用户名: 密码: 验证码:
设置传力构件的大截面矩形钢管混凝土柱静力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂超高层建筑已广泛采用大截面矩形钢管混凝土柱(LRCFT柱),它对整个结构的安全至关重要。共同工作是LRCFT柱应用的基本问题,对构件及结构的工作性能有着重要的影响。针对LRCFT柱的共同工作问题,本文提出了一种新型的传力机制,即在矩形钢管混凝土柱楼层节点区钢管内设传力构件——分配梁和内环肋,来协调钢管壁与核心混凝土的变形,迫使组成矩形钢管混凝土柱的钢管和核心混凝土共同工作。主要研究内容包括以下几个方面:
     (1)基于LRCFT柱的共同工作性能,提出了一种新型的传力机制,给出了传力构件的具体构造和布置形式,分析了设传力构件的矩形钢管混凝土柱的受力原理。对比分析了轴压作用下不设传力构件﹑设环向加劲肋﹑设环向加劲肋及栓钉、设传力构件的矩形钢管混凝土柱的共同工作性能,揭示了设传力构件对保证LRCFT柱共同工作性能的重要性和必要性。进行了矩形钢管混凝土柱的轴压试验研究和相关的数值分析,试验结果与有限元结果吻合较好,进一步验证了利用摩擦粘结作用来保证LRCFT柱的共同工作可靠性不够,设传力构件有效地改善了矩形钢管混凝土柱的受力性能,充分地保证了LRCFT柱的共同工作。
     (2)基于设传力构件的LRCFT柱受力原理的分析,提出了共同工作的理论模型,用弹性地基梁温克尔假定来模拟分配梁沿梁长传递外荷载于核心混凝土的共同工作性能。将分配梁与混凝土的相互作用视作弹性地基梁,作为分配梁支座的钢管壁提供弹簧刚度,核心混凝土简化为弹性地基,分配梁简化为梁,建立了混凝土工作承担系数的计算方程。结合设分配梁的矩形钢管混凝土柱的实际边界条件,给出了混凝土工作承担系数的解析计算方法。在真实的模拟分配梁与钢管壁及核心混凝土之间的力学行为基础上,给出了LRCFT柱各组成部分刚度的求解方法和公式,保证了混凝土工作承担系数的顺利求解。研究了分配梁的力学行为,给出了分配梁的设计方法,指导工程设计。进行了具体算例的分析,验证了本文给出的理论解析方法的有效性和较好的实用性。
     (3)基于共同工作的理论模型,研究了混凝土工作承担系数与LRCFT柱各组成部分刚度的关系,得出了分配梁尺寸的选取范围。从刚度的控制方程出发,考虑因素间的两两耦合,采用非线性回归方法,得到了各刚度系数的简化计算公式。讨论了计算公式的误差,验证了简化计算公式的合理性。通过简单的计算公式能够快速计算出LRCFT柱各组成部分刚度值,从而求得混凝土工作承担系数来指导分配梁的设计。
     (4)研究了设传力构件的LRCFT柱在轴压﹑纯弯及偏压作用下的共同工作性能。基于《矩形钢管混凝土结构技术规程》(CECS159:2004),得出了设传力构件的矩形钢管混凝土柱轴压﹑纯弯及偏压承载力的设计方法,提出了规程中大偏压承载力设计方法可做适当完善修改的建议,并给出了计算公式。建立了30层的框架模型,研究了传力构件的数量设计。从弹性控制设计和塑性控制设计两个角度,研究了设传力构件的LRCFT柱的共同工作性能。结果表明,应用设传力构件的矩形钢管混凝土柱,过多或过少设分配梁均不能达到最优的分配效果,合适的数量﹑合理的位置能够使矩形钢管混凝土柱表现出较好的共同工作性能。
Large rectangular section concrete-filled steel tube column(LRCFT column) has been widely used in complicated super high-rise buildings, and it is very important for the stability of the whole structure. Working together is the basic problem for LRCFT column, which has an important influence on the performance of structure. For the problem of working together of LRCFT column, a new kind of force transmission mechanism has been carried out in this paper, that is force transmission components-distribution beams and inner periphery ribs are arranged at floor node zone to coordinate deformation between steel tube and core concrete, and force steel tube and core concrete to work together. The main contents in this paper are as follows.
     (1) A new kind of force transmission mechanism was carried out based on the working together performance of LRCFT column, and specific structure and arrangement form of force transmission components were given, meantime mechanical principle of concrete-filled rectangular steel tube(CFRT) column with force transmmssion components was analysed. Under axial compression the working together performance of CFRT columns that consist of force transmission components not being arranged, ring stiffeners being arranged, both ring stiffeners and studs being arranged, and force transmission components being arranged were analysed, which revealed the importance and necessaries for the performance of LRCFT column to arrange force transmission components. The axial compression tests and numerical analysis of CFRT column were analysed, and the test results showed that they were in good agreement by using finite element method(FEM), furthermore verified that bond action was not an accurate way to ensure the performance of LRCFT column, but arranging force transmission components improved the mechanical performance of CFRT column effectively, and ensured working together of LRCFT column fully.
     (2) Based on mechanical principle for LRCFT column with force transmission components, the theory model of working together that the interaction of distribution beam transfering external load to concrete works as Winkler assumption on elastic foundation beam was carried out. The equations of percentage of load-carrying shared by concrete were established, in which the interaction of distribution beam and concrete was regarded as elastic foundation beam, steel tube provided stiffness, concrete was simplified to elastic foundation, and distribution beam worked as beam. Applying the boundary conditions of CFRT column with distribution beam, the calculation method of percentage of load-carrying shared by concrete can be abtained. Based on mechanical behavior among distribution beam, steel tube and concrete, the stiffnesses solutions of each component of LRCFT column were obtained, which ensured the solution of percentage of load-carrying shared by concrete. By studying mechanical behavior of distribution beam, the design method of distribution beam was determined to guide engineering design. The actual example was analysed, which verified the validity and good practicability of analytical method in this paper.
     (3) Based on the theory model of working together, the relationships of percentage of load-carrying shared by concrete with stiffnesses of each component of LRCFT column were studied, accordingly the ranges of distribution beam section size were given. Proceedly from governing equations on stiffnesses, coupling between two factors was considered and by using nonlinear regression method, the simplified calculation formulas for each stiffness coefficient were obtained. The error of calculation were discussed, which showed that the simplified calculation formulas were reasonable. Through the simplified calculation formulas the stiffnesses can be calculated quickly, thereby the percentage of load-carrying shared by concrete is given to guide the design of distribution beam.
     (4) Working together performance of LRCFT column with force transmission components were studied under axial compression, bending and eccentric compression. Based on―Technical specification for structures with concrete-filled rectangular steel tube members‖(CECS159:2004), the design methods of carrying capacity under axial compression, bending and eccentric compression for CFRT column with force transmission components were obtained, and the proposal that design method of carrying capacity under big eccentric compression of specification need to be improved further was proposed and the calculation formula was given. A model of30-stories frame was established and the quantity design of force transmission components was studied. From the standpoints of elastic and plastic design, the working together performance of LRCFT column with force transmission components was studied. It was shown that for CFRT structure, with too much or too little distribution beams the optimal distribution effect can’t be reached, when the quantity is suitable and location is reasonable the performance of CFRT stucture is acceptable.
引文
[1]杨晓慧,田春雨,王翠坤等.京基金融中心巨型钢管混凝土柱试验研究[J].建筑结构,2010,40(11):87-90.
    [2] Johansson M, Gylltoft K. Mechanical Behavior of Circular Steel-ConcreteComposite Stub Columns[J]. Journal of Structural Engineering,2002,128(8):1073-1081.
    [3] Roeder C W, Cameron B, Brown C B. Composite Action in Concrete Filledtubes[J]. Journal of Structural Engineering,1999,125(5):477-484.
    [4] Virdi K S, Dowing P J. Bond Strength in Concrete Filled Steel Tubes[C].Proceedings of the IABSE,1975:125-139.
    [5] Shakir-Khalil H. Pushout Strength of Concrete-Filled Steel Hollow SectionTubes[J]. Structural Engineer,1993,71(13):363-370.
    [6]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(上)[J].建筑科学,1996,(3):22-28.
    [7]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(下)[J].建筑科学,1996,(4):19-23.
    [8]钟善桐.钢管混凝土中钢管与混凝土的共同工作[J].哈尔滨建筑大学学报,2001,34(1):6-10.
    [9]仵建斌.方钢管混凝土结构粘结滑移基本性能研究[D].西安建筑科技大学硕士学位论文,2008.
    [10]邓洪洲,傅鹏程,余志伟.矩形钢管与混凝土之间的粘结性能试验[J].特种结构,2005,22(1):50-52.
    [11]康希良.钢管混凝土组合力学性能及粘结滑移性能研究[D].西安建筑科技大学博士学位论文,2008.
    [12]中国工程建设标准化协会.矩形钢管混凝土结构技术规程(CECS159:2004)[S].北京:中国计划出版社,2004.
    [13] Eurocode4. Design of Composite Steel and Concrete Structures[S]. EuropeanCommittee for Standardization, Brussels,2004.
    [14] AIJ. Recommedations for Design and Construction of Concrete Filled SteelTubular Structures[S]. Architectural Institute of Japan, Tokyo, Japan,2008.
    [15] ANSI AISC360-2010. Specification for Structural Steel Buildings[S].American Institute of Steel Construction, Chicago,2010.
    [16] ACI Committee318. Building Code Requirements for Reinforced Concreteand Commentary[S]. American Concrete Institute, Detroit,1995.
    [17] AISC-LRFD. Load Resistance Factor Design Specification for Structural SteelBuildings[S]. American Institute of Steel Construction (AISC), Chicago, USA,1999.
    [18] British Standards Institutions. BS5400Steel, Concrete and Composite Bridges,Part5: Code of Practice for Design of Composite Bridges[S]. London, UK,1979.
    [19] DIN18806. Verbund Konstru Ktionen, Verbund Stutzen, NABau im Din[S].Beuth Verlag Gmbh, Berlin30,1997.
    [20]天津市工程建设标准.天津市钢结构住宅设计规程(DB29-57-2003)[S].天津:天津建设管理委员会,2003.
    [21]中华人民共和国国家经济贸易委员会.钢-混凝十组合结构设计规程(DL/T5085-1999)[S].北京:中国电力出版社,1999.
    [22]国家军用标准.战时军港抢修早强型组合结构技术规程(GJB4142-2000)
    [S].解放军总后勤劳部,2001.
    [23]中国工程建设协会标准.钢管混凝土结构技术规程(CECS28:2012)[S].北京:中国计划出版社,2012.
    [24]中国工程建设标准化协会.钢管混凝土结构设计与施工规程(CECS28-2012)[S].北京:中国计划出版社,2012.
    [25] Furlong R W. Strength of Steel-Encased Concrete Beam-Columns[J]. Journalof Structural Division, ASCE,1967,93:113-124.
    [26] O'Shea, Bridge R Q. Behavior of Thin-Walled Box Sections with LateralRestraint[J]. Department of Civil Engineering Research Report, the Universityof Sydney,1997,3:739.
    [27] Song J Y, Kwon Y B. Structural Behavior of Concrete-Filled Steel BoxSections[J]. International Conference Report on Composite Construction-Conventional and Innovative, Innsbruck, Austria,1997:795-80l.
    [28] Neogi P K, Sen H K, Chapman J C. Concrete–Filled Tubular Columns underEccentric Loading[J]. The Structural Engineer,1969,47(5):187-195.
    [29] Bradford M A. Design Strength of Slender Concrete Filled Rectangular SteelTubes[J]. ACI Structural Journal,1996,93(2):229-235.
    [30] Peter Mcateer, John F. Bonacci, Mohamed Lachemi. Composite Response ofHigh-Strength Concrete Confined by Circular Steel Tube[J]. ACI StructuralJournal,2004,101(4):466-474.
    [31] Lu F W, Li S P, Sun G J. A Study on the Behavior of Eccentrically CompressedSquare Concrete-Filled Steel Tube Columns[J]. Journal of Constructional SteelResearch,2007,63:941-948.
    [32]沈祖炎,黄奎生.矩形钢管混凝土轴心受力构件的设计方法[J].建筑结构,2005,35(1):3-4.
    [33]周建军,倪晓,郭少春.矩形钢管混凝土压弯构件承载力设计方法[J].宁夏工程技术,2005,4(4):321-324.
    [34]姚民乐,高金良.矩形钢管混凝土短柱强度研究[J].混凝土,2006,3:50-52.
    [35]郭兰慧,张素梅.考虑局部屈曲的矩形钢管混凝土轴压承载力计算方法[J].工业建筑,2009,39(7):98-101.
    [36] Cederwall K, Engstrom B, Grauers M. High-Strength Concrete Used inComposite Columns[J]. High Strength Concrete,1987,121(11):195-210.
    [37] Shakir-Khalil H, Mouli M. Further Tests on Concrete-Filled RectangularHollow-Section Columns[J]. The Structural Engineering,1990,68(20):405-413.
    [38] Nakai H, Kuritaand A, Iehinose H. An Experimental Study on Creep ofConcrete Filled Steel Pipes[J]. Confer. on Steel and Concrete CompositeStructures, Fukuoka, Japan.1991:55-60.
    [39] Uy Brian. Strength and Ductility of Fabricated Steel-Concrete Filled BoxColumns[J]. Proc. of the4th Int. Confer. on Steel-Concrete CompositeStructures, Germany,1997:616-629.
    [40] Uy Brian. Ductility and Strength of Thin-Walled Concrete Filled Box Columns.Confer. Report on Composite Construction-Conventional and Innovative.Innsbruck, Austria,1997:801-806.
    [41] Kodur V K R, Sultan M A. Enhancing the Fire Resistance of Steel Columnsthrough Composite Construction[C]. Proceedings of the6th ASCCSConference, ASCCS,2000, Los Angeles, U.S.A.:279-286.
    [42] Liu D. Behavior of Eccentrically Loaded High-Strength Rectangular Concrete-Filled Steel Tubular Columns[J]. Journal of Constructional Steel Research,2006,62(8):839-846.
    [43] Dung M L, Liu J L, Tsong Y. Experimental Study on Rectangular CFTColumns with High-Strength Concrete[J]. Journal of Constructional SteelResearch,2007,63:37-44.
    [44] Jie P L, Xu H Z, Zhang S M. Seismic Behaviour of Square CFT Beam–Columns under Biaxial Bending Moment[J]. Journal of Constructional SteelResearch,2008,64:1473-1482.
    [45] Walter L A, Silvana D N, Ana L H. de Cresce El Debs. Influence of ConcreteStrength and Length/Diameter on the Axial Capacity of CFT Columns[J].Journal of Constructional Steel Research,2009,65:2103-2110.
    [46] Aaron D, Thomas H K, Chris R, et al. Composite Flexural Behavior of Full-Scale Concrete-Filled Tubes without Axial Loads[J]. Journal of StructuralEngineering,2010:1401-1412.
    [47]韩林海,杨有福.矩形钢管混凝土轴心受压构件强度承载力的试验研究[J].土木工程学报,2001,34(4):22-31.
    [48] Hamid R, Stephen J. Nonlinear Static and Cyclic Analysis of Concrete-FilledSteel Columns[J]. Journal of Constructional Steel Research,2010,66:793-802.
    [49] Yoshiaki G, Ghosh P K, Kazumasa S. Finite Element Analysis for HystereticBehavior of Thin-Walled CFT Columns with Large Cross Sections[J]. TheTwelfth East Asia-Pacific Conference on Structural Engineering andConstruction,2011,14:2021-2030.
    [50] Huo J S, Xiang Z, Yan X. Cyclic Behaviours of Concrete-Filled Steel TubularColumns with Pre-Load after Exposure to Fire[J]. Journal of ConstructionalSteel Research,2011,67:727-739.
    [51] Baltay P, Gjelsvik A. Coefficient of Friction for Steel on Concrete at HighNormal Stress[J]. Journal of Materials in Civil Engineering,1990,2(1):46-49.
    [52] Olofsson U, Holmgren M. Anvandning av en servo-hydraulisk drag-vridningsmaskin for friktionsmatning mellan stal och betong vid lagaglidhastigheter.(Using a Servo Hydraulic Tension-Torsion Machine forMeasurement of Friction at Low Sliding Speed. In Swedish). Swedish NationalTesting and Research Institute, Boras, Sweden,1992,13.
    [53] Boverket’s handbok for betongkonstruktioner BBK94, Band1, Konstruktion(Boverket’s Handbook for Concrete Structures, BBK94, Vol.1, Design. InSwedish)[S]. Boverket, Byggavdelningen, Karlskrona, Sweden,1994,185.
    [54] Nezamian A, Al-Mahaidi R, Grundy P. The Effect of Cyclic Loading on theBond Strength of Concrete Plugs Embedded in Tubular Steel Piles[J].Advances in Structures,2003,1:1125-1129.
    [55] Nezamian A, Al-Mahaidi R, Grundy P. Bond Strength of Concrete PlugsEmbedded in Tubular Steel Piles under Cyclic Loading[J]. Canadian Journal ofCivil Engineering,2006,33(2):111-125.
    [56] Aly T, Elchalakani M, Thayalan P, et al. Incremental Collapse Threshold forPushout Resistance of Circular Concrete Filled Steel Tubular Columns[J].Journal of Constructional Steel Research,2010,66(1):11-18.
    [57] Zhong T, Han L H, Brian U, et al. Post-Fire Bond between the Steel Tube andConcrete in Concrete-Filled Steel Tubular Columns[J]. Journal ofConstructional Steel Research,2011,67:484-496.
    [58] Morishita Y, Tomii M, Yoshimura Y. Experimental Studies on Bond Strength inConcrete Filled Square and Octagonal Steel Tubular Columns Subjected toAxial Loads[J]. Transactions of Japan Concrete Institue,1979,1:359-366.
    [59] Morishita Y, TOmii M, Yoshimura Y. Experimental Studies on Bond Strengthin Concrete Filled Circular Steel Tubular Columns Subjected to Axial Loads[J].Transactions of Japan Concrete Institute,1979,1:351-358.
    [60] Morishita Y, Tomii M. Experimental Studies on Bond Strength between SquareSteel Tube and Encased Concrete Core under Cyclic Shearing Force andConstant Axial Force[J]. Transactions of Japan Concrete Institute,1982,4:363-370.
    [61] Tomii M, Morishita Y, Yoshimura K. A Method of Improving Bond Strengthbetween Steel Tube and Concrete Core Cast in Circular Steel TubularColumns[J]. Transactions of Japan Concrete Institute,1980,(2):319-326.
    [62] Okamato T, Maeno T. Experimental on Rectangular Steel Tube Columns inFilled with Ultra High Strength Concrete Hardened by Centrifugal Force[J].Annual Meeting of AIJ, Proceedings, Chiba,1988:1359-1374.
    [63] Johansson, Kent Gylltoft. Mechanical Behavior of Circular Steel-ConcreteComposite Stub Columns[J]. Journal of Structural Engineering,2002,128(8):1073-1081.
    [64] Amir Fam, Frank S. Qie, Sami Rizkalla. Concrete-Filled Steel Tubes Subjectedto Axial Compression and Lateral Cyclic Loads[J]. Journal of StructuralEngineering,2004,125(5):631-640.
    [65] Clotilda Petrus, Hanizah Abdul Hamid, Azmi Ibrahim, et al. Bond Strength inConcrete Filled Built-Up Steel Tube Columns with Tab Stiffeners[J]. NRCResearch Press,2011,38:627-637.
    [66] JIE ZHANG, MARK D. DENAVIT, JEROME F. HAJJAR, et al. BondBehavior of Concrete-Filled Steel Tube(CFT) Structures[J]. EngineeringJournal,2012,4:169-185.
    [67] Jun-Qing Xue, Bruno Briseghella, Bao-Chun Chen. Effects of Debonding onCircular CFST Stub Columns[J]. Journal of Constructional Steel Research,2012,69:64-76.
    [68]刘永健,池建军.方钢管混凝土界面粘结强度的试验研究[J].建筑技术,2005,36(z):97-98.
    [69]杨有福,韩林海.矩形钢管自密实混凝土的钢管-混凝土界面粘结性能研究[J].工业建筑,2006,36(11):32-36.
    [70]张晓辉.方钢管混凝土柱粘结性能的理论分析[J].广东建材,2010,6:7-9.
    [71]任德良,刘世臣,刘来君.钢管混凝土粘结强度的影响因素分析[J].公路交通科技应用技术版.2011,10:254-256.
    [72] Xu K, Chen M C, Yuan F. Push-Out Test on Bond Property of Micro-Expansive Concrete-Filled Steel Tube Columns[J]. Advances in Structures,2011,163-167:610-614.
    [73]件建斌.方钢管混凝土结构粘结滑移基本性能研究[D].西安建筑科技大学博士学位论文,2011.
    [74]李黎明.矩形钢管混凝土柱力学性能研究[D].天津大学博士学位论文,2007.
    [75]辛海亮.钢管混凝土粘结滑移本构关系试验研究[D].西安建筑科技大学硕士学位论文,2008.
    [76]黄一杰,张林彦,阎春生.方钢管混凝土粘结-滑移的力学分析[J].水利与建筑工程学报,2008,6(3):27-28.
    [77]康希良,程耀芳,张丽等.钢管混凝土粘结-滑移本构关系理论分析[J].工程力学,2009,26(10):74-78.
    [78]胡波,王建国.钢管与混凝土粘结-滑移相互作用的数值模拟[J].中国公路学报,2009,4(22):84-90.
    [79]樊晓刚.钢与混凝土组合构件粘结滑移[D].西安建筑科技大学硕士学位论文,2011.
    [80]许开成,陈梦成,何小平.长期荷载作用下CFST界面粘结损伤试验研究[J].实验力学,2013,1(28):127-133.
    [81] Virdi K S, Dowling P J. Bond Strength in Concrete Filled Steel Tubes[J].CESLIC Report CC11. Department of Civil Engineering,1975.
    [82] Virdi K S, Dowling P J. Bond Strength in Concrete Filled Steel Tubes[J].IABSE Proceedings,1980:125-139.
    [83] Dunberry E, LeBlanc D, Redwood R G. Cross-Section on Strength ofConcrete-Filled HSS Columns at Simple Beam Connections[J]. CanadianJournal of Civil Engineering,1987,14(2):408-417.
    [84] Shakir-Khalil H. Pushout Strengths of Concrete-Filled Steel HollowSections[J]. The Structural Engineer,1993,71(13):230-233.
    [85] Shakir-Khalil H. Resistance of Concrete-Filled Steel Tubes to Push-OutForces[J]. The Structural Engineer,1993,71(13):234-243.
    [86] AISC. Specification for Structural Steel Buildings[S]. Chicago, AmericanInstitute of Steel Construction,2010.
    [87] Liang B, Meng F S, Mao R. Study on Interface Slips in Concrete Filled SquareSteel Tubular Column[J]. Advanced Materials Research,2011,163:888-892.
    [88]姜绍飞,韩林海,乔景川.钢管混凝土中钢与混凝土粘结问题初探[J].哈尔滨建筑大学学报,2000,33(2):24-28.
    [89]袁伟斌,金伟良.离心钢管混凝土结构粘结强度分析[J].华中科技大学学报(城市科学版),2005,22(1):26-29.
    [90]安栋.方钢管混凝土共同工作性能研究[D].天津大学硕士学位论文,2006.
    [91]黄一杰.方钢管混凝土粘结滑移与杭剪连接的试验研究[D].西安建筑科技大学硕士学位论文,2009.
    [92] Chang X, Huang C K, Jiang D C, et al. Push-Out Test of Pre-StressingConcrete Filled Circular Steel Tube Columns by Means of ExpansiveCement[J]. Construction and Building Materials,2009,23:491-497.
    [93] Yin X W, Lu X L. Study on Push-Out Test and Bond Stress-Slip Relationshipof Circular Concrete Filled Steel Tube[J]. Steel and Composite Structures,2010,10(4):317-329.
    [94]康希良,程耀芳,涂昀等.钢管混凝土粘结-滑移性能试验研究及数值分析[J].工程力学,2010,27(9):102-106.
    [95]刘永健,刘君平,池建军.钢管混凝土界面抗剪粘结滑移力学性能试验[J].广西大学学报,2010,35(1):17-23.
    [96]张杰.矩形钢管混凝土结构粘结性能研究[J].钢结构,2012,1(27):36-40.
    [97] Ge H B, Usamit. Strength of Concrete-Filled Thin Walled Steel Box ColumnsExperiment[J]. Journal of Structural Engineering ASCE,1992,118(11):3036-3054.
    [98]薛立红,蔡绍怀.钢管混凝土抗剪连接件的试验研究[J].建筑科学,1998,14(1):13-21.
    [99]陶忠,王志滨,韩林海.采用加劲肋改善薄壁方钢管混凝土工作性能初探[J].第十三届全国结构工程学术会议论文集,2004:112-115.
    [100]王坤,许伟,陈阳.钢-混凝土组合梁剪力连接件的研究[J].陕西建筑,2006,134:40-42.
    [101]张耀春,陈勇.设直肋方形薄壁钢管混凝土短柱的试验研究与有限元分析[J].建筑结构学报,2006,27(5):16-22.
    [102]陈勇,张耀春.设置斜肋方形薄壁钢管混凝土轴压短柱研究[J].东南大学学报(自然科学版),2006,36(1):107-112.
    [103]陈勇,张耀春.设对拉片方形薄壁钢管混凝土短柱的试验研究与有限元分析[J].建筑结构学报,2006,27(5):23-29.
    [104] De Nardin S, EI Debs, Ana Lucia H C. Shear Transfer Mechanisms inComposite Columns: an Experimental Study[J]. Steel and composite structures,2007,7(5):377-390.
    [105]殷小微.钢管混凝土粘结性能及内力分配研究[D].西安建筑科技大学硕士学位论文,2008.
    [106] Roeder C W, Lehman D E, Thody R. Composite Action in CFT Componentsand Connections[J]. Engineering Journal-American Institute of SteelConstruction INC,2009,46(4):229-242.
    [107] Qiao Q Y, Kawano A, Nawa A, et al. A Study on the Connection of ConcreteFilled Steel Tubes (CFT) with Built-in Steel Bars[J]. Behavior of steelstructures in seismic areas,2009,8:319-324.
    [108] Starossek U, Falah N, Loehning T. Numerical Analyses of the Force Transferin Concrete-Filled Steel Tube Columns[J]. Structural Engineering andMechanics,2010,35(2):241-256.
    [109] Zuo, Z L, Cai, J, Zhu, C H, er al. Eeperiment on L-ShapeCFT Stub Columnswith Binding Bars Subjected to Eccentric Compression[J]. Innovation&Sustainability of Structures,2009,1:769-774.
    [110] Starossek U, Falah N, Loehning T. Numerical Analyses of the Force Transferin Concrete-Filled Steel Tube Columns[J]. Structural Engineering andMechanics,2010,35(2):241-256.
    [111]陈玲珠,蒋首超,张洁.栓钉剪力连接件的承载能力研究综述[J].钢结构,2010,9(25):5-10.
    [112] Clotilda P, Hanizah A H, AzmiIbrahim, et al. Experimental Behavior ofConcrete Filled Thin Walled Steel Tubes with Tab Stiffeners[J]. Journal ofConstructional Steel Research,2010,66:915-922.
    [113]冯涛,徐伟,罗应松.方形设肋薄壁钢管轻质混凝土短柱轴压承载性能的有限元分析[J].中国西部科技,2010,9(10):21-23.
    [114]冯涛.设肋薄壁方钢管混凝土短柱轴压承载力性能有限元分析[D].中南大学硕士学位论文,2010.
    [115]左志亮.带约束拉杆异形截面钢管混凝土短柱的受压力学性能研究[D].华南理工大学博士学位论文,2010.
    [116] Petrus C, Hamid H A, Ibrahim A, et al. Bond Strength in Concrete FilledBuilt-Up Steel Tube Columns with Tab Stiffeners[J]. Candian Journal of CivilEngineering,2011,38(6):627-637.
    [117] Jones M H, Wang Y C. Shear and Bending Behaviour of Fin Plate Connectionto Concrete Filled Rectangular Steel Tubular Column-Development of aSimplified Calculation Method[J]. Journal of Constructional Steel Research,2011,67:348-359.
    [118]徐开磊.内置纵肋矩形钢管混凝土轴压短柱极限承载力有限元分析[D].长安大学硕士学位论文,2011.
    [119]黄宏,张安哥,李毅等.带肋方钢管混凝土轴压短柱试验研究及有限元分析[J].建筑结构学报,2011,32(2):75-82.
    [120] Xue D Y, Liu Y Q, Yu Z, et al. Static Behavior of Multi-Stud ShearConnectors for Steel-Concrete Composite Bridge[J]. Journal of ConstructionalSteel Research,2012,74:1-7.
    [121] Zhi L Z, Jian C, Chun Y, et al. Axial Load Behavior of L-Shaped CFT StubColumns with Binding Bars[J]. Engineering Structures,2012,37:88-98.
    [122] Hibbitt, Karlson, Sorenson. ABAQUS Version6.4: Theory Manual, Users’Manual, Verification Manualand Example problems Manual. Hibbitt, Karlsonand Sorenson Inc.,2003.
    [123] Hibbitt, Karlsson, Sorensen, INC. ABAQUS/Standard有限元软件入门指南(庄茁等译)[M].北京:清华大学出版社,1998.
    [124] Shakir Khalil H, Rawadan A. Experimental Behavior and NumericalModeling of Concrete-Filled Rectangular Hollow Section Tubular Columns[J].Proceedings of the Engineering Foundation Conference, ASCE, New York,NY, USA,1997:222-235.
    [125] Schneider S P. Axially Loaded Concrete-Filled Steel Tubes[J]. Journal ofStructural Engineering,1998,124(10):1125-1138.
    [126] Johansson M. Structural Behaviour of Circular Steel-Concrete CompositeColumns: Non-Linear Finite Element Analyses and Experiments[J]. Licentiatethesis, Chalmers University of Technology, Div of Concrete Struct.,Goteborg,Sweden,2000.
    [127] Varma A H. Seismic Behavior, Analysis, and Design of High Strength SquareConcrete Filled Steel Tube(CFT) Columns[J]. Doctoral Dissertation of LehighUniversity,2000.
    [128] Susantha K A S, Ge H B, Usami T. Confinement Evaluation of Concrete-Filled Box-Shaped Steel Columns[J]. Steel and Composite Structures,2001,1(3):313-328.
    [129] Hu H T, Chiung S H, Ming H W, et al. Nonlinear Analysis of Axially LoadedConcrete-Filled Tube Columns with Confinement Effect[J]. Journal ofStructural Engineering,2003,129(10):1322-1329.
    [130]韩林海.钢管混凝土结构理论与实践[M].北京:科学出版社,2007.
    [131]中华人民共和国国家标准.混凝土结构设计规范(GB50010-2010)[S].北京:中国建筑工业出版社,2010.
    [132] Baltay P, Gjelsvik A. Coefficient of Friction for Steel on Concrete at HighNormal Stress[J]. Journal of Materials in Civil Engineering,1990,2(1):46-49.
    [133] Boverket’s handbok for betongkonstruktioner BBK94, Band1, Konstruktion.Boverket, Byggavdelningen, Karlskrona, Sweden,1994.
    [134] Olofsson U, Holmgren M. Anvandning av en Servo-Hydraulisk Drag-Vridningsmaskin for Friktionsmatning Mellan Stal Och Betong Vid LagaGlidhastigheter[J]. Swedish National Testing and Research Institute, Boras,Sweden,1992,13:355-360.
    [135] Ollgaard J G,R G Slutter,J W Fisher.Shear Strength of Stud Connections inLightweight and Normal Weight Concrete[J]. AISC Engrg.,1971,8(4):55-64.
    [136]中华人民共和国黑色冶金行业标准.钢骨混凝土结构技术规程(YB9082-2006)[S].北京:冶金工业出版社,2007.
    [137] Oehlers D J,G Sved.Composite Beams with Limited-Slip-Capacity ShearConnectors[J]. Journal of Structural Engineering,1995,121(6):932-938.
    [138] Tao Z, Uy B, Han L H, et al. Analysis and Design of Concrete-Filled StiffenedThin-Walled Steel Tubular Columns under Axial Compression[J]. Thin-Walled Structures,2009,47(12):1544-1556.
    [139] Tao Z, Han L H, Wang D Y. Strength and Ductility of Stiffened Thin-WalledHollow Steel Structural Stub Columns Filled with Concrete[J]. Thin-WalledStructures,2008,46(10):1113-1128.
    [140]龙驭球.弹性地基梁的计算[M].北京:北京人民教育出版社,1981.
    [141]沈祖炎,李元齐,傅学怡等.超大截面矩形钢管混凝土柱分配梁力学性能试验研究报告[R].上海:同济大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700