Partial Shear Connectionin Composite Flush End Plate Joints Part Ⅰ—Analytical Study andDesign Appraisal[J]. Journal of Constructional Steel Research,2006,62(4):391-412.
    [23] Richard Liew J.Y., Teo T.H., Shanmugam N.E., Yu C.H. Testing of Steel-concrete Composite Connections and Appraisal of Results[J]. Journal ofConstructional Steel Research,2000(56):117-150.
    [24] Kattner M., Crisinel M. Finite Element Modelling of Semi-rigidComposite Joints[J]. Engineering Structures,2000,78:341-353.
    [25] British Standard Institute. BS6339: Specification for Dimensions ofCircular Flanges for General Purpose Industrial Fans[S].1983.
    [26] Moore D.B. The UK and European Regulations for Accidental Actions[C].Proceedings of Workshop in Prevention of Progressive Collapse,2002.
    [27] BS8110-1:1997. Structural Use of Concrete: Part1: Code of Practice forDesign and Construction[S]. British Standard Institute,2002.
    [28] European Committee for Standardization. Draft prEN1991-1-7, Eurocode1-Actions on Structures, Part1-7: General Actions-AccidentalActions[S]. Brussels,2005.
    [29] National Research Council of Canada. National Building Code ofCanada[S]. Ottawa, Canada,1975.
    [30] Cagley J. The Design Professionals Concerns Regarding ProgressiveCollapse Design[C]. Proceeding of Workshop on Prevention ofProgressive Collapse,2002.
    [31] Dusenberry D. Review of Existing Guidelines and Provisions Related toProgressive Collapse[C]. Proceeding of Workshop on Prevention ofProgressive Collapse,2002.
    [32] American Concrete Institute. Building Code Requirements for StructuresConcrete and Commentary[S]. ACI318m-02. Farmington Hills, Mich,2002.
    [33] Ramabhushanam E., Lynch M. Structural Assessment of Bomb Damagefor World Trade Center[J]. Journal of Performance of ConstructedFacilities,1994,8(4):229-242.
    [34] Irvine M. Collapse9/11-Formulae for Tall Buildings[J]. StructuralEngineer,2007,85(2):18-19.
    [35] General Service Administration. Progressive Collapse Analysis andDesign Guidelines for New Federal Office Buildings and MajorModernization Projects[S].2003.
    [36] Loani A.M., Cucu H.L., Mircea C. Seismic Design vs. ProgressiveCollapse: A Reinforced Concrete Framed Structure Case Study[C].Proceedings of the4th International Structural Engineering andConstruction Conference,2008,2:955-961.
    [37] Saad A., Said A., Tian Y. Overview of Progressive Collapse Analysis andRetrofit Techniques[C].5th International Engineering and ConstructionConference (IECC’5),2008:765-772.
    [38] Bilow D.N., Kamara M. U.S. General Services AdministrationProgressive Collapse Design Guidelines Applied to Concrete Moment-resisting Frame Buildings[C]. Proceedings of the2004StructuresCongress-Building on the Past: Securing the Future,2004:1491-1517.
    [39] U. S. Department of Defence. Unified Facilities Criteria: Design ofBuildings to Resist Progressive Collapse[S]. UFC4-023-03,2009.
    [40] Stevens D., Hewitt O., Campbell T. Overview of the Revised DoDProgressive Collapse Design Requirements[C]. Proceedings of the2009Structures Congress,2009:1718-1722.
    [41] Stevens D., Marchand K., McKay A. Revision of the Tie Force andAlternate Path Approaches in the DoD Progressive Collapse DesignRequirement[C]. Proceedings of the2009Structures Congress,2009:1723-1728.
    [42] Marchand K., Stevens D.J. Development and Application of Linear andNon-linear Static Approaches in UFC4-023-03[C]. Proceedings of the2009Structures Congress,2009:1729-1738.
    [43] Cannon J., Waggoner M. Discussion of Examples Using the Revised DoDProgressive Collapse Design Requirements[C]. Proceedings of the2009Structures Congress,2009:1739-1748.
    [44]谷音,范立础.结构抗连锁倒塌问题研究[J].自然灾害学报,2007,16(6):74-80.
    [45]江晓峰,陈以一.建筑结构连续性倒塌及其控制设计的研究现状[J].土木工程学报,2008,41(6):1-8.
    [46] Liu Y. Failure Analysis of Building Structures under Abnormal Loads[D].Canada: University of Waterloo,2004.
    [47]陆新征,李易,叶列平等.钢筋混凝土框架结构抗连续倒塌设计方法的研究[J].工程力学,2008,25(Sup.Ⅱ):150-157.
    [48] Hayes J.R., Woodson S.C., Pekelnicky R.G. Can Strengthening forEarthquake Improve Blast and Progressive Collapse Resistance[J].Journal of Structural Engineering,2006,131(8):1151-1177.
    [49] Byfield M.P., Paramasivam S. Issues in the Mitigation of ProgressiveCollapse through the Tying Force Method for Steel Framed Buildingswith Simple Connections[C]. Proceedings of the3rd InternationalConference on Steel and Composite Structures, ICSCS07-Steel andComposite Structures,2007:867-871.
    [50]叶列平,陆新征,李易等.混凝土框架结构的抗连续性倒塌设计方法[J].建筑结构,2010(02):1-7.
    [51] Mohamed O.A. Progressive Collapse of Structures: AnnotatedBibliography and Comparison of Codes and Standards[J]. Journal ofPerformance of Constructed Facilities,2006,20(4):418-425.
    [52] Li Y., Lu X.Z., Guan H., et al. An Improved Tie Force Method forProgressive Collapse Resistance Design of Reinforced Concrete FrameStructures[J]. Engineering Structures,2011,33(10):2931-2942.
    [53] Khandelwal K., El-Tawil S. Assessment of Progressive Collapse ResidualCapacity Using Pushdown Analysis[C]. Proceedings of the2008Structures Congress-Structures Congress2008: Crossing the Borders,2008,314.
    [54] Marjanishvili S.M. Progressive Analysis Procedure for ProgressiveCollapse[J]. Journal of Performance of Constructed Facilities,2004,18(2):79-85.
    [55] Kim H.S., Kim J., An D.W. Development of Integrated System forProgressive Collapse Analysis of Building Structures ConsideringDynamic Effects[J]. Advance in Engineering Software,2007,40(1):1-8.
    [56]李天,曾广杰,孙国良.钢—混凝土组合梁柱连接性能试验研究[R].郑州工学院,1989.
    [57]过轶青.端板型半刚性钢-混凝土组合节点的试验研究[D].南京工业大学硕士学位论文,2003.
    [58] Roberto T.L. Semi-rigid Composite Connection[J]. Journal ofConstructional Steel Research,1990,15(1-2):99-120.
    [59] Benussi F., Zandonini R. Cycilic Behavior of Semi-rigid CompositeJoints[C]. Proceedings of the Third International Conference on Steel-Concrete Composite Structures, Fukoka, Japan,1991:359-364.
    [60] Altmann R., Jaspart J.P. Experimental Study of the Non-linear Behaviorof Beam-to-column Composite Joints[J]. Journal of Constructional SteelResearch,1991,18(6):45-54.
    [61] Anderson D., Najafi A.A. Performance of Composite Connections MajorAxis and Plate Joints[J]. Journal of Construction Steel Research,1994,Vol(31):31-57.
    [62] Xiao Y., Choo B.S., Nethercot D.A. Composite Connections in Steel andConcrete.Ⅰ: Experimental Behavior of Composite Beam-columnConnection[J]. Journal of Constructional Steel Research,1994,31(5):3-30.
    [63] Li T.Q., Nethercot D.A., Choo B.S. Behaviour of Flush End-plateComposite Connections with Unbalance Moment and VariableShear/Moment Ratios-Ⅰ: Experimental Behavior[J]. Journal ofConstruction Steel Research,1996,2:125-164.
    [64] Leon T.R., Hajjar J.F., Gustafon M.A. Seismic Response of CompositeMoment-Resisting Connnection1: Performance[J]. Journal of StructuralEngineering,1998,124(8):868-876.
    [65] Richard Liew J.Y., Teo T.H., Shanmugam N.E., Yu C.H. Testing of Steel-concrete Composite Connections and Appraisal of Results[J]. Journal ofConstructional Steel Research,2000(56):117-150
    [66] Simoes da Silva L., Simoes Rui D., Paolo J.S. Experimental Behavior ofEnd-plate Beam-to-column Composite Joints under MonotonicalLoading[J]. Engineering Structures,2001(23):1383-1409.
    [67] Shanmugam N.E., Ng Y.H., Richard Liew J.Y. Behaviour of CompositeHaunched Beam Connection[J]. Engineering Structures,2002(24):1451-1463.
    [68]杨丽.半刚性组合节点在低周反复荷载作用下的性能[D].南京工业大学硕士学位论文,2004.
    [69] Richaid Liew J.Y., Teo T.H., Shanmugam N.E. Composite Joints Subjectto Reversal of Loading-Part1: Experimental Study[J]. Journal ofConstructional Steel Research,2004,60(2):221-246.
    [70] Travis P.G., Roberto T.L., Rassati G.A. Bidirectional Tests on PartiallyRestrained, Composite Beam-to-Column Connections[J]. Journal ofStructural Engineering,2004,130(2):320-327.
    [71]郑德胜.平齐式端板连接组合节点抗震性能的试验研究[D].南京工业大学硕士学位论文,2005.
    [72]苏迪.考虑组合效应的钢结构梁柱节点抗震性能研究[D].清华大学硕士学位论文,2005.
    [73] Loh H.Y., Uy B., Bradford M.A. The Effects of Partial Shear Connectionin Composite Flush End Plate Joints Part Ⅰ—Experimental Study[J].Journal of Constructional Steel Research,2006,62(4):378-390.
    [74]过轶青.钢—混凝土组合节点裂缝研究[J].南京工程学院学报(自然科学版),2007,5(3):50-54.
    [75]石文龙,肖勇,李国强,叶志明.梁柱组合节点的拟动力试验研究[J].地震工程与工程振动,2008,28(6):124-133.
    [76]石永久,奥晓磊,王元清,施刚.中高强度钢材钢框架梁柱组合节点抗震性能试验研究[J].土木工程学报,2009,42(4):48-54.
    [77] Nethercot D.A. Design of Composite Connections[J]. The StructuralEngineer,1995,73(4):218-219.
    [78] ASCE. Task Committee on Design Criteria for Composite Structures inSteel and Concrete.Design Guide for Partially Restrained CompositeConnections[J].Journal of Structural Engineering,1998.
    [79] Kattner M., Crisinel M. Finite Element Modeling of Semi-rigidComposite Joints[J]. Computer and Structures,2000(78):341-353.
    [80]胡夏闽,过轶青,高华杰.半刚性钢—混凝土组合节点受弯承载力计算[J].南京工业大学学报,2002,24(5):25-29.
    [81]何天森,李国强,周宏宇.端板连接组合节点的性能研究[J].工业建筑(增刊),2003.
    [82]过轶青,胡夏闽.半刚性组合节点物理非线性分析[J].南京工程学院学报,2005,3(3):21-25.
    [83]暴伟,邵永松.部分端板连接钢框架梁柱组合节点初始转动刚度计算方法[J].工业建筑(增刊),2006,1020-1024.
    [84]奥晓磊,石永久,王元清.高强度钢材对梁柱组合节点承载性能的影响分析综述[J].工业建筑(增刊),2006,1095-1102.
    [85]石永久,奥晓磊,王元清,施刚.钢材强度对梁柱组合节点性能影响的有限元分析[J].重庆建筑大学学报,2008,30(5):32-36.
    [86]舒兴平,张再华,王元清.端板连接组合节点初始转动刚度分析[J].湖南大学学报,2007,34(11):12-15.
    [87]李国强,石文龙.平端板连接半刚性梁柱组合节点的抗弯承载力Ⅰ, Ⅱ[J].土木工程学报,2007,40(9):23-35.
    [88]石文龙,李国强,叶志明等.平端板连接半刚性梁柱组合节点的弯矩-转角模型[J].沈阳大学学报(自然科学版),2009,25(3):414-420.
    [89]黄兴,石文龙,叶志明.梁柱连接组合节点弯矩-转角关系研究[J].建筑钢结构进展,2010,12(2):13-22.
    [90]刘秀华,巢沧海,石文龙.平端板连接半刚性梁柱组合节点的设计方法建议[J].建筑钢结构进展,2010,12(3):27-31.
    [91]高山.钢-混凝土组合节点拉弯受力性能分析[D].哈尔滨工业大学硕士学位论文,2010.
    [92] Astaneh-Asl A., Madsen E.A., Noble C. Use of Catenary Cables toPrevent Progressive Collapse of Buildings[R/OL].Http:///www.ce.berkeley.edu/~astaneh/1-Research/blast,2006.12.
    [93] Tan S., Astaneh-Asl A. Cable-Based Retrofit of Steel Building Floors toPrevent Progressive Collapse[R]. Berkeley: University of California.2003.
    [94]易伟建,何庆锋,肖岩.钢筋混凝土框架结构抗倒塌性能的试验研究[J].建筑结构学报,2007,28(05):104-109.
    [95] Sasani M., Bazan M., Sagiroglu S. Experimental and AnalyticalProgressive Collapse Evaluation of Actual Reinforced ConcreteStructure[J]. ACI structural Journal,2007,104(6):731-739.
    [96] Sasani M., Sagiroglu S. Progressive Collapse Resistance of Hotel SanDiego[J]. Journal of Structural Engineering,2008,134(3):478-488.
    [97] Sasani M. Response of a Reinforced Concrete Infilled-Frame Structure toRemoval of Two Adjacent Columns[J]. Engineering Structures,2008,30(9):2478-2491.
    [98] Demonceau J.F., Jaspart J.P Experimental and Analytical Investigationson the Response of Structural Building Frames Further to a ColumnLoss[C]. Proceedings of the2009Structures Congress,2009:1801-1810.
    [99]何庆峰.钢筋混凝土框架结构抗倒塌性能试验研究[D].湖南大学博士学位论文,2009.
    [100] Zineddin M., Krauthammer T. Dynamic Response and Behavior ofReinforced Concrete Slabs under Impact Loading[J]. International Journalof Impact Engineering,2007,34(9):1517-1534.
    [101] Alashker Y., El-Tawil S., Sadek F. Progressive Collapse Resistance ofSteel-Concrete Composite Floors[J]. Journal of Structural Engineering,2010,136(10):1187-1196.
    [102] Lee C., Kim S., Lee K. Parallel Axial-Flexural Hinge Model forNonlinear Dynamic Progressive Collapse Analysis of Welded SteelMoment Frames[J]. Journal of Structural Engineering,2010,136(2):165-173.
    [103] Oosterhof S.A., Driver R.G. Performance of Steel Shear Connectionsunder Combined Moment, Shear, and Tension[C]. Structures Congress,ASCE,2012.
    [104] Paik J.K., Kim B.J. Progressive Collapse Analysis of Thin-walled BoxColumns[J]. Thin-Walled Structures,2008,46(5):541-550.
    [105] Kaewkulchai G., Williamson E.B. Beam Element Formulation andSolution Procedure for Dynamic Progressive Collapse Analysis[J].Computers and Structures,2004,82(7-8):639-651.
    [106] Kaewkulchai G., Williamson E.B. Dynamic Behavior of Planar Framesduring Progressive Collapse[C].16th ASCE Engineering MechanicsConference,2003.
    [107] Buscemi N., Marjanishvili S. SDOF Model for Progressive CollapseAnalysis[C]. Proceedings of the Structures Congress and Exposition,2005:2243-2254.
    [108] Marjanishvili S., Agnew E. Comparison of Various Procedures forProgressive Collapse Analysis[J]. Journal of Performance of ConstructedFacilities,2006,20(4):365-374.
    [109] Powell G. Progressive Collapse: Case Study Using Nonlinear Analysis[C].Proceedings of the Structures Congress and Exposition,2005:2185-2198.
    [110] Powell G. Nonlinear Dynamic Analysis Capabilities and Limitations[J].Structural Design of Tall and Special Buildings,2006,15(5):547-552.
    [111] Ruth P., Marchand K.A., Williamson E.B. Static Equivalency inProgressive Collapse Alternative Path Analysis: Reducing Conservatismwhile Retaining Structural Integrity[J]. Journal of Performance ofConstructed Facilities,2006,20(4):349-364.
    [112] Izzuddin B.A., Vlassis A.G., Nethercot D.A. Progressive Collapse ofMulti-storey Buildings Due to Sudden Column Loss-Part I: SimplifiedAssessment Framework [J]. Engineering Structures,2008,30(5):1308-1318.
    [113] Vlassis A.G., Izzuddin B.A., Nethercot D.A. Progressive Collapse ofMulti-storey Buildings Due to sudden column Loss-Part II: Application[J]. Engineering Structures,2008,30(5):1424-1438.
    [114] Kim J., Kim T. Assessment of Progressive Collapse-resisting Capacity ofSteel Moment Frames[J]. Journal of Constructional Steel Research,2009,65(1):169-179.
    [115] Park J., Kim J. Fragility Analysis of Steel Moment Frames with VariousSeismic Connections Subjected to Sudden Loss of a Column[J].Engineering Structures,2010,32(6):1547-1555.
    [116] Khandelwal K., El-Tawil S., Kunnath S. Macromodel-based Simulation ofProgressive Collapse: Steel Frame Structures[J]. Journal of StructuralEngineering,2009,134(7):1070-1078.
    [117] Khandelwal K., El-Tawil S., Sadek F. Progressive Collapse Analysis ofSeismically Designed Steel Braced Frames[J]. Journal of ConstructionalSteel Research,2009,65(3):699-708.
    [118]胡晓斌,钱稼茹.单层平面钢框架连续倒塌动力效应分析[J].工程力学,2008,25(06):38-43.
    [119]钱稼茹,胡晓斌.多层钢框架连续倒塌动力效应分析[J].地震工程与工程振动,2008,28(02):8-14.
    [120] Fu F. Progressive Collapse Analysis of High-rise Building with3-D FiniteElement Modeling Method[J]. Journal of Constructional Steel Research,2009,65(6):1269-1278.
    [121] Fu F., Lam D., Ye J.Q. Modeling Semi-rigid Composite Joints withPrecast Holloware Slabs in Hogging Moment Region[J]. Journal ofConstructional Steel Research,2008,64(12):1408-1419.
    [122]梁益,陆新征,李易等.国外RC框架抗连续倒塌设计方法的检验与分析[J].建筑结构,2010(02):8-12.
    [123]舒赣平,凤俊敏,陈绍礼.对英国防结构倒塌设计规范中拉结力法的研究[J].钢结构,2009,24(6):51-56.
    [124]谢甫哲,舒赣平,凤俊敏.基于抽柱法的钢框架连续倒塌分析[J].东南大学学报,2010,40(1):151-159.
    [125]吕大刚,崔双双,李艳军等.基于备用荷载路径Pushover方法的结构连续倒塌鲁棒性分析[J].建筑结构学报,2010,(sup2):112-118.
    [126] Kaewkulchai G., Williamson E.B. Dynamic Progressive Collapse ofFrame Structures[C].15th ASCE Engineering Mechanics Conference,2002.
    [127] Khandeiwal K., EI-Tawil S. Catenary Action during Collapse of SteelMRF Buildings[C]. Proceedings of the2006Structures Congress andExposition,2006.
    [128] Khandeiwal K., EI-Tawil S. Collapse Behavior of Steel Special MomentResisting Frame Connections[J]. Journal of Structural Engineering,2007,133(5):646-655.
    [129]胡晓斌,钱稼茹.结构连续倒塌分析与设计方法综述[J].建筑结构,2006,36(Sup):79-83.
    [130] Liu R., Davison B., Tyas A. A Study of Progressive Collapse in Multi-storey Steel Frames[C]. Proceedings of the Structures Congress andExposition,2005:2211-2219.
    [131] Yin Y.Z., Wang Y.C. Analysis of Catenary Action in Steel Beams Using aSimplified Hand Calculation Method, Part1: Theory and Validation forUniform Temperature Distribution [J]. Journal of Constructional SteelResearch,2005,61(2):183-211.
    [132] Yin Y.Z., Wang Y.C. Analysis of Catenary Action in Steel Beams Using aSimplified Hand Calculation Method, Part2: Validation for Non-uniformTemperature Distribution [J]. Journal of Constructional Steel Research,2005,61(2):213-234.
    [133] Wang Y.C., Yin Y.Z. A Simplified Analysis of Catenary Action in SteelBeams in Fire and Implications on Fire Resistant Design [J]. Steel andComposite Structure,2006,6(5):367-386.
    [134] Ma Z., M kel inen P. Behavior of Composite Slim Floor Structures inFire[J]. Journal of Structural Engineering,2000,126(7):830-837.
    [135] Ma Z., M kel inen P. Structural Behaviour of Composite Slim FloorFrames in Fire Conditions[J]. Journal of Constructional Steel Research,2006,62(12):1282-1289.
    [136] Liu J.L. Preventing Progressive Collapse through Strengthening Beam-to-column Connection, Part1: Theoretical Analysis[J]. Journal ofConstructional Steel Research,2010,66(2):229-237.
    [137] Liu J.L. Preventing Progressive Collapse through Strengthening Beam-to-column Connection, Part2: Finite Element Analysis[J]. Journal ofConstructional Steel Research,2010,66(2):238-247.
    [138] Valipour H.R., Foster S.J. Finite Element Modeling of ReinforcedConcrete Framed Structures including Catenary Action[J]. Computers andStructures,2010,88(9-10):529-538.
    [139] Yu M., Zha X.X., Ye J.Q. The Influence of Joints and Composite FloorSlabs on Effective Tying of Steel[J]. Journal of Constructional SteelResearch,2010,66(3):442-451.
    [140]王开强,李国强,杨涛春.考虑悬链线效应的约束钢梁在分布荷载作用下的性能(I)—理论模型[J].土木工程学报,2010,43(1):1-7.
    [141] Bo Y., Kang H.T. Numerical Analysis of Steel Beam-column JointsSubjected to Catenary Action[J]. Journal of Constructional Steel Research,2012,70:1-11.
    [142] ABAQUS Theory Manual[M].ABAQUS,Inc,2006
    [143]赵金涛.刚性组合节点在拉力和负弯矩作用下的性能[D].哈尔滨工业大学硕士学位论文,2011.
    [144] SAC. Interim guidelines: Evaluation, repair, modification and design ofsteel moment frame[R]. FEMA-267, Report No. SAC-95-02.1995.
    [145] SAC. Seismic design criteria for new moment-resisting steel frameconstruction[R]. FEMA350. Report No. SAC Joint Venture, Sacramento,Calif.,2000.
    [146] Sucuog Haluk, itipitiog Ergin, Altin Sinan. Resistance Mechanisms inRC Building Frames Subjected to Column Failure [J]. Journal ofStructural Engineering,1994,120(3):765-782.
    [147]石文龙.平端板连接半刚性梁柱组合节点的试验与理论研究[D].同济大学博士学位论文,2006.
    [148]王开强.空间框架结构连续性倒塌评估的实用方法研究[D].同济大学博士学位论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700