用户名: 密码: 验证码:
多孔建筑材料湿物理性质的测试方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔建筑材料的湿物理性质是分析建筑围护结构热湿传递过程的重要参数。用准确可靠的方法测试多孔建筑材料的湿物理性质对围护结构的热工设计、室内热湿环境的分析及建筑能耗的计算有着重要意义。
     本文以加气混凝土(国产及比利时产)、硅钙板和瓷砖等典型多孔建筑材料为测试材料,首先研究了测试试件的最佳称重方法和干燥方法。通过理论和实验分析,发现对大尺寸的试件可以进行直接称重,而小尺寸的试件在称重过程中应用非吸湿容器密封。对大多数材料推荐采用70°C烘干法进行干燥。
     其次,本文参考多项国际和地区标准,在各种条件下进行了平衡吸放湿实验、蒸汽渗透实验、毛细吸水实验、真空饱和实验以及压力平板实验,测试了上述材料的等温吸放湿曲线、蒸汽渗透系数、吸水系数、毛细饱和含湿量、液态水扩散系数、表观密度、孔隙率、真空饱和含湿量和保水曲线等各种物理性质。研究发现,上述实验的重复性都较好,测试结果的重复性误差一般不大于材料不均一性引起的误差。等温吸湿曲线、蒸汽渗透系数、毛细饱和含湿量、表观密度、孔隙率和真空饱和含湿量对温度的变化不敏感,在10-40°C范围内温度变化造成的影响一般不大于实验的重复性误差。吸水系数和液态水扩散系数随温度的升高而变大,其关系可根据Lucas-Washburn公式预测。此外,本文进一步对测试过程中的各种潜在影响因素(如试件尺寸、中间步骤、预处理方法、测试时长、实验压力等)进行了系统研究,发现大多数因素对实验结果没有明显影响。本文还改进了蒸汽渗透实验、毛细吸水实验和压力平板实验的装置,对平衡吸放湿实验和蒸汽渗透实验的结果提出了新的表达方法,并证明了对毛细吸水实验第一阶段的数据进行分析时只需要进行普通的线性拟合。
     最后,本文以一维稳态蒸汽渗透过程为例,分析了物性参数的误差对传湿计算的影响。结果表明,蒸汽渗透系数的常物性取值会对蒸汽传递过程的计算带来明显误差。蒸汽渗透系数的误差对蒸汽传递速率的影响程度恒定,而含湿量或相对湿度的误差对蒸汽传递速率的影响程度与当前含湿量或相对湿度有关。
The hygric properties of porous building materials are indispensable parameters in theanalysis of heat and moisture transfer in building envelopes. The reliable determination ofthem is important for the design of building envelopes, the analysis of indoor hygrothermalenvironment, as well as the calculation of the energy consumption of buildings.
     In this thesis autoclaved aerated concrete (produced in China and Belgium), calciumsilicate board and ceramic brick are chosen as target materials. The best methods for weighingand drying their samples are studied first. Theoretical and experimental results reveal that forlarge samples it is acceptable to weigh them directly, while for small samples it is better toseal them in non-hygroscopic containers during the weighing process. For most materialsoven drying at70°C is recommended.
     Next, referring to many international and national standards, static gravimetric tests, cuptests, capillary absorption tests, vacuum saturation tests and pressure plate tests are performedunder various conditions. The sorption isotherms, vapor permeability, water absorptioncoefficient, capillary saturation moisture content, liquid diffusivity, bulk density, openporosity, vacuum saturation moisture content and moisture retention curve of these materialsare determined. Results show that the repeatability errors of these tests are generally smallerthan the inhomogeneity errors from materials. In addition, within10-40°C, the influence oftemperature on all these properties is limited, except for the capillary absorption coefficientand liquid diffusivity (their temperature dependence can be predicted by the Lucas-Washburnequation). What’s more, different influence factors (such as sample sizes, intermediate steps,pre-conditioning methods, test time and pressure control) are studied. It is proved that testresults are generally not sensitive to these factors. Moreover, the experimental facilities forcup tests, capillary absorption tests and pressure plate tests are improved. Methods forexpressing the results from static gravimetric tests and cup tests are innovated. It is alsoproved that ordinary linear fitting is accurate enough for analyzing the first stage in thecapillary absorption test.
     Finally, the influence of errors from material properties on the moisture transfercalculation is studied. The one-dimensional steady-state vapor diffusion process is taken asthe example. Study shows that the constant vapor permeability will cause noticeable errors onthe vapor flow rate calculation. The influence of errors from vapor permeability on vapor flowrate is constant, while the influence of errors from moisture content and RH depends on theactual moisture content and RH.
引文
[1] Datta A.K. Porous media approaches to studying simultaneous heat and mass transferin food processes. I: Problem formulations [J]. Journal of Food Engineering,2007,80(1):80-95
    [2] Poornesh K.K., Cho C. Poroelastic PEM fuel cell catalyst layer and its implication inpredicting the effect of mechanical load on flow and transport properties [J].International Journal of Hydrogen Energy,2011,36(5):3623-3634
    [3] Khayet M., Imdakm A.O., Matsuura T. Monte Carlo simulation and experimental heatand mass transfer in direct contact membrane distillation [J]. International Journal ofHeat and Mass Transfer,2010,53(7-8):1249-1259
    [4] Freedman V.L., Saripalli K.P., Bacon D.H., et al. Implementation of biofilmpermeability models for mineral reactions in saturated porous media [J]. Computers&Geosciences,2005,31(8):968-977
    [5] Edwards A., Prausnitz M.R. Predicted permeability of the cornea to topical drugs [J].Pharmaceutical Research,2001,18(11):1497-1508
    [6] Chau K.W. Investigation on effects of aggregate structure in water and wastewatertreatment [J]. Water Science and Technology,2004,50(12):119-124
    [7] Kontogeorgos D., Founti M. Numerical investigation of simultaneous heat and masstransfer mechanisms occurring in a gypsum board exposed to fire conditions [J].Applied Thermal Engineering,2010,30(11-12):1461-1469
    [8] Geving S., Holme J. The Drying Potential and Risk for Mold Growth in CompactWood Frame Roofs with Built-in Moisture [J]. Journal of Building Physics,2010,33(3):249-269
    [9] Chen J., Ito K. Simplified prediction method for fungal growth risk in indoorenvironment coupled with heat and moisture transfer in building materials [J]. Journalof Environmental Engineering,2010,75(Compendex):603-611
    [10] Osanyintola O.F., Simonson C.J. Moisture buffering capacity of hygroscopic buildingmaterials: Experimental facilities and energy impact [J]. Energy and Buildings,2006,38(10):1270-1282
    [11] Mendes N., Winkelmann F.C., Lamberts R., et al. Moisture effects on conductionloads [J]. Energy and Buildings,2003,35(7):631-644
    [12] Kwiatkowski J., Woloszyn M., Roux J.-J. Influence of sorption isotherm hysteresiseffect on indoor climate and energy demand for heating [J]. Applied ThermalEngineering,2011,31(6-7):1050-1057
    [13] Steeman M., Janssens A., Steeman H.J., et al. On coupling1D non-isothermal heat andmass transfer in porous materials with a multizone building energy simulation model[J]. Building and Environment,2010,45(4):865-877
    [14] Woloszyn M., Kalamees T., Olivier Abadie M., et al. The effect of combining arelative-humidity-sensitive ventilation system with the moisture-buffering capacity ofmaterials on indoor climate and energy efficiency of buildings [J]. Building andEnvironment,2009,44(3):515-524
    [15] Simonson C.J., Salaonvaara M., Ojanen T. Heat and mass transfer between indoor airand a permeable and hygroscopic building envelope: part II "verification andnumerical studies"[J]. Journal of Thermal Envelope and Building Science,2004,28(2):161-185
    [16] Simonson C.J., Salonvaara M., Ojanen T. Heat and mass transfer between indoor airand a permeable and hygroscopic building envelope: part I "Field measurements"[J].Journal of Thermal Envelope and Building Science,2004,28(1):63-101
    [17] Simonson C., Salonvaara M., Ojanen T. Moderating indoor conditions withhygroscopic building materials and outdoor ventilation [J]. Transactions-Americansociety of heating refrigerating and air conditioning engineers,2004,110(2):804-819
    [18] Zhang H., Yoshino H., Hasegawa K. Assessing the moisture buffering performance ofhygroscopic material by using experimental method [J]. Building and Environment,2012,48(0):27-34
    [19] Abuku M., Janssen H., Roels S. Impact of wind-driven rain on historic brick wallbuildings in a moderately cold and humid climate: Numerical analyses of mouldgrowth risk, indoor climate and energy consumption [J]. Energy and Buildings,2009,41(1):101-110
    [20] Dos Santos G.H., Mendes N., Philippi P.C. A building corner model for hygrothermalperformance and mould growth risk analyses [J]. International Journal of Heat andMass Transfer,2009,52(21-22):4862-4872
    [21] Fang L., Clausen G., Fanger P.O. Impact of temperature and humidity on theperception of indoor air quality [J]. Indoor Air,1998,8(2):80-90
    [22] Philip J., De Vries D. Moisture movement in porous materials under temperaturegradients [J]. Transactions, American Geophysical Union,1957,38(2):222-232
    [23] Luikov A.V. Heat and Mass Transfer in Capillary-Porous Bodies [M]. Advances inHeat Transfer. Elsevier.1964:123-184
    [24] Luikov A.V. Systems of differential equations of heat and mass transfer incapillary-porous bodies (review)[J]. International Journal of Heat and Mass Transfer,1975,18(1):1-14
    [25] Molenda C.H.A., Crausse P., Lemarchand D. The influence of capillary hysteresiseffects on the humidity and heat coupled transfer in a non-saturated porous medium [J].International Journal of Heat and Mass Transfer,1992,35(6):1385-1396
    [26] Pedersen C.R. Prediction of moisture transfer in building constructions [J]. Buildingand Environment,1992,27(3):387-397
    [27] Künzel H.M. Simultaneous heat and moisture transport in building components [R].Fraunhofer IRB Verlag Suttgart,1995
    [28] H upl P., Grunewald J., Fechner H., et al. Coupled heat air and moisture transfer inbuilding structures [J]. International Journal of Heat and Mass Transfer,1997,40(7):1633-1642
    [29] Janssen H., Blocken B., Carmeliet J. Conservative modelling of the moisture and heattransfer in building components under atmospheric excitation [J]. International Journalof Heat and Mass Transfer,2007,50(5-6):1128-1140
    [30] Mendes N., Philippi P.C. A method for predicting heat and moisture transfer throughmultilayered walls based on temperature and moisture content gradients [J].International Journal of Heat and Mass Transfer,2005,48(1):37-51
    [31] Steeman H.J., Van Belleghem M., Janssens A., et al. Coupled simulation of heat andmoisture transport in air and porous materials for the assessment of moisture relateddamage [J]. Building and Environment,2009,44(10):2176-2184
    [32] Tariku F., Kumaran K., Fazio P. Transient model for coupled heat, air and moisturetransfer through multilayered porous media [J]. International Journal of Heat and MassTransfer,2010,53(15-16):3035-3044
    [33] Van Belleghem M., Steeman H.-J., Steeman M., et al. Sensitivity analysis of CFDcoupled non-isothermal heat and moisture modelling [J]. Building and Environment,2010,45(11):2485-2496
    [34] Kiessl K. IEA Annex24: Heat, air and moisture transfer through new and retrofittedinsulated envelope parts. Final Report, Volume4, Task4: Experience, Regulations,Experimental Evaluation [R].1996
    [35] Hens H., Ojanen T., Künzel H.M., et al. IEA Annex24: Heat, Air and MoistureTransfer in Insulated Envelope Parts. Final Report, Volume1, Task1: Modeling [R].1996
    [36] Woloszyn M., Rode C. IEA Annex41: Whole Building Heat, Air, Moisture Response.Subtask1: Modeling Principles and Common Exercises [R]. International EnergyAgency, Executive committee on Energy Conservation in Buildings and CommunitySystems,2008,
    [37] Hagentoft C.E., Kalagasidis A.S., Adl-Zarrabi B., et al. Assessment method ofnumerical prediction models for combined heat, air and moisture transfer in buildingcomponents: benchmarks for one-dimensional cases [J]. Journal of Thermal Envelopeand Building Science,2004,27(4):327-352
    [38] Talukdar P., Olutmayin S.O., Osanyintola O.F., et al. An experimental data set forbenchmarking1-D, transient heat and moisture transfer models of hygroscopicbuilding materials. Part I: Experimental facility and material property data [J].International Journal of Heat and Mass Transfer,2007,50(23-24):4527-4539
    [39] Talukdar P., Osanyintola O.F., Olutimayin S.O., et al. An experimental data set forbenchmarking1-D, transient heat and moisture transfer models of hygroscopicbuilding materials. Part II: Experimental, numerical and analytical data [J].International Journal of Heat and Mass Transfer,2007,50(25-26):4915-4926
    [40] James C., Simonson C.J., Talukdar P., et al. Numerical and experimental data set forbenchmarking hygroscopic buffering models [J]. International Journal of Heat andMass Transfer,2010,53(19-20):3638-3654
    [41] Van Belleghem M., Steeman M., Willockx A., et al. Benchmark experiments formoisture transfer modelling in air and porous materials [J]. Building and Environment,2011,46(4):884-898
    [42] Kumaran M.K. IEA Annex24: Heat, Air and Moisture Transfer in Insulated EnvelopeParts. Final Report, Volume3, Task3: Material Properties [R].1996
    [43] Roels S., Carmeliet J., Hens H., et al. Interlaboratory comparison of hygric propertiesof porous building materials [J]. Journal of Building Physics,2004,27(4):307-325
    [44] Rode C., Hansen K.K. Hysteresis and temperature dependency of moisture sorption-new measurements [C]. Proceedings of the9th Nordic Symposium on BuildingPhysics,2011
    [45] hs M.S. Sorption scanning curves for hardened cementitious materials [J].Construction and Building Materials,2008,22(11):2228-2234
    [46] Al-Muhtaseb A.H., Mcminn W.a.M., Magee T.R.A. Moisture Sorption IsothermCharacteristics of Food Products: A Review [J]. Food and Bioproducts Processing,2002,80(2):118-128
    [47] Janz M., Johannesson B. Measurement of the moisture storage capacity using sorptionbalance and pressure extractors [J]. Journal of Building Physics,2001,24(4):316-334
    [48] Scheffler G.A., Plagge R. A whole range hygric material model: Modelling liquid andvapour transport properties in porous media [J]. International Journal of Heat andMass Transfer,2010,53(1-3):286-296
    [49] Krus M., Künzel H. Determination of Dw from A-value [A]. IEA Annex24ReportT3-D-93/02,1993,
    [50] Kumaran M. Moisture diffusivity of building materials from water absorptionmeasurements [J]. Journal of Building Physics,1999,22(4):349
    [51] Scheffler G., Grunewald J., Plagge R. Evaluation of functional approaches to describethe moisture diffusivity of building materials [J]. Journal of ASTM International,2007,4(2):1-16
    [52] Kumaran M.K. A thermal and moisture property database for common building andinsulation materials [J]. ASHRAE Transactions,2006,112(2):1-13
    [53] Carmeliet J., Hens H., Roels S., et al. Determination of the liquid water diffusivityfrom transient moisture transfer experiments [J]. Journal of Thermal Envelope andBuilding Science,2004,27(4):277
    [54] Jin X., Van Der Sman R.G.M., Gerkema E., et al. Moisture distribution in broccoli:measurements by MRI hot air drying experiments [J]. Procedia Food Science,2011,1(0):640-646
    [55] Van Der Heijden G.H.A., Huinink H.P., Pel L., et al. One-dimensional scanning ofmoisture in heated porous building materials with NMR [J]. Journal of MagneticResonance,2011,208(2):235-242
    [56] Koptyug I.V., Kabanikhin S.I., Iskakov K.T., et al. A quantitative NMR imaging studyof mass transport in porous solids during drying [J]. Chemical Engineering Science,2000,55(9):1559-1571
    [57] Mccarthy M.J., Lasseux D., Maneval J.E. NMR imaging in the study of diffusion ofwater in foods [J]. Journal of Food Engineering,1994,22(1-4):211-224
    [58] Macmillan B., Veliyulin E., Lamason C., et al. Quantitative magnetic resonancemeasurements of low moisture content wood [J]. Canadian Journal of Forest Research,2011,41(11):2158-2162
    [59] Heijden G.V.D. NMR imaging of moisture inside heated porous building materials [D];Eindhoven University of Technology,2011
    [60] Roels S., Vandersteen K., Carmeliet J. Measuring and simulating moisture uptake in afractured porous medium [J]. Advances in Water Resources,2003,26(3):237-246
    [61] Bentz D., Quenard D., Kunzel H., et al. Microstructure and transport properties ofporous building materials. II: Three-dimensional X-ray tomographic studies [J].Materials and structures,2000,33(3):147-153
    [62] Roels S., Carmeliet J. Analysis of moisture flow in porous materials using microfocusX-ray radiography [J]. International Journal of Heat and Mass Transfer,2006,49(25):4762-4772
    [63] Utaka Y., Hirose I., Tasaki Y. Characteristics of oxygen diffusivity and waterdistribution by X-ray radiography in microporous media in alternate porous layers ofdifferent wettability for moisture control in gas diffusion layer of PEFC [J].International Journal of Hydrogen Energy,2011,36(15):9128-9138
    [64] Kazansky M.F., Lutsick P.P., Oleynikov V.N. Non-stationary temperature and moisturecontent fields of porous bodies in the convection heat transfer process [J].International Journal of Heat and Mass Transfer,1961,2(3):231-239
    [65] Medhat M.E. Application of gamma-ray transmission method for study the propertiesof cultivated soil [J]. Annals of Nuclear Energy,2012,40(1):53-59
    [66] El Abd A., Abdel-Monem A.M., Kansouh W.A. Experimental determination ofmoisture distributions in fired clay brick using a252Cf source: A neutron transmissionstudy [J]. Applied Radiation and Isotopes,2013,74:78-85
    [67] Gilbert A.J., Deinert M.R. Neutron tomography of axisymmetric flow fields in porousmedia [J]. Nuclear Instruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms,2013,301:23-28
    [68] GB50176-93《民用建筑热工设计规范》[S].1993
    [69]王倩,李念平,曾德军等.竹材组合墙体构件热湿耦合迁移特性[J].科技导报,2010,28(17):87-90
    [70]孔凡红,郑茂余,韩宗伟等.新建建筑围护结构热质传递对室内温湿度环境的影响[J].建筑科学,2008,24(8):94-97
    [71]郑茂余,孔凡红,韩宗伟.新建建筑外保温围护结构热质耦合传递[J].哈尔滨工业大学学报,2009,41(4):118-122
    [72]郭兴国,陈友明.热湿气候地区多层墙体的热湿性能分析[J].湖南大学学报(自然科学版),2008,35(8):1-4
    [73]贾永英,赵基玉,魏春艳等.建筑墙体热质传递等效耦合扩散模型建立[J].大庆石油学院学报,2004,28(4):52-54
    [74]张华玲,刘朝,刘方等.地下洞室多孔墙体热湿传递的数值模拟[J].暖通空调,2006,36(12):9-13
    [75]钟辉智.建筑多孔材料热湿物理性能研究及应用[D];西南交通大学,2010
    [76]闫增峰,刘加平,王润山.生土围护结构的等温吸湿性能的实验研究[J].西安建筑科技大学学报(自然科学版),2003,35(4):347-349,353
    [77]任鹏,李秀辉,孟庆林.玻化微珠保温砂浆的吸放湿及导热性能[J].土木建筑与环境工程,2010,32(4):71-75,95
    [78]裴清清,陈在康.几种常用建材的等温吸放湿线试验研究[J].湖南大学学报(自然科学版),1999,26(4):96-99
    [79]韩吉田,归柯庭.多孔介质局部含湿量测试技术的研究[J].传感技术学报,1997,10(4):75-78
    [80]陈玮玮,苏向辉.建筑墙体材料湿扩散率的测量[J].新型建筑材料,2010,8:48-50
    [81] Roels S., Sermijn J., Carmeliet J. Modelling unsaturated moisture transport inautoclaved aerated concrete: a microstructural approach [C]. Proceedings of theBuilding Physics in the Nordic Countries Proceedings of the6th symposium, Norway,2002
    [82] Roels S., Carmeliet J., Hens H., et al. HAMSTAD Work Package1: Final Report-Moisture Transfer Properties and Materials Characterisation, EU ContractGRD1-1999-20007[R].2003
    [83] Hens H. IEA Annex14: Condensation and Energy, Volume3: Catalogue of MaterialProperties [R].1991
    [84] Kumaran M.K. A Thermal and Moisture Transport Property Database for CommonBuilding and Insulating Materials, Final Report from ASHRAE Research Project1018-RP [R].2002
    [85] Roels S. IEA Annex41. Whole Building Heat, Air and Moisture response. Subtask2:Experimental Analysis of Moisture Buffering [J]. International Energy Agency,2008,
    [86] Adan O., Brocken H., Carmeliet J., et al. Determination of liquid water transferproperties of porous building materials and development of numerical assessmentmethods: introduction to the EC HAMSTAD project [J]. Journal of Thermal Envelopeand Building Science,2004,27(4):253-260
    [87] Roels S., Talukdar P., James C., et al. Reliability of material data measurements forhygroscopic buffering [J]. International Journal of Heat and Mass Transfer,2010,53(23-24):5355-5363
    [88] Zhao J. Development of a Novel Statistical Method and Procedure for MaterialCharacterization and a Probabilistic Approach to Assessing the HygrothermalPerformance of Building Enclosure Assemblies [D]. Syracuse University,2012
    [89] Defraeye T., Blocken B., Carmeliet J. Influence of uncertainty in heat–moisturetransport properties on convective drying of porous materials by numerical modelling[J]. Chemical Engineering Research and Design,2013,91(1):36-42
    [90] Swami S.B., Das S.K., Maiti B. Moisture sorption isotherms of black gram nuggets(bori) at varied temperatures [J]. Journal of Food Engineering,2005,67(4):477-482
    [91] Jamali A., Kouhila M., Ait Mohamed L., et al. Sorption isotherms of Chenopodiumambrosioides leaves at three temperatures [J]. Journal of Food Engineering,2006,72(1):77-84
    [92] Montgomery D.C. Design and analysis of experiments.5th Edition [M]. New York:John Wiley&Sons Inc,2008
    [93] Peuhkuri R., Rode C., Hansen K.K. Effect of method, step size and drying temperatureon sorption isotherms [C]. Proceedings of the7th Nordic Symposium on BuildingPhysics, Reykjavik,2005.
    [94] Arslan N., To rul H. The fitting of various models to water sorption isotherms of teastored in a chamber under controlled temperature and humidity [J]. Journal of StoredProducts Research,2006,42(2):112-135
    [95] Richards R., Burch D., Thomas W. Water vapor sorption measurements of commonbuilding materials [J]. Transactions-American society of heating refrigerating and airconditioning engineers,1992,98:475-485
    [96] Wilkes K.E., Atchley J.A., Childs P.W. Effect of Drying Protocols on Measurement ofSorption Isotherms of Gypsum Building Materials [C]. International Conference onPerformance of Exterior Envelopes of Whole Buildings IX, Principles Track.Clearwater Beach, Florida.2004
    [97] Korpa A., Trettin R. The influence of different drying methods on cement pastemicrostructures as reflected by gas adsorption: Comparison between freeze-drying(F-drying), D-drying, P-drying and oven-drying methods [J]. Cement and ConcreteResearch,2006,36(4):634-649
    [98] Espinosa R.M., Franke L. Influence of the age and drying process on pore structureand sorption isotherms of hardened cement paste [J]. Cement and Concrete Research,2006,36(10):1969-1984
    [99] García-Pérez J.V., Cárcel J.A., Clemente G., et al. Water sorption isotherms for lemonpeel at different temperatures and isosteric heats [J]. LWT-Food Science andTechnology,2008,41(1):18-25
    [100] Oyelade O.J., Tunde-Akintunde T.Y., Igbeka J.C., et al. Modelling moisture sorptionisotherms for maize flour [J]. Journal of Stored Products Research,2008,44(2):179-185
    [101] Yan Z., Sousa-Gallagher M.J., Oliveira F.a.R. Sorption isotherms and moisturesorption hysteresis of intermediate moisture content banana [J]. Journal of FoodEngineering,2008,86(3):342-348
    [102] Bejar A.K., Mihoubi N.B., Kechaou N. Moisture sorption isotherms–Experimentaland mathematical investigations of orange (Citrus sinensis) peel and leaves [J]. FoodChemistry,2012,132(4):1728-1735
    [103] Choudhury D., Sahu J.K., Sharma G.D. Moisture sorption isotherms, heat of sorptionand properties of sorbed water of raw bamboo (Dendrocalamus longispathus) shoots[J]. Industrial Crops and Products,2011,33(1):211-216
    [104] Labuza T., Kaanane A., Chen J. Effect of temperature on the moisture sorptionisotherms and water activity shift of two dehydrated foods [J]. Journal of Food Science,1985,50(2):385-392
    [105] Poyet S. Experimental investigation of the effect of temperature on the first desorptionisotherm of concrete [J]. Cement and Concrete Research,2009,39(11):1052-1059
    [106] ISO12572:2001(E) Hygrothermal performance of building materials and products-Determination of water vapour transmission properties [S].2001
    [107] Li X., Cao Z., Wei Z., et al. Equilibrium moisture content and sorption isosteric heatsof five wheat varieties in China [J]. Journal of Stored Products Research,2011,47(1):39-47
    [108] Lewicki P.P. A three parameter equation for food moisture sorption isotherms [J].Journal of Food Process Engineering,1998,21(2):127-144
    [109] Mclean R., Galbraith G., Sanders C. Moisture transmission testing of buildingmaterials and the presentation of vapour permeability values [J]. Building Researchand Practice,1990,18(2):82-91
    [110] Galbraith G.H., Mclean R.C. Interstitial condensation and the vapour permeability ofbuilding materials [J]. Energy and Buildings,1990,14(3):193-196
    [111] Galbraith G., Mclean R., Guo J. Moisture permeability data presented as amathematical relationship [J]. Building Research&Information,1998,26(3):157-168
    [112] Burch D., Thomas W., Fanney A. Water vapor permeability measurements of commonbuilding materials [J]. Transactions-American society of heating refrigerating and airconditioning engineers,1992,98:486-486
    [113] Scheffler G. Validation of hygrothermal material modelling under consideration of thehysteresis of moisture storage [D]. Dresden University of Technolgoy,2008
    [114] Jerauld G., Salter S. The effect of pore-structure on hysteresis in relative permeabilityand capillary pressure: pore-level modeling [J]. Transport in Porous Media,1990,5(2):103-151
    [115]李魁山,张旭,韩星等.建筑材料等温吸放湿曲线性能实验研究[J].建筑材料学报,2009,12(1):81-84
    [116] ISO12571:2000(E) Hygrothermal performance of building materials and products-Determination of hygroscopic sorption properties [S].2000
    [117] Raji A.O., Ojediran J.O. Moisture sorption isotherms of two varieties of millet [J].Food and Bioproducts Processing,2011,89(3):178-184
    [118] Mukhopadhyaya P., Kumaran M.K., Lackey J. Use of the modified cup method todetermine temperature dependency of water vapor transmission properties of buildingmaterials [J]. Journal of testing and evaluation,2005,33(5):316-322
    [119] Ochs F., Heidemann W., M ller-Steinhagen H. Effective thermal conductivity ofmoistened insulation materials as a function of temperature [J]. International Journalof Heat and Mass Transfer,2008,51(3-4):539-552
    [120] Hokoi S., Kumaran M. Experimental and analytical investigations of simultaneousheat and moisture transport through glass fiber insulation [J]. Journal of BuildingPhysics,1993,16(3):263-292
    [121] Olutimayin S.O., Simonson C.J. Measuring and modeling vapor boundary layergrowth during transient diffusion heat and moisture transfer in cellulose insulation [J].International Journal of Heat and Mass Transfer,2005,48(16):3319-3330
    [122] ASTM C1498-04a: Standard Test Method for Hygroscopic Sorption Isotherms ofBuilding Materials [S].2010
    [123] ISO12570:2000(E) Hygrothermal performance of building materials and products-Determination of moisture content by drying at elevated temperature [S].2000
    [124] Roels S. IEA Annex41. Whole Building Heat, Air, Moisture Response. Subtask2:Experimental Analysis of Moisture Buffering [R].2008
    [125] Carslaw H.S., Jaeger J.C. Conduction of Heat in Solids (2nd edition)[M]. ClaredonPress, Oxford, United Kingdom,1990
    [126] Koronthalyova O. Moisture storage capacity and microstructure of ceramic brick andautoclaved aerated concrete [J]. Construction and Building Materials,2011,25(2):879-885
    [127] de la Cruz G.V., Torres J.A., Mart N-Polo M.O. Temperature effect on the moisturesorption isotherms for methylcellulose and ethylcellulose films [J]. Journal of FoodEngineering,2001,48(1):91-94
    [128] Chen C. A rapid method to determine the sorption isotherms of peanuts [J]. Journal ofAgricultural Engineering Research,2000,75(4):401-408
    [129]胡玉坤,丁静.多孔介质内部传热传质规律的研究进展[J].广东化工,2006,33(11):44-47
    [130] Quenard D.A., Xu K., Künzel H.M., et al. Microstructure and transport properties ofporous building materials [J]. Materials and structures,1998,31(5):317-324
    [131] H upl P., Fechner H. Hygric material properties of porous building materials [J].Journal of Thermal Envelope and Building Science,2003,26(3):259
    [132] Lackey J., Marchand R., Kumaran M. A Logical extension of the ASTM standard E96to determine the dependence of water vapour transmission on relative humidity [J].ASTM special technical publication,1997,1320:456-470
    [133] Kumaran M.K. Temperature dependence of water vapour permeability of glass fiberinsulation from heat flow meter measurements [C]. Proceedings of the FirstISHMT-ASME Heat and Mass Transfer Conference,1994
    [134] Janssen H., Roels S. Qualitative and quantitative assessment of interior moisturebuffering by enclosures [J]. Energy and Buildings,2009,41(4):382-394
    [135] Dubina E., Wads L., Plank J. A sorption balance study of water vapour sorption onanhydrous cement minerals and cement constituents [J]. Cement and ConcreteResearch,2011,41(11):1196-1204
    [136] Poyet S., Charles S. Temperature dependence of the sorption isotherms ofcement-based materials: Heat of sorption and Clausius–Clapeyron formula [J]. Cementand Concrete Research,2009,39(11):1060-1067
    [137] Chirife J., Iglesias H.A. Equations for fitting water sorption isotherms of foods: Part1–a review [J]. International Journal of Food Science&Technology,1978,13(3):159-174
    [138] Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers [J].Journal of the American Chemical Society,1938,60(2):309-319
    [139] Peleg M. Assessment of a semi-empirical four parameter general model for sigmoidmoisture sorption isotherms [J]. Journal of Food Process Engineering,1993,16(1):21-37
    [140] Oswin C. The kinetics of package life. III. The isotherm [J]. Journal of the Society ofChemical Industry,1946,65(12):419-421
    [141] Ajisegiri E.S., Sopade P.A. Moisture sorption isotherms of Nigerian millet at varyingtemperatures [J]. Journal of Food Engineering,1990,12(4):283-292
    [142] Palou E., Lopez-Malo A., Argaiz A. Effect of temperature on the moisture sorptionisotherms of some cookies and corn snacks [J]. Journal of Food Engineering,1997,31(1):85-93
    [143] Wang N., Brennan J.G. Moisture sorption isotherm characteristics of potatoes at fourtemperatures [J]. Journal of Food Engineering,1991,14(4):269-287
    [144] Bouyoucos G. Effect of temperature on the movement of water vapor and capillarymoisture in soils [J]. Journal of Agricultural Resources,1915,5(4):141-172
    [145] Henderson S.M. A basic concept of equilibrium moisture [J]. Agricultural Engineering,1952,33:29-32
    [146] Caurie M. A new model equation for predicting safe storage moisture levels foroptimum stability of dehydrated foods [J]. International Journal of Food Science&Technology,1970,5(3):301-307
    [147] Van Den Berg C., Bruin S. Water activity and its estimation in food systems:theoretical aspects [M]//L.B.Rockland, G.F.Stewart. Water activity: Influences on foodquality New York Academic Press.1981:2-61
    [148] Day R.L., Marsh B.K. Measurement of porosity in blended cement pastes [J]. Cementand Concrete Research,1988,18(1):63-73
    [149] ASTM E96-00: Standard Test Method for Water Vapor Transmission of Materials [S].2000
    [150] Kumaran M. Alternative procedure for the analysis of data from the cup methodmeasurements for determination of water vapour transmission properties [J]. Journalof testing and evaluation,1998,26(6):575-581
    [151] Pazera M., Salonvaara M. Multilayer test method for water vapor transmission testingof construction materials [J]. Journal of Building Physics,2012,35(3):224-237
    [152] Nizovtsev M.I., Stankus S.V., Sterlyagov A.N., et al. Determination of moisturediffusivity in porous materials using gamma-method [J]. International Journal of Heatand Mass Transfer,2008,51(17-18):4161-4167
    [153] Han i L., Kosec L., An el I. Capillary absorption in concrete and theLucas–Washburn equation [J]. Cement and Concrete Composites,2010,32(1):84-91
    [154] Mukhopadhyaya P., Kumaran K., Normandin N., et al. Effect of surface temperatureon water absorption coefficient of building materials [J]. Journal of Thermal Envelopeand Building Science,2002,26(2):179-195
    [155] ISO15148:2002(E) Hygrothermal performance of building materials andproducts—determination of water absorption coefficient by partial immersion [S].2002
    [156] Songok J., Salminen P., Toivakka M. Temperature effects on dynamic water absorptioninto paper [J]. Journal of Colloid and Interface Science,2014,418:373-377
    [157] ASTM C1699–09: Standard Test Method for Moisture Retention Curves of PorousBuilding Materials Using Pressure Plates [S].2009
    [158] Richards L. Porous plate apparatus for measuring moisture retention and transmissionby soil [J]. Soil Science,1948,66(2):105-109
    [159] ISO11274:1998(E) Soil quality-Determination of the water retention characteristic-Laboratory methods [S].1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700