用户名: 密码: 验证码:
动态环境作用下螺旋型地埋管的传热模型与换热特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤源热泵利用地下岩土作为热泵机组的低品位热源(汇),具有高效节能、环境友好的优点,但是由于传统垂直U型土壤源热泵系统钻孔费用较高,特别是重庆、成都等岩石地质结构,初投资高,经济性差,在技术推广过程中阻力较大。对于螺旋型地埋管换热器而言,由于其能够依托建筑基础,可较大程度节约钻孔费用,减少了系统初投资,有利于技术推广应用。但是由于螺旋型地埋管换热器几何结构较为复杂,且具有埋深浅、桩径大的特点,其传热机理与换热特性有异于传统垂直U型地埋管,传统的地埋管传热模型不能正确描述其传热现象;此外,土壤表面环境参数(空气温度、太阳辐射等)的动态变化对埋深较浅的螺旋型地埋管的传热过程具有较大的影响,但是目前描述螺旋型地埋管传热过程的物理模型未深入考虑上述影响,故在上述工程实际问题及研究现状的基础上,本文对螺旋型地埋管换热器的传热模型及换热特性进行了研究。
     首先,对螺旋型地埋管换热器的导热模型进行了研究,建立了区别回填料与岩土热物性差异的螺旋型地埋管换热器实心圆柱热源一维导热数值解模型及线圈热源二维导热数值解模型,并与忽略热物性差异的导热解析解模型做了定量对比,分析了一维及二维模型的温度空间分布特征及温度时间变化特征。
     其次,在研究导热模型的基础上,提出了螺旋型地埋管在柱坐标系统下的单元体离散方法,并在此基础上建立了动态环境作用下螺旋型地埋管换热器的三维数值传热模型,该模型了考虑了回填料与岩土热物性差异及动态土壤边界条件对传热的影响,采用visual studio程序开发平台中C#程序设计语言,编制了螺旋型地埋管换热器设计与动态模拟软件;利用提出的螺旋型地埋管三维数值传热模型,模拟分析了地埋管设计参数、运行工况、螺旋形式、覆土深度、初始温度分布对传热特性的影响,提出了螺旋型地埋管沿流动方向上的4个典型换热阶段:进口换热换热阶段、回填区域热短路换热阶段、小温差换热阶段及出口换热阶段,分析了设计参数与运行工况等因素对4个换热阶段换热特性的影响。
     然后,考虑管群作用对螺旋型地埋管换热效果的影响,将传热区域分为单桩传热区域与管群传热区域,采用导热解析解模型与三维数值解模型分别描述管群传热区域与单桩传热区域传热过程,提出“动态土壤径向边界热流”的概念,将单桩传热区域与管群传热区域进行耦合,从而建立了考虑管群作用下适合系统长期模拟的螺旋型地埋管换热系统的传热模型;另外,考虑机组负荷率、冷凝器水温及水量、蒸发器水温及水量等5个因素,建立了螺杆热泵机组变工况能效模型;在螺旋型地埋管换热系统的传热模型及机组能效模型的基础上,模拟分析了重庆气候条件下,无辅助散热措施情况下地埋管系统的典型月响应特性、过渡季节温度恢复特性及典型年动态响应特性;然后通过调整夏季负荷,模拟了考虑辅助散热措施情况下的地埋管系统响应特性。
     最后,以贵阳城乡规划展览馆螺旋型地埋管热泵系统为案例项目,进行了实验性测试,分析了系统原始工况的运行特性,并提出了优化运行模式,在次日对优化运行模式进行了测试,发现冷热源系统能效提高了26.1%。另外,基于本文提出的三维传热模型与原始工况测试数据,确定得出测试项目埋管区域的岩土热物性参数,利用得出的热物性参数,预测了螺旋型地埋管换热器在优化运行工况条件下的出水温度,预测结果表明:本文提出的螺旋型地埋管三维传热模型具有较高的精确度,能够可靠的预测地埋管水温变化情况。
Ground source heat pump utilizes the soil as the low grade heat source/sink, whichhas the advantages of energy saving and environmental friendly. However, thetraditional U-type ground source heat pump has high initial cost duo to the expensivedrilling cost such as Chongqing and Chengdu, and the technology promotion is difficult.For ground heat exchanger with spiral coils, because it would be installed on thebuilding foundation and reduce the drilling cost greatly, the initial cost of the systemwould be decreased, which is conducive to the technology promotion in the practicalengineering. However, duo to the complex geometric construction of helix ground heatexchanger and the characteristics of shallow buried depth and bigger pile diameter, theheat transfer process is difference from traditional U-type ground heat exchanger andthe heat transfer model of the traditional wouldn’t present the heat transfer phenomenonaccurately. Besides, the dynamic change of ground surface boundary conditions (airtemperature and solar radiation) would affect the heat transfer because of the shallowburied depth. The existed heat transfer models don’t consider the above influencefactors. Therefore, based on the above practical engineering problems and researchstatus, the heat transfer model and characteristics of ground heat exchanger with spiralcoils under effects of dynamic environment are studied.
     Firstly, the conduction models of the helix ground heat exchanger are studied, andthe one-dimensional conduction numerical model based on solid cylinder heat sourcemodel and the two-dimensional numerical model based on ring-coil source model arepresented, which have considered the thermal property difference between the soil andthe grout. A comparison between numerical model and analytical solution model hasbeen carried out quantificationally and the spatial distribution and time variation of theground temperature for one-dimensional and two-dimensional model are discussed.
     Secondly, a new discretization method for helix ground heat exchangerincylindrical coordinatesystem is proposedbased onthe investigation ofheat transfermodels.And a dynamic three-dimensional numerical heat transfer model of helix groundheat exchanger is presented, which considers the impacts of thermal propertydifferences between the pile grout and the surrounding ground as well as the dynamicground boundary conditions on heat transfer. A dynamic couplingsimulationdesignsoftwarefor helix ground heat exchanger is developed using c#programming language on visual studio application development platform with theproposed three-dimensional numerical heat transfer model, the impacts of designparameters of underground heat-exchangers, operating conditions, forms of spiral,covering depth and initial temperature distribution on the heat transfer performance aresimulated and analyzed, which is supposed to providesupports for engineering design.Besides, four heat exchange stages of helix ground heat exchanger are proposed and theinfluences of design parameters and operating conditions on the four stages are studied.
     Then, considering the multi-pile effect on heat exchange of helix ground exchanger,the heat transfer area is divided into one pile region and multi-pile region. The heattransfer processes for the two regions are described respectively by analytical solutionmodel and numerical solutionmodel and the concept of dynamic ground radial boundaryheat flux is proposed and used to connect the one pile heat transfer region and multi-pileregion, which makes the model applicable to long-term simulations under the multi-pileeffect. Also, an energy efficiency model for heat pump units under variable conditions isestablished considering5factors, including:load rateof unit, condenser watertemperature and flow rate, evaporator water temperature and flow rate. Based on thethree-dimensional numerical heat transfer model with spiral coils and theenergyefficiency model for heat pump units, ground heat-exchange systems with and withoutshelter are simulated under the climate condition of Chongqing and without auxiliaryheat dissipation, and the response characteristics of typical months, temperaturerecovery features of transition seasonand dynamic response characteristics of typicalyear are analyzed. In addition, the system response characteristics is also studied undercondition of auxiliary heat dissipation by adjusting the summer cooling load.
     Finally, the helix ground heat exchanger heat pump system of Guiyang UrbanPlanning Exhibition Hall is taken as a case study and anexperimental test was carried.The operating characteristic of original working condition is analyzed and an optimizingoperation model is proposed and tested in the next day. The test results find that thesystem efficiency of the optimizing operation model increases by26.1%. Besides, basedon the developed three numerical heat transfer model and the test data obtained byoriginal operating condition, the soil thermal property was determined used to predictthe water temperature of the helix ground heat exchange system in the test period. The results of prediction indicate that the proposed three numerical heat transfer model ofhelix ground exchanger has high accuracy characteristic and it would reliably predictthe change of water temperature of the helix ground exchanger.
引文
[1]陆胜利.世界能源问题与中国能源安全研究[D].中共中央党校,2011.
    [2]郭四代.中国新能源消费与经济增长关系的实证研究[D].中国地质大学(北京),2012..
    [3] http://blog.sina.com.cn/s/blog_52f526870102ect3.html.
    [4]黄梦华.中国可再生能源政策研究[D].:青岛大学,2011.
    [5]蒋海蛟.奥巴马能源新政背景下的中美新能源合作及其对两国关系的影响[D].:兰州大学,2012.
    [6]2013key world energy statistics, International energy agency.
    [7]《中国统计年鉴—2013》
    [8]黄梦华.中国可再生能源政策研究[D].青岛大学,2011.
    [9]中国可再生能源“十二五”规划概览.国家能源部&国家可再生能源中心,2012.
    [10]江忆.中国建筑节能年度发展研究报告2011.中国建筑工业出版社,2011.
    [11]江忆.中国建筑节能年度发展研究报告2013.中国建筑工业出版社,2013.
    [12] M.C. Katafygiotou, D.K. Serghides. Analysis of structural elements and energyconsumption of school building stock in Cyprus: Energy simulations and upgradescenarios of a typical school[J]. Energy and Buildings,2014,72:8-16.
    [13] A.S. Ahmad, M.Y. Hassan, M.P. Abdullah, et al.. A review on applications of ANN andSVM for building electrical energy consumption forecasting[J]. Renewable andSustainable Energy Reviews,2014,33:102-109.
    [14] Yuehong Lu, Zhijia Huang, Ting Zhang. Method and case study of quantitative uncertaintyanalysis in building energy consumption inventories[J]. Energy and Buildings,2013,57:193-198.
    [15] Xu Han, Jingjing Pei, Junjie Liu, et al. Multi-objective building energy consumptionprediction and optimization for eco-community planning[J]. Energy and Buildings,2013,66:22-32
    [16]刘幼农,马文生,郭梁雨,李现辉,肖晨,姚春妮.我国可再生能源建筑应用示范实施情况综述[J].建设科技,2012,13:23-26.
    [17] Ingersoll L R, Plass H J. Theory of the ground pipe heat source for the heat pump. HPAC,1948,20(7):119122.
    [18] Ingersoll L R, Zobel O J, Ingersoll A C. Heat Conduction with Engineering, Geologicaland Other Applications. New York: McGraw-Hill Co,1954.
    [19] Carslaw H S, Jaeger J C. Conduction of Heat in Solids. Oxford: Claremore Press,1947.260265.
    [20] sanner B. ground source heat pump with seasonal cold storage[C]. Proceedings of theInternational Energy Agency Heat Pump Conference. Publ by Elsevier Science Publishers,1993,301.
    [21] Eskilson P. Thermal analysis of heat extraction boreholes[D]. Doctoral Thesis, Universityof Lund, Department of mathematical Physics, Lund, Sweden,1987.
    [22] Sulatisky M T, Kamp G V D. ground-source heat pumps in the Canadian Prairies[J].ASHRAE Trans,1991,17(4):374-385.
    [23] Kavanaugh S P, Kevin Rafferty. Ground-source heat pumps: Design of geothermal systemsfor commercial and institual buildings[J]. ASHRAE, Atlanta, Ca,1997.
    [24] Cane D. maintenance and service costs of commercial building ground-source heat pumpsystems[J]. ASHRAE Trans,1998,104(2):699-706.
    [25] Kavanaugh S P. A design method for commercial ground-source heat pumps[J]. ASHRAETrans,1995,101(2):1088-1094.
    [26] Dinse D R. geothermal systems for school[J]. ASHRAE Journal.1998.
    [27] Mei V C, Fischer S K. Vertical concentric tube ground-coupled heat exchangers. In:ASHRAE Trans.1983,89(2).391406.
    [28] Mei V C. New approach for analysis of ground coil design for applied heat pump systems.In: ASHRAE Trans.1985,91(2).12161224.
    [29] Mei V C, Baxter V D. Performance of a ground2coupled heat pump with multipledissimilar U-tube coils in series. ASHRAE Trans.1986,92(2).30-41.
    [30] Yavuzturk. Modeling of vertical ground loop heat exchangers for ground source heat pumpsystems[D]. Oklahoma State University,1988.
    [31] Long Ni, Haorong Li, Yiqiang Jiang, et al. A model of groundwater seepage and heattransfer for single-well ground source heat pump systems[J]. Applied ThermalEngineering,2011,31(14–15):2622-2630.
    [32] Wenke Zhang, Hongxing Yang, Lin Lu, et al. The analysis on solid cylindrical heat sourcemodel of foundation pile ground heat exchangers with groundwater flow[J]. Energy,2013,55:417-425.
    [33] Antonio Capozza, Michele De Carli, Angelo Zarrella. Investigations on the influence ofaquifers on the ground temperature in ground-source heat pump operation[J]. AppliedEnergy,2013,107:350-363.
    [34] Tomislav Kurevija, Domagoj Vulin, Vedrana Krapec. Effect of borehole array geometryand thermal interferences on geothermal heat pump system[J]. Energy Conversion andManagement,2012,60:134-142.
    [35] S. Koohi-Fayegh, M.A. Rosen. An analytical approach to evaluating the effect of thermalinteraction of geothermal heat exchangers on ground heat pump efficiency[J]. EnergyConversion and Management,2014,78:184-192.
    [36]李隆键,鲍建镇,廖全,崔文智.回填料对地埋管换热器性能的影响[J].土木建筑与环境工程,2011,05:90-94.
    [37] Zhongjian Li, Maoyu Zheng. Development of a numerical model for the simulation ofvertical U-tube ground heat exchangers[J]. Applied Thermal Engineering,2009,29:920-924.
    [38] Jun Wang, Enshen Long, Wen Qin. Numerical simulation of ground heat exchangers basedon dynamic thermal boundary conditions in solid[J]. Applied Thermal Engineering,2013,59(1–2):106-115.
    [39]曹馨雅.地源热泵系统冷热负荷不平衡对土壤温度的影响[D].东华大学,2013.
    [40] Jing Yang, Linghong Xu, Pingfang Hu, et al. Study on intermittent operation strategies of ahybrid ground-source heat pump system with double-cooling towers for hotel buildings[J].Energy and Buildings,2014,76:506-512.
    [41] Kwlvin,Sir W. Thomson. Mathematical physical papers. Ⅱ, P41,1882.
    [42] Carslaw, H.S., J.C. Jaeger. Conduction of heat in solid.Oxford, U.K, Claremore Press,1947.
    [43]曾和义,刁乃仁,方肇洪等.地源热泵竖直埋管的有限长线热源模型[J].热能动力工程,2003,18(2):165—169.
    [44]刁乃仁,曾和义,方肇洪.竖直U型管地热换热器的准三维传热模型[J].热能动力工程,2003,04:387-390+434.
    [45]曾和义,方肇洪.双U型埋管地热换热器的传热模型[J].山东建筑工程学院学报,2003,01:11-17.
    [46] Cenk Yavuzturk et al. A transient Two-dimensional finite volume model for the simulationof vertical U-type ground heat exchanger. ASHRAE trans,1999(4316).
    [47]陈晓春,许海松,徐稳龙,潘云钢,丁高. U型地埋管三维非稳态流固耦合换热数值模拟研究[J].建设科技,2008,10:71-76.
    [48]任晓红,孙纯武,胡彦辉. U型埋管换热器三维数值模拟和供热实验研究[J].重庆建筑大学学报,2004,05:90-95.
    [49]鲍建镇.地埋管换热器三维非稳态传热数值模拟[D].重庆大学,2011.
    [50]李大鹏,廖胜明. U形地埋管换热器的三维数值模拟及传热分析[J].暖通空调,2008,12:14-17.
    [51] MorinoK, OkaT. Study on heat exchanged in soil by circulating water in a steel Pile,Energy and Buildings[J].1994,21(l):65-78.
    [52] Pahud D, Fromentin A, Hubbuch M. Heat exchanger Pile system for heating and coolingat Zu rich Airport[J]. IEA Heat PumP Centre Newsletter,1999,17(1):15-16.
    [53] Laloui Lyesse, Moreni Matteo, Vulliet Laurent, Behavior of a bi-functional Pile,foundation and heat exehange[J]. Canadian Geotechnieal Journal,2003,40:388-402.
    [54]梅挺.与桩基结合的地源热泵地埋管施工技术[J].建筑机械化,2012,S1:95-97.
    [55]居发礼,檀姊静.息烽县人民医院病房综合大楼空调设计[J].暖通空调,2013,12:121-125.
    [56]程洪涛.低能耗建筑技术在南京朗诗国际街区的应用[J].建筑科学,2006,06:84-86+71.
    [57]王琰.南京某办公综合楼地源热泵+蓄能空调系统的设计研究[J].建筑科学,2010,10:266-273.
    [58]石磊,张方方,林芸,李新,方肇洪.桩基螺旋埋管换热器的二维温度场分析[J].山东建筑大学学报,2010,v.25;No.10202:177-183.
    [59] Yi Man, Hongxing Yang, Nairen Diao, et al. A new model and analytical solutions forborehole and pile ground heat exchangers [J]. International Journal of Heat and MassTransfer,2010,53(13-14):2593-2601.
    [60]刘俊红,张文克,方肇洪.桩埋螺旋管式地热换热器的传热模型[J].山东建筑大学学报,2010,v.25;No.10202:95-100.
    [61]李新,方亮,赵强,方肇洪.螺旋埋管地热换热器的线圈热源模型及其解析解[J].热能动力工程,2011,v.26;No.15404:475-479+499.
    [62] Cui Ping, Li Xin, Man Yi, et al. Heat transfer analysis of pile geothermal heat exchangerswith spiral coils [J]. Applied Energy,2011,88(11):4113-4119
    [63]石磊.桩基螺旋管地热换热器导热模型分析与实验研究[D].山东建筑大学,2010.
    [64]李新.蓄热量桩的传热研究与工程应用[D].山东建筑大学,2011.
    [65] Li Min, Lai Alvin C.K. Heat-source solutions to heat conduction in anisotropic media withapplication to pile and borehole ground heat exchangers[J]. Applied Energy,2012,96:451-458.
    [66] Wenke Zhang, Hongxing Yang, Lin Lu, et al. Investigation on heat transfer around buriedcoils of pile foundation heat exchangers for ground-coupled heat pump applications[J].International Journal of Heat and Mass Transfer,2012,55(21–22):6023-6031.
    [67] Wenke Zhang, Hongxing Yang, Lin Lu, et al. The research on ring-coil heat transfermodels of pile foundation ground heat exchangers in the case of groundwater seepage [J].Energy and Buildings,2014,71:115-128.
    [68] Fleur Loveridge, William Powrie. Temperature response functions (G-functions) for singlepile heat exchangers[J]. Energy,2013,57:554-564.
    [69] Fleur Loveridge, William Powrie. G-Functions for multiple interacting pile heatexchangers[J]. Energy,2014,64:747-757.
    [70]吴华剑,付祥钊,刘希臣.桩基螺旋地埋管换热器模型与换热性能研究[J].煤气与热力,2012,v.32;No.25010:27-31.
    [71] M.E. Suryatriyastuti, H. Mroueh, S. Burlon. Understanding the temperature-inducedmechanical behaviour of energy pile foundations [J]. Renewable and Sustainable EnergyReviews,2012,16(5):3344-3354.
    [72] Jun Gao, Xu Zhang, Jun Liu, Kuishan Li, Jie Yang. Numerical and experimentalassessment of thermal performance of vertical energy piles: An application [J]. AppliedEnergy,2008,85(10):901-910.
    [73] Hyunku Park, Seung-Rae Lee, Seok Yoon, Jung-Chan Choi. Evaluation of thermalresponse and performance of PHC energy pile: Field experiments and numericalsimulation[J]. Applied Energy,2013,103:12-24.
    [74] C.K. Lee, H.N. Lam, A simplified model of energy pile for ground-source heat pumpsystems, Energy,55(2013)838-845
    [75]毕月虹,陈林根.土壤热泵用立式双螺旋盘管地下温度场数值分析与实验验证[J].应用科学学报,2000,02:167-170.
    [76]吴华剑.桩基螺旋埋管换热器换热性能研究[D].重庆大学,2012.
    [77]王蕊,赵静野,陈晓春.桩埋螺旋管地热换热器的数值模拟[J].北京建筑工程学院学报,2013,v.29;No.9201:25-29+42.
    [78]李雅昕.桩基式土壤源热泵管群换热及恢复特性的研究[D].同济大学,2007.
    [79]赵军,王华军.密集型桩埋换热器管群周围土壤换热特性的数值模拟[J].暖通空调,2006,02:11-14.
    [80]王鹏洋.竖直双螺旋地埋管换热器的传热研究[D].西南交通大学,2012.
    [81]李魁山,张旭,高军,刘俊.桩基式土壤源热泵换热器换热性能及土壤温升研究[A].中国制冷学会.中国制冷学会2007学术年会论文集[C].中国制冷学会:,2007:6.
    [82]吴毅.螺旋管桩基换热器数值模型[D].西华大学,2013.
    [83] Angelo Zarrella, Michele De Carli. Heat transfer analysis of short helical borehole heatexchangers [J]. Applied Energy,2013,102:1477-1491.
    [84] Angelo Zarrella, Michele De Carli, Antonio Galgaro. Thermal performance of two typesof energy foundation pile: Helical pipe and triple U-tube [J]. Applied Thermal Engineering,2013,2:301-310.
    [85] Angelo Zarrella, Antonio Capozza, Michele De Carli. Analysis of short helical and doubleU-tube borehole heat exchangers: A simulation-based comparison[J]. Applied Energy,2013,112:358-370.
    [86]余乐渊,赵军,李新国,朱强,周军.竖埋螺旋管地热换热器理论模型及实验研究[J].太阳能学报,2004,05:690-694.
    [87] HuaiLi, Katsunori Nagano, Yuanxiang Lai. A new model and solutions for a spiral heatexchanger and its experimental validation[J]. International Journal of Heat and MassTransfer,2012,55:4404-4414.
    [88]刘希臣,肖益民,付祥钊,吴华剑.地源热泵桩基螺旋埋管换热性能实验研究[J].暖通空调,2013,09:107-110.
    [89] Hyunku Park, Seung-Rae Lee, Seok Yoon, et al. Case study of heat transfer behavior ofhelical ground heat exchanger[J]. Energy and Buildings,2012,53:137-144.
    [90]桂树强,程晓辉,张志鹏.地源热泵桩基与钻孔埋管换热器换热性能比较[J].土木建筑与环境工程,2013,03:151-156.
    [91]刘俊,张旭,高军,李魁山.地源热泵桩基埋管传热性能测试与数值模拟研究[J].太阳能学报,2009,v.3006:727-731.
    [92] Yasuhiro Hamada, Hisashi Saitoh, Makoto Nakamura etc. Field performance of an energypile system for space heating[J]. Energy and Buildings,2007,39:517–524.
    [93] Christopher J. Wood, HaoLiu, Saffa B. Riffat. An investigation of the heat pumpperformance and ground temperature of a piled foundation heat exchanger system for aresidential building [J]. Energy,2010,35:4932-4940.
    [94]卢军,黄光勤,徐永军.定热流热响应实验确定岩土热物性方法[J].土木建筑与环境工程,2012,02:98-104.
    [95]黄光勤,卢军,王亮,陈鹏.基于数据拟合的螺杆热泵机组变工况模型[J].暖通空调,2013,43(7):83-87.
    [96]朱颖心.建筑环境学[M].北京:中国建筑工业出版社,2012.
    [97] R.C. Xin, M.A. Ebadian, The effects of Prandtl numbers on local and average convectiveheat transfer characteristics in helical pipes, Journal of Heat Transfer119(1997)463–467.
    [98]杨大地.数值分析[M].重庆:重庆大学出版社,2003.
    [99]黄光勤,卢军,陈鹏.瞬态热流岩土热响应测试[J].太阳能学报,2013,34(10):1787-1794.
    [100]卢军,黄光勤,徐永军.定热流热响应实验确定岩土热物性方法[J].土木建筑与环境工程,2012,34(2):98-104.
    [101] Wang Hua-jun, Qi Cheng-ying, Du Hong-pu. Improved method and case study of thermalresponse test for borehole heat exchangers of ground source heat pump system.Renewable Energy,2010:35:727—733.
    [102]王勇.动态负荷下地源热泵性能研究[D].重庆大学,2006.
    [103]王景刚,马一太,张子平等.地源热泵的运行特性模拟研究[J].工程热物理学报,2003,24(3):361-366.
    [104]余延顺,马娟.负荷分布对地源热泵系统长期运行特性的影响[J].南京理工大学学报(自然科学版),2011,35(2):155-159.
    [105] Jongug Jeon, Sunil Lee, Daehie Hong, Yongchan Kim. Performance evaluation andmodeling of a hybrid cooling system combining a screw water chiller with a ground sourceheat pump in a building[J], Energy,2010,35(5):2006-2012
    [106]徐永军,重庆地区复合式地源热泵系统的应用及研究[D].重庆大学,2011
    [107]邹勤.地源热泵系统优化设计模拟研究及应用软件开发[D].重庆大学,2011
    [108]黄建恩,冯伟.一种螺杆式制冷机组能耗计算模型[J].暖通空调,2007,37(4):121-126,131
    [109]陈晓,张国强,林宣军等.夏热冬冷地区闭式湖水源热泵系统的运行特性分析[J].太阳能学报,2010,31(11):1452-1457
    [110]伏龙.螺杆式制冷机组仿真的研究及应用[D].上海交通大学,2003
    [111]陈明.中央空调水系统节能策略研究及设计评估软件开发[D].重庆大学,2010.
    [112]胡彦辉.垂直深埋U型管大地耦合式地源热泵冬季实验研究与三维数值模拟[D].重庆大学,2003.
    [113] Cane et al. modeling of ground source heat pump performance.ASHRAE Trans,NY-91-17-5.
    [114] Hikari Fujii, Hiroaki Okubo, Keita Nishi, et al. An improved thermal response test forU-tube ground heat exchanger based on optical fiber thermometers[J]. Geothermics,2009,38:399—406.
    [115] Bozzoli F, Pagliarini G, Rainieri S, et al. Estimation of soil and grout thermal propertiesthrough a TSPEP (two-step parameter estimation procedure) applied to TRT (thermalresponse test) data [J]. Energy,2011,36:839—846.
    [116] Hwang Suckho, Ooka Ryozo, Nam Yujin. Evaluation of estimation method of groundproperties for the ground source heat pump system[J]. Renewable Energy,2010,35:2123—2130.
    [117] Raymond J, Therrien R, Gosselin L, et al. Numerical analysis of thermal response testswith a groundwater flow and heat transfer model[J]. Renewable Energy,2011,36:315—324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700