用户名: 密码: 验证码:
玄武岩纤维布加固损伤混凝土梁力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着社会经济的发展,公路的交通负荷越来越重,现有桥梁频繁出现病害和损伤,承载力降低,使用性能下降。我国目前的桥梁工程建设已经从过去的大面积新建工程转为新建与已建桥梁补强加固相结合的阶段。据资料显示,加固工程相对新建工程而言,可节约大概40%左右的投资成本,缩短约50%时间成本,具有明显的经济优势。既有结构的承载力减弱,主要体现在抗弯和抗剪两个方面,且大部分的损伤体现在挠度、裂缝和表面破损等指标。近年来新兴的玄武岩纤维布不仅抗拉强度与弹性模量较高,而且其粘结性、耐热性和抗腐蚀性等物理性能优越,在土木结构和构件中得到广泛使用,尤其在钢筋混凝土结构加固补强方面的应用越来越受到青睐。
     本文在玄武岩纤维布加固损伤钢筋混凝土梁的试验基础上,研究梁的抗弯、抗剪性能及挠度裂缝计算方法,以期为玄武岩纤维布加固损伤钢筋混凝土梁的设计、施工提供理论依据。论文中先对玄武岩纤维布加固损伤混凝土梁抗弯性能开展研究,通过外贴玄武岩纤维布加固损伤钢筋混凝土梁的试验,研究不同配筋率、加固量、初始荷载及加载历史情况下梁的屈服荷载、破坏荷载及钢筋、混凝土和玄武岩纤维布的应力应变变化规律,研究给出不同破坏模型下玄武岩纤维布加固混凝土梁的抗弯承载力计算公式。又对玄武岩纤维布加固损伤混凝土梁的抗剪性能开展研究,研究不同剪跨比、加固量、初始荷载等情况下梁的抗剪承载力变化规律。修正了玄武岩纤维布加固损伤混凝土梁的抗剪承载力计算公式。
     同时文中还对玄武岩纤维布加固梁的挠度和裂缝计算开展研究。分析玄武岩纤维布加固损伤钢筋混凝土梁的挠度及裂缝变化规律,修正了玄武岩纤维布加固梁的挠度和裂缝间距及裂缝宽度计算方法。
     结合工程实际,通过对哈伊公路桥梁采用玄武岩纤维布加固研究,验证了本文提出的玄武岩纤维布加固损伤混凝土梁抗弯、抗剪承载力计算公式的有效性,可为实际加固工程提供参考。
Due to the economic fast growing, highway traffic loads are increased and become more serious. Therefore, the bridges structures have been damaged frequently and the bearing capacity decreased with time. In China, the process of bridges construction is focused on the combination of new construction and strengthening methods to build new bridges or to strengthen old bridges. Comparing with new construction of bridges structure, the strengthening methods can save about40%of the investment costs and they can reduce the costs about50%. Thus it has evident economic benefits. The reduction of bearing capacity of bridge structure includes two main aspects of flexural and shear capacity. Moreover, most damages are denoted by deflection, cracks and failure mode etc. Basalt fiber reinforced plastics has a high tensile strength and modulus of elasticity. At the same time, it has higher physical performance, such as good adhesion, heat resistance, and corrosion resistance. Thus, basalt fiber reinforced plastics is ideal for civil engineering structures or construction components, and it is a perfect choice especially for seismic strengthening of concrete structures.
     According to the experimental works in the laboratory of Reinforced Concrete (RC) beam strengthened with Basalt Fiber Reinforced Plastics (BFRP), the calculation method of flexural capacity, shear capacity, deflection and crack were studied to provide theoretical essence for damaged of RC beam strengthened with BFRP sheet. In this thesis the flexural behavior of RC beam strengthened with BFRP sheet was studied. The important factors of the experiments programs include varying of beam reinforcement ratio, number of BFRP sheet layer; pre-load and loading step history were considered. Yield load, failure load and strain of steel, concrete’s strain, basalt fiber’s strain were predicted and analyzed. Then the shear capacity of RC beam strengthened with BFRP sheet was analyzed for different shear span ratio, number of BFRP sheet layer and pre-loading program within experimental works.
     At the same time, the deflection and cracks values of damaged RC beam strengthened with BFRP sheet with the increasing of the load were analyzed in this thesis. The changing rule of infection and cracks of damaged RC beam strengthened with BFRP sheet was analyzed. The calculation method of deflection and cracks were measured to beam’s stiffness improvement and cracks width reduction.
     This study was presented HAYI bridge that was strengthened with BFRP sheet to verify the validity of the presented calculation methods of flexural and shear capacity of damaged RC beam strengthened with BFRP sheet. These calculation formulas can be used to in the actual strengthening construction cases.
引文
[1]梁坦.建筑物可靠性鉴定与加固改造的发展[J].四川建筑科学研究,1994,3:35-41.
    [2]王世涛.桥梁损伤及加固策略研究[J].公路交通与建设论坛,2010:363-365.
    [3]曹双寅,邱洪兴.结构可靠性鉴定与加固技术[M].北京:中国水利水电出版社,2001:56-57.
    [4]吕西林.建筑结构加固设计[M].北京:科学出版社,2001:32-34.
    [5]卓尚木,季直仓,卓昌志.钢筋混凝土结构事故分析与加固[M].北京;中国建筑工业出版社,1997:15-16.
    [6]万墨林,韩继云.混凝土结构加固技术[M].北京:中国建筑工业出版社,1995:19-20.
    [7]丁敬华,左登宏,康建军.纤维布加固技术及其应用[J].安徽:安徽建筑,2004:104-105.
    [8]李春霞. CFRP加固负载混凝土梁抗弯承载力及可靠度研究[D].武汉理工大学博士论文,2012:15-16.
    [9] M Urbanski, A Lapko,A Garbacz. Investigation on Concrete BeamsReinforced with Basalt Rebars as an Effective Alternative ofConventional R/C Structures[J]. Procedia Engineering,2013,57:1183-1191.
    [10] M Pearson, T Donchev,J Salazar. Long-Term Behaviour of PrestressedBasalt Fibre Reinforced Polymer Bars[J]. Procedia Engineering,2013,54:261-269.
    [11] L U Zhoudao, S U Lei,Y U Jiangtao. Experimental Study on the SeismicBehaviour of Strengthened Concrete Column-Beam Joints by SimulatedEarthquake[J]. Procedia Engineering,2011,14:1871-1878.
    [12] Buyle-Bodin, Francois, D Emmanuelle,R Eric. Finite element modelingof flexural behaviour of externally bonded CFRP reinforced concretestructures[J]. Engineering Structures,2002,24:1423-1429.
    [13] M T EI-Mihilmy,J W Tedesco. Deflection of Reinforced Concrete BeamStrengthened with Fiber-Reinforced Polymer(FRP)Plates[J]. ACIStructural Journal,2000,97(5):679-688.
    [14] W M Sebastian. Significiance of Midspan Debonding Failure inFRP-Plated Concrete Beams[J]. Journal of Structural Engineering,2001,127(7):792-798
    [15] J F Chen,J G Teng. Anehorage Strength Models for FRP and Steel PlatesBonded to Concrete[J]. Journal of Structural Engineering,2001,127:784-791.
    [16] L D Lorenzis, B Miller,A Nanni. Bond of Fiber-Reinforced PolymerLaminates to Concrete[J]. ACI Structural Journal,2001,98(3):256-264.
    [17] H Rahimi,A Hutehinson. Concrete beams strengthened with externallybonded FRP Plates[J]. Journal of Composites for Construction,2001,5(1):44-56
    [18] E-R S.A, A A.F,G S W. CFRP strengthened continuous concretebeams[J]. Proceedings of the Institution of Civil Engineers. Structuresand buildings2003,156(4):395-404.
    [19] E-R S.A, A A.F,G S W. Sagging and hogging strengthening of continuousreinforced concrete beams using carbon fiber-reinforced polymer sheet[J].ACI Structural Journal,2003,100(4):446-453.
    [20] A M A., V L,Rizzo,A. Moment redistribution in continuous reinforcedconcrete beams strengthened with carbon-fiber-reinforced polymerlaminates[J]. Mechanics of Composite Materials,2007,43(5):453-466.
    [21] S Mohsen, O Chaallal, T E.Beitelman,A EI-Saad. Flexural strengtheningwith carbon fiber-reinforced Polymer composites of preloaded full-scalegirders[J],2001,,22(5):353-354.
    [22] H V S, GangaRao,P V Vijay. Bending behavior of concrete beamswrapped with carbon fabric[J]. Journal of Structural Engineering,1998,124(l):3-10.
    [23] M Shahawy, Member, ASCE,T E Beitelman. Static and FatiguePerformance of RC Beams Strengthened with CFRP Laminates[J].Journal of Structural Engineering,1999,7:613-621.
    [24] M Arduini,A Nanni. Behavior of Precracked RC Beams Strengthenedwith Carbon FRP Sheet[J]. Journal of Composites for Construction,1997,l(2):63-70.
    [25] Sharif,A., AI-Sulaimani,G.J., Basunbul,I.A., Baluch,M.H.,Ghaleb,B.N. Strengthening of Initially Loaded RC Beams Using FRP Plates[J].ACI Structural Journal,1994,91:160-168.
    [26] P.Fanning. Experimental Testing and Numerical Modeling of ReinforcedConcrete Beams Strengthened Using Fiber Reinforced CompositeMaterials[J]. ACI Structural Journal,2001,5:211-217.
    [27] S T Smith, M.ASCE,R J Gravina. Modeling Debonding Failure in FRPFlexurally Strengthened RC Members Using a Local DeformationModel[J]. Journal of Composites For Construction,2007:184-191.
    [28] Bonaccci,J.F,Maalej,M. Externally bonded fiber-reinforced polymer forrehabilitation of corrosion damaged concrete beams[J]. ACI StructuralJournal,2000,5:703-704.
    [29] Shin,Y.-S.,Lee,C. Flexural Behavior of RC Beams Strengthened withCarbon Fiber-Reinforced Polymer Laminates at Different Levels ofSustaining Load[J]. ACI Structural Journal,2003,2:231-239.
    [30] Brest. Strengthening of reinforced concrete beams for shear using FRPcomposites[D]. Massachusetts Institute of Technology,1992:45-46.
    [31] A-S G J etc. Shear Repair for Reinforced Concrete by Fiberglass PlateBonding[J]. ACI Structural Journal,1994,3:458-464.
    [32] Triantafillou,T C. Shear strengthening of reinforced concrete beams usingEpoxy-bonded FRP composites[J]. ACI Structural Journal,1998,2:107-115.
    [33] Ohuchi, O S,K H. Seismic strengthening design technique for Existingbridge columns with CFRP[M],1994:70-71.
    [34] Malvar,L.J. Rehabilitation of Navy Pier Beams with Composites Sheet[J].Non-Metallic(FRP)Reinforcement for Concrete Structures,1995:534-540.
    [35] Chajes,M.J. Shear strengthening of reinforced concrete beams usingexternally Applied composite fabrics[J]. ACI Structural Journal,1995,2:295-303.
    [36] Uji,K. Improving Shear capacity of existing reinforced concrete membersby Applying carbon fiber sheet[J]. Transactions of the Japan ConcreteInstitute,1992,14:253-266.
    [37] L D Loernzis,A Nanni. Shear Strengthening of Reinforced ConcreteBeams with NSM Fiber-Reinforced Polymer Rods[J]. ACI StructurralJournal,2001:60-68.
    [38] ArakiN, M Y, GyuseonKim, J s Sim,H O Proc. Shear strength ofstrengthened RC beams with FRP in shear[J]. Construction andBuildingMaterials,2008,22:1261-1270.
    [39] A Khalifa,A Nanni. Improving shear capacity of existing RC T-sectionbeams using CFRP composites[J]. Cement and Concrete Composites,2000,27:165-174.
    [40] Al-Nahlawi G J,Wight J K. Beam ananlysis using concrete tensilestrength in truss models[J]. ACI Structural Journal,1992,89:284-289.
    [41] S Y. Shear Reinforcing Effect of Carbon Fiber Sheet Attached to Side ofReinforced Concrete Beams[J]. Advanced Composite Materials inBridges and Structures,1996:621-627.
    [42]王文炜,赵国藩,黄承速,任海东.纤维布加固己承受荷载的钢筋混凝土梁抗弯性能试验研究及抗弯承载力计算[J].北京:工程力学,2004,4:177-183.
    [43]王荣国,戴成雷,赵景海,张晓晶. CFRP加固混凝土梁式结构早期破坏理论的研究[J].哈尔滨:哈尔滨建筑大学学报,2002:71-73
    [44]蒋元平. CFRP加固RC梁变形性能的试验研究及理论分析[D].武汉理工大学博士学位论文,2009:12-13.
    [45]张芳芳.普通和预应力FRP加固梁的数值模拟与理论分析[D].大连理工大学硕士学位论文。2008:13-14.
    [46]殷雨时. CFRP加固负载混凝土梁的力学分析及蚂蚁河大桥加固工程研究[D].辽宁工程技术大学硕士学位论文,2009:11-12.
    [47]高涛. CFRP加固钢筋混凝土梁试验研究及有限元分析[D].长安大学硕士学位论文,2009:33-35.
    [48]贺学军. FRP加固负载混凝土梁的抗弯性能及剥离行为研究[D].中南大学博士学位论文,2007:26-28.
    [49]付士峰.不同程度损伤混凝土梁加固后抗弯性能试验研究[D].河北工业大学硕士学位论文,2006:4-5.
    [50]李志敬.二次受力下CFRP加固钢筋混凝土梁受弯性能的试验研究及数值分析[D].郑州大学硕士学位论文2006:12-13.
    [51]魏凝.芳纶纤维布加固钢筋混凝土梁抗弯性能试验研究与理论分析[D].西南理工大学硕士学位论文,2007:8-9.
    [52]史丽远.复合玻璃纤维增强布加固钢筋混凝土梁的性能研究[D].南京航空航天大学博士学位论文,2007:14-15.
    [53]廖娟.过载桥梁的碳纤维布加固试验与理论研究[D].浙江大学博士学位论文,2007:9-10.
    [54]于天来.碳纤维布加固钢筋混凝土梁受力性能的研究[D].东北林业大学博士学位论文,2005:11-12.
    [55]杜海强.碳纤维布加固混凝土梁抗弯承载力研究[D].中南大学硕士学位论文2007:10-11.
    [56]李贵炳.碳纤维片材加固钢筋混凝土梁抗弯性能与剥离破坏研究[D].浙江大学博士学位论文,2006:22-23.
    [57]刘纯洁.粘FRP加固钢筋混凝土梁变形及裂缝性能研究[D].中南大学硕士学位论文,2007:4-5.
    [58]陈绪军,杨勇新,邢建英,胡玲,汪健根.玄武岩纤维布加固钢筋混凝土梁抗弯试验研究[J].郑州:郑州大学学报(工学版),2009:61-65.
    [59]张大鹏,黄承逵,碳纤维布加固受损混凝土梁裂缝的试验研究[C],第十一届全国纤维混凝土学术会议,中国辽宁大连,2006,4-6.
    [60]吴刚,安琳,吕志涛.碳纤维布用于钢筋混凝土梁抗剪加固的试验研究[J].建筑结构,2000,30(7):16-20.
    [61]赵彤,谢剑,戴自强.碳纤维布提高钢筋混凝土梁抗剪承载力试验研究[J].建筑结构,2000,30(7):21-25.
    [62]周仕刚,高永飞. CFRP加固初始受载钢筋砼梁抗剪性能的试验研究[J].玻璃钢/复合材料,2003,2:7-10.
    [63]贺栓海,任伟,赵小星.碳纤维布对具有初应力的钢筋混凝土梁抗剪加固试验[J].西安:长安大学学报2004,24(3):34-39.
    [64]李志强,麻建锁,李艳芳,李瑞军.玄武岩纤维布加固钢筋混凝土梁抗剪承载力试验研究[J].北京:建筑科技,2010,41(3):248-250.
    [65]欧阳煜,张云超,李翔.玄武岩纤维布加固钢筋混凝土梁抗剪试验研究[J].工业建筑,2009,39(1):134-137.
    [66]刘沐宇,盛光祖. CFRP加固不同损伤度RC连续梁抗弯性能试验研究[J].武汉理工大学学报(交通科学与工程版),2010,6(34):484-488.
    [67]朱彦鹏,廖永石,郑建军,滕文川,赵丹丹.二次受力下CFRP加固钢筋混凝土梁抗弯试验研究[J].建筑结构,2010,6(40):379-381.
    [68]王荣霞,王康,崔志武.碳纤维和钢板加固超载预裂梁的受力机理分析[J].河北工业大学学报,2009,38(6):86-88.
    [69]单成林.粘贴钢板或碳纤维加固受弯构件效果对比试验研究[J].应用基础与工程科学学报,2011,2(19):36-43.
    [70] X Wang,Z Wu. Evaluation of FRP and hybrid FRP cables for superlong-span cable-stayed bridges[J]. Composite Structures,2010,92:2582-2590.
    [71] D Zhou, Z Lei,J Wang. In-plane behavior of seismically damagedmasonry walls repaired with external BFRP[J]. Composite Structures,2013,102:9-19.
    [72] X Wang,Z Wu. Modal damping evaluation of hybrid FRP cable withsmart dampers for long-span cable-stayed bridges[J]. CompositeStructures,2011,93:1231-1238.
    [73] C Colombo, L Vergani,M Burman. Static and fatigue characterisation ofnew basalt fibre reinforced composites [J]. Composite Structures,2012,94:1165-1174.
    [74] H W Zhang,S T Smith. FRP-to-concrete joint assemblages anchored withmultiple FRP anchors[J]. Composite Structures,2012,94:403-414.
    [75] T Ozbakkaloglu. Behavior of square and rectangular ultra high-strengthconcrete-filled FRP tubes under axial compression[J]. Composites Part B:Engineering,2013,54:97-111.
    [76] M Lesani, M R Bahaari,M M Shokrieh. Numerical investigation ofFRP-strengthened tubular T-joints under axial compressive loads[J].Composite Structures,2013,100:71-78.
    [77] T Jiang,J G Teng. Theoretical model for slender FRP-confined circularRC columns[J]. Construction and Building Materials,2012,32:66-76.
    [78] G M Chen, J G Teng,J F Chen. Process of debonding in RC beamsshear-strengthened with FRP U-strips or side strips[J]. InternationalJournal of Solids and Structures,2012,49:1266-1282.
    [79] G M Chen, J F Chen,J G Teng. On the finite element modelling of RCbeams shear-strengthened with FRP[J]. Construction and BuildingMaterials,2012,32:13-26.
    [80] B Durand, F Delvare,P Bailly. Numerical solution of Cauchy problems inlinear elasticity in axisymmetric situations[J]. International Journal ofSolids and Structures,2011,48:3041-3053.
    [81] L Angela Mihai,A Goriely. Numerical simulation of shear and thePoynting effects by the finite element method: An application of thegeneralised empirical inequalities in non-linear elasticity[J]. InternationalJournal of Non-Linear Mechanics,2013,49:1-14.
    [82] P D Chinh. Shakedown theory for elastic plastic kinematic hardeningbodies[J]. International Journal of Plasticity,2007,23:1240-1259.
    [83] P D Chinh. Shakedown theory for elastic-perfectly plastic bodiesrevisited[J].
    [84] International Journal of Mechanical Sciences,2003,45:1011-1027. RAl-Rousan,M Issa. Fatigue performance of reinforced concrete beamsstrengthened with CFRP sheet[J]. Construction and Building Materials,2011,25:3520-3529.
    [85] S Atamturktur, T Li, M H Ramage,I Farajpour. Load carrying capacityassessment of a scaled masonry dome: Simulations validated withnon-destructive and destructive measurements[J]. Construction andBuilding Materials,2012,34:418-429.
    [86] A Mohyeddin, H M Goldsworthy,E F Gad. FE modelling of RC frameswith masonry infill panels under in-plane and out-of-plane loading[J].Engineering Structures,2013,51:73-87.
    [87] D Mostofinejad,S B Talaeitaba. Nonlinear Modeling of RC BeamsSubjected to Torsion using the Smeared Crack Model[J]. ProcediaEngineering,2011,14:1447-1454.
    [88] A Bayraktar, A ahin, D M zcan,F Yildirim. Numerical damageassessment of Haghia Sophia bell tower by nonlinear FE modeling[J].Applied Mathematical Modelling,2010,34:92-121.
    [89] F Delhomme, M Mommessin, J P Mougin,P Perrotin. Simulation of ablock impacting a reinforced concrete slab with a finite element modeland a mass-spring system[J]. Engineering Structures,2007,29:2844-2852.
    [90] R A Hawileh,T A El-Maaddawy,M Z Naser. Nonlinear finite elementmodeling of concrete deep beams with openings strengthened withexternally-bonded composites[J]. Materials&Design,2012,42:378-387.
    [91] H Y Omran,R El-Hacha. Nonlinear3D finite element modeling of RCbeams strengthened with prestressed NSM-CFRP strips[J]. Constructionand Building Materials,2012,31:74-85.
    [92] D M zcan, A Bayraktar, A ahin, T Haktanir,T Türker. Experimental andfinite element analysis on the steel fiber-reinforced concrete (SFRC)beams ultimate behavior[J]. Construction and Building Materials,2009,23:1064-1077.
    [93] M Seffo,M Hamcho. Strength of Concrete Cylinder Confined byComposite Materials (CFRP)[J]. Energy Procedia,2012,19:276-285.
    [94] S Boria, S Pettinari,F Giannoni. Theoretical analysis on the collapsemechanisms of thin-walled composite tubes[J]. Composite Structures,2013,103:43-49.
    [95] M El-Tahan, K Galal,V S Hoa. New thermoplastic CFRP bendable rebarsfor reinforcing structural concrete elements[J]. Composites Part B:Engineering,2013,45:1207-1215.
    [96] M Foglar,M Kovar. Conclusions from experimental testing of blastresistance of FRP and RC bridge decks[J]. International Journal of ImpactEngineering,2013,59:18-28.
    [97] X Jiang, M H Kolstein,F S K Bijlaard. Study on mechanical behaviors ofFRP-to-steel adhesively-bonded joint under tensile loading[J]. CompositeStructures,2013,98:192-201.
    [98] C M Nguyen,A J Levy. Cohesive fracture of plane orthotropic layers[J].International Journal of Solids and Structures,2013,50:1266-1284.
    [99] F Oudah,R El-Hacha. Analytical fatigue prediction model of RC beamsstrengthened in flexure using prestressed FRP reinforcement[J].Engineering Structures,2013,46:173-183.
    [100] A Richardson,M Heather. Improving the Performance of Concreteusing3D Fibres[J]. Procedia Engineering,2013,51:101-109.
    [101] M A Sawpan, A A Mamun, P G Holdsworth,P Renshaw. Quasi-staticand dynamic mechanical elastic moduli of alkaline aged pultruded fibrereinforced polymer composite rebar[J]. Materials&Design,2013,46:277-284.
    [102] W M Sebastian, T Keller,J Ross. Influences of polymer concretesurfacing and localised load distribution on behaviour up to failure of anorthotropic FRP bridge deck[J]. Composites Part B: Engineering,2013,45:1234-1250.
    [103] J Q Yang, S T Smith,P Feng. Effect of FRP-to-steel bonded jointconfiguration on interfacial stresses: Finite element investigation[J].Thin-Walled Structures,2013,62:215-228.
    [104] A Belarbi,B Acun. FRP Systems in Shear Strengthening of Reinforced Concrete Structures[J]. Procedia Engineering,2013,57:2-8.
    [105] R H Haddad, R Z Al-Rousan,B K Al-Sedyiri. Repair of shear-deficientand sulfate-damaged reinforced concrete beams using FRP composites[J].Engineering Structures,2013,56:228-238.
    [106] M Jalali, M K Sharbatdar, J-F Chen,F Jandaghi Alaee. Shearstrengthening of RC beams using innovative manually made NSM FRPbars[J]. Construction and Building Materials,2012,36:990-1000.
    [107] A Godat, P Labossière, K W Neale,O Chaallal. Behavior of RCmembers strengthened in shear with EB FRP: Assessment of models andFE simulation approaches[J]. Computers&Structures,2012,(93):269-282.
    [108] P Cornetti,A Carpinteri. Modelling the FRP-concrete delamination bymeans of an exponential softening law[J]. Engineering Structures,2011,33:1988-2001.
    [109] D Mostofinejad,M Mohammadi Anaei. Effect of confining of boundaryelements of slender RC shear wall by FRP composites and stirrups[J].Engineering Structures,2012,41:1-13.
    [110] H M Tanarslan, M Secer,A Kumanlioglu. An approach for estimatingthe capacity of RC beams strengthened in shear with FRP reinforcementsusing artificial neural networks[J]. Construction and Building Materials,2012,30:556-568.
    [111] Collins M P. Toward a rational theory for RC members in shear[J].Journal of the Structural Division ASCE,1998,124(12):1375-1417.
    [112] Vecchio F J,Collins M P. The modified compression-filed theory forreinforced concrete elements subjected to shear[J].ACI Structural Journal,1986,83:386-394.
    [113] Deniaud C,Roger Cheng J. Review of shear design methods forreinforced concrete beams strengthened with fiber rein-forced polymersheet[J].Can J Eng,2001,28:271-281.
    [114]曹双寅.外贴碳纤维布加固钢筋混凝土梁裂缝性能试验研究[J].建筑结构学报.2010,31(1):33-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700