用户名: 密码: 验证码:
水工结构损伤整体精细识别理论方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各类水工建筑物服役时间的增长以及安全运行要求的提高,结构健康监测和损伤诊断工作就变得日益重要。首先,为了应用有限的试验设备尽可能多地获取有效的测试信息,传感器优化布置研究就成为一个热点课题。但是,由于水工结构的局部或大部经常处在水下且测试需求多样,现有的传感器布置方法往往很难满足水工结构健康监测的需求。第二,模态参数识别是获取振动信号后的后续工作,也是进行损伤诊断的必要手段。环境激励下的水工结构受外界噪声影响较大,信号质量不易保证,而模态参数识别的精度将直接影响到水工结构损伤诊断的精确程度,因此寻求一种适合于环境激励下水工结构模态参数识别的方法十分关键。第三,尽早了解结构的损伤状况有助于提高结构的预期可靠性和安全性并减少维护费用。然而,由于环境激励输入的未知性和随机性以及传感器数目的限制等因素,使得环境激励下水工结构的损伤诊断研究同样遇到了很大困难。
     基于以上三个方面,本文从水工结构的整体动力特性出发,利用环境激励下水工结构产生的振动响应,通过新型传感器优化布置技术和信号处理技术保证结构模态参数的识别精度,进而提取对结构损伤敏感的特征量,实现对水工结构损伤的精确诊断。整套方法不影响结构的正常运行,且可以解决水工结构尤其是其水下部位损伤检测难的问题,有效填补了现有理论方法的不足。本文提出的水工结构损伤整体精细识别方法主要包括以下五个方面的创新性工作:
     (一)满足不同动力测试需求的水工结构传感器优化配置方法。为满足环境激励下水工结构的各类动力测试需求,对经典有效独立法的局限性进行了深入剖析,然后分别引入能量系数、距离系数和空间相关指数等概念对传统方法进行了全面改进,首次提出了能够满足强环境噪声背景下测试需求的三轴有效独立-驱动点残差法及不依赖有限元网格划分精度的距离系数-有效独立法和空间相关-有效独立法。新方法的有效性和适用性在厂房和大坝等水工结构的健康监测中得到了全面验证。
     (二)基于新型粒子群算法的水工结构测点最优化布置方法。为提高智能算法在求解水工结构传感器优化布置这一高维度组合优化问题时的全局寻优性能,首次提出了多种群整数编码粒子群算法和多种群克隆选择和粒子群混合算法等新型智能优化技术,通过对兼顾模态可测性和信息独立性的适应度函数进行优化,保证了智能优化技术在求解高维度传感器优化布置问题时的高效性和可靠性。
     (三)环境激励下基于NExT联合奇异熵定阶的模态参数群智能识别方法。该方法首先利用小波降噪等信号处理方法提升信号品质,然后应用NExT法计算结构的脉冲响应函数,再对该脉冲响应函数进行奇异熵定阶,最后借助一种新型变异粒子群算法的全局寻优得到结构的各阶模态频率和阻尼比等参数。该方法所需设置的参数少,识别精度高,对噪声不敏感,非常适合于环境激励下水工结构的模态参数识别。
     (四)基于模态频率的水工结构裂缝损伤整体识别方法。提出了一种利用实数编码克隆选择和粒子群混合算法优化模态频率指标的导墙结构损伤诊断方法。该方法仅需可测性强的低阶模态频率,非常适合于环境激励条件下的大型水工结构的无损动态损伤检测。将该诊断方法应用于某导墙的裂缝位置和程度识别中,证明该方法在算法全局寻优性能和识别准确性上均有较大优势,可尝试在各类水工结构的损伤诊断中推广应用。
     (五)融合传感器优化布置、模态识别和应变模态测试技术的水工结构损伤整体精细识别方法。提出了一种利用多种群实数编码粒子群算法优化应变模态指标的水工结构智能损伤诊断方法。该方法融合了新型传感器优化布置技术和信号处理技术,仅需有限测点的低阶应变模态,且无须对模态振型进行质量归一化,尤其适合于环境激励条件下大型水工结构的无损动态损伤检测。最后,针对不同噪声水平和不同测点数时的损伤组合进行研究,证明本文所提出的损伤诊断方法是十分有效的,可尝试在各类水工结构的损伤诊断中推广应用。
The structural health monitoring and damage detection become increasinglyimportant as the scale of hydraulic structures increases and the working conditionsimprove. Firstly, research on optimal sensor placement (OSP) has become a veryimportant topic due to the need to obtain effective testing results from limited testresources. However, the existing methods for OSP are often difficult to meet theneeds of hydraulic structural health monitoring, because part of or most part of thehydraulic structures are always underwater and the test requirements are various.Secondly, modal parameter identification is the follow-up work of vibration signalmeasurement, and it is also the necessary means for damage detection. The noiseaffects the hydraulic structures under ambient excitation obviously, so the quality ofthe signal is difficult to guarantee. Because the accuracy of modal parameteridentification directly affects the accuracy of damage detection, it is very critical tofind an efficient method which is suitable for the modal parameter identification ofhydraulic structures under ambient excitation. Thirdly, early damage detection notonly improves safety and reliability of structures but also reduces maintenance cost.However, damage detection is difficult to implement in hydraulic structures underambient excitation because of the uncertainty of ambient excitation and the limitationof sensors.
     Based on the above three reasons, this study considers the global dynamiccharacteristics of hydraulic structures, uses the vibration responses of hydraulicstructures under ambient excitation, emploies the OSP technique and signalprocessing technique to ensure the accuracy of modal parameter identification,extracts the features which are sensitive to structural damage, and achieves theaccurate diagnosis for hydraulic structural damage. Without affecting the normaloperation of hydraulic structures, the entire methodology can solve the difficulties indamage detection of hydraulic structures, especially the underwater parts, and can fillup the lackness of existing theoretical methods. There are five innovative points in theglobal and fine identification theory for hydraulic structural damage:
     (1) The OSP methods of hydraulic structures for various dynamic testrequirements. In order to meet the various test requirements for hydraulic structuresunder ambient excitation, this study dissects the limitations of typical effectiveindependence (EfI) method, introduces the energy coefficient, distance coefficient andspatial correlation index to improve the EfI method comprehensively, and pioneersthe triaxial effective independence driving-point residue (EfI3-DPR3) methodsatisfying the test requirements under strong noise environment and the distancecoefficient-effective independence method and spatial correlation-effectiveindependence method which do not rely on the finite element mesh generation. Theeffectiveness and applicability are comprehensively verified in the health monitoringof the hydraulic structures, such as the hydropower house and dam.
     (2) The OSP methods for hydraulic structures based on novel particleswarm optimization (PSO) algorithms. To further improve the global optimizationeffectiveness of intelligent algorithm dealing with OSP problems of high dimensions,this study first proposes an integer-encoding multi-swarm particle swarm optimization(IMPSO) algorithm and a hybrid intelligence algorithm of clonal selection algorithm(CSA) and discrete particle swarm optimization (DPSO), optimizes the fitnessfunctions considering the modal observability and information independence, andthen assures the efficiency and reliability of intelligent algorithms when dealing withOSP problems of high dimensions.
     (3) The swarm intelligence modal parameter identification method based onnatural excitation technique (NExT) and order determination of singularentropy under ambient excitation. The method empolies the wavelet de-noisingtechnique to improve the quality of signals, uses NExT method to calculate theimpulse response function, ensures the order of singular entropy for the impulseresponse function, and finally obtains the structural modal frequency and dampingratio based on a novel mutation particle swarm optimization algorithm. The method isvery suitable for the modal parameter identification of hydraulic structures underambient excitation due to fewer parameters, high identification accuracy andinsensitivity to the noise.
     (4) The global damage identification method for hydraulic structural cracksbased on modal frequency. A new damage detection method, which employs a realencoding hybrid algorithm of clonal selection and particle swarm optimization tooptimize the modal frequency index, is proposed for guide wall structures. The proposed method only requires low modal frequency, thus making the methodsuitable for nondestructive dynamic damage detection of large hydraulic structuresunder ambient excitation. Taking a guide wall structure as an example, results showthat this method has advantages in the global searching performance and identificationaccuracy. The proposed method is effective and can be applied in many types of largehydraulic structures.
     (5) The global and fine identification theory for hydraulic structural damageby the OSP technique, modal identification method and strain modal testtechnique. This study proposes a new damage detection method that employs the realencoding multi-swarm particle swarm optimization algorithm and fitness functionsevolved from strain modes to find the optimal match between measured and simulatedmodal parameters and to determine the actual condition of structures. The proposedmethod merges the OSP technique with signal processing technique, requires lowfrequency modes and incomplete modes and does not require mass normalization ofparameters, thus making the method suitable for nondestructive dynamic damagedetection of large hydraulic structures under ambient excitation. The efficiency of theproposed method was analyzed by using different noise levels and sensor numbers.Results show that the proposed method is effective and can be applied in many typesof hydraulic structures.
引文
[1]国家发展改革委,水利部,住房城乡建设部.水利发展规划(2011-2015年)[R],2012.
    [2]吴中如,沈长松,阮焕祥.水工建筑物安全监控理论及其应用[M].南京:河海大学出版社,1990.
    [3]王才欢,屈国治,雷长海等.水工程安全检测与评估[M].北京:中国水利水电出版社,2008.
    [4]邢林生.我国水电站大坝事故分析与安全对策[J].水利水电科学进展,2001,21(2):26-32.
    [5]李东升,张莹,任亮等.结构健康监测中的传感器布置方法及评价准则[J].力学进展,2011,41(1):39-50.
    [6]李宾宾.基于信息论的结构健康监测传感器优化布置[D].大连:大连理工大学,2012.
    [7]康飞.大坝安全监测与损伤识别的新型计算智能方法[D].大连:大连理工大学,2008.
    [8]马震岳,张克华,陈婧.传感器优化布设在水电站厂房振动特性研究中应用[J].大连理工大学学报,2006,46(2):262-265.
    [9] Udwadia F E. Methodology for Optimum Sensor Locations for ParameterIdentification in Dynamic Systems [J]. Journal of Engineering Mechanics,1994,120(2):368-390.
    [10] Rafajlowicz E, Optimal experimental design for identification of lineardistributed-parameter systems: Frequency domain approach [J]. Transaction onAutomatic Control,1983,28(7):806-808.
    [11] Bayard B S, Hadaegh F Y, Meldrum D R. Optimal experiment design foridentification of large space structures [J]. Automatica,1988,24(3):357-364.
    [12] Zavoni E H, Iturrizaga R M, Esteva L. Optimal instrumentation ofstructures on flexible base for system identification [J]. Earthquake Engineering&Structural Dynamics,1994,28(12):1471-1482.
    [13] Zavoni E H, Esteva L. Optimal instrumentation of uncertain structuralsystems subject to earthquake motions [J]. Earthquake Engineering and StructuralDynamics,1998,27(4):343-362.
    [14] Borguet S, Leonard O. The Fisher Information matrix as a relevant toolfor sensor selection in engine health monitoring [J]. International Journal of RotatingMachinery,2008,2008:1-10.
    [15] Kammer D C. Sensor placement for on-orbit modal identification andcorrelation of large space structures [J]. Journal of Guidance, Control and Dynamics,1991,14:251-259.
    [16] Kammer D C. Effects of model error on sensor placement for on-orbitmodal identification of large space structures [J]. Journal of Guidance Control andDynamics,1992,15(2):334-341.
    [17] Kammer D C. Effects of noise on sensor placement for on-orbit modalidentification of large space structures [J]. Journal of Dynamic Systems, Measurement,and Control,1992,114(3):436-443.
    [18] Kirkegaard P H, Brincker R. On the optimal locations of sensors forparametric identification of linear structural systems [J], Mechanical Systems andSignal Processing,1994,8:639-647.
    [19] Li D S, Li H N, Fritzen C P. The connection between effectiveindependence and modal kinetic energy methods for sensor placement [J]. Journal ofSound and Vibration,2007,305(4-5):945-955.
    [20] Li D S, Li H N, Fritzen C P. A note on fast computation of effectiveindependence through QR downdating for sensor placement [J]. Mechanical Systemsand Signal Processing,2009,23(4):1160-1168.
    [21] Imamovic N. Model validation of large finite element model using testdata [D]. Imperial College London,1998.
    [22]杨雅勋,郝宪武,孙磊.基于能量系数-有效独立法的桥梁结构传感器优化布置[J].振动与冲击,2010,29(11):119-123,134.
    [23]费庆国,李爱群,缀长青.基于主列筛选的动态测试传感器配置方法研究[J].力学学报,2008,40(4):543-549.
    [24]费庆国,李爱群,韩晓林等.大跨桥梁结构健康监测系统振动传感器配置仿真[J].东南大学学报,2010,40(6):1243-1246.
    [25] Meo M, Zumpano G. On the optimal sensor placement techniques for abridge structure [J]. Engineering Structures,2005,27:1488-1497.
    [26] Papadimitriou C, Beck J L, Au S. Entropy-based optimal sensor locationfor structural model updating [J]. Journal of Vibration and Control,2000,6:781-800.
    [27] Papadimitriou C. Optimal sensor placement methodology for parametricidentification of structural systems [J]. Journal of Sound and Vibration,2004,278:923-947.
    [28] Papadimitriou C. Pareto optimal sensor locations for structuralidentification [J]. Computer methods in applied mechanics and engineering,2005,194:1655-1673.
    [29] Papadimitriou C, Lombaert G. The effect of prediction error correlationon optimal sensor placement in structural dynamics [J]. Mechanical Systems andSignal Processing,2012,28:105-127.
    [30] Yuen K, Katafygiotis L S, Papadimitriou C, Mickleborough N C.Optimal sensor placement methodology for identification with unmeasured excitation[J]. Journal of Dynamic Systems, Measurement, and Control,2001,123:677-686.
    [31] Chow H M, Lam H F, Yin T, Au S K. Optimal sensor configuration of atypical transmission tower for the purpose of structural model updating [J]. Structuralcontrol and health monitoring,2011,18:305-320.
    [32] Robert-Nicoud Y. Raphael B. Smith, I. F. C. Configuration ofmeasurement systems using Shannon's entropy fiinction [J]. Computers&Structures,2005,83(8-9):599-612.
    [33] Orantes A, Kempowsky T, Le Lann M V, et al. Selection of sensors by anew methodology coupling a classification technique and entropy criteria [J].Chemical Engineering Research&Design,2007,85(6):825-838.
    [34] Staszewski W J, Worden K. An overview of optimal sensor locationmethods for damage detection [C]. Editor: Rao V S, Proceedings of SPIE, San Diego,USA,2001, Vol.4326:179-187.
    [35] Trendafilova I, Heylen W, Van Brussel H. Measurement point selectionin damage detection using the mutual information concept [J]. Smart Material andStructure,2001,10(3):528-533.
    [36] Krause A, Singh A, Guestrin C. Near-optimal sensor placements inGaussian processes: theory, efficient algorithms and empirical studies [J]. Journal ofMachine Learning Research,2008,9:235-284.
    [37] Pillutla L S, Krishnamurthy V. Mutual information and energy tradeoffin correlated wireless sensor networks [C]. Communications,2008. ICC '08. IEEEInternational Conference, Beijing,2008,4402-4406.
    [38] Wang H, Yao K, Estrin D. Information-theoretic approaches for sensorselection and placement in sensor networks for target localization and tracking [J].Journal of communication and networks,2005,7:438-449.
    [39] Liu Y, Jin S, Lin Z, et al. Optimal sensor placement for fixture faultdiagnosis using Bayesian network [J], Assembly Automation,2011,31(2):176-181.
    [40] Papadopoulos M, Garicia E. Sensor placement methodologies fordynamic testing [J]. AIAA Jounal,1998,36:256-263.
    [41] Heylen W, Lammens S, Sas P. Modal Analysis Theory and Testing [M].Belgium: Katholieke Unversiteit Leuven,1998.
    [42] Chung Y T, Moore D. Selection of measurement locations forexperimental modal analysis [C]. Proceeding of the11th International Madal AnalysisConference, Orlando, USA,1993.
    [43] Salama M, Rose T, Garb a J. Optimal placement of exciters and sensorfor verification of large dynamical systems [C], Proceedings of SDM conference,AIAA-87-0782,1987,1024-1031.
    [44] Heo, Wang M, Satpathi D. Optimal transducer placement for healthmonitoring of long span bridge [J]. Soil Dynamics and Earthquake Engineering,1997,16:495-502.
    [45] Penny J, Friswell M, Garvey S. Automatic choice of measurementlocations for modal survey test [J]. AIAA Journal,1994,32:407-414
    [46] Ewins D. Modal Testing: theory, practice and application [M]. England:Research Studies Press,2000.
    [47] Friswell M, Mottershead J. Finite element model updating in structuraldynamics [M]. Boston: Kluwer Academic Publisher,1995.
    [48] Reynier M, Abou-Kandil H. Sensors location for updating problems [J].Mechanical Systems and Signal Processing,1999,13(2):297-314.
    [49] Yan Y. Sensor placement and diagnosability analysis at design stage [C].Proceeding of16th European Conference on Artificial Intelligence, Valencia, Spain,2004.
    [50] Yassine A A, Ploix S, Flaus JM. New results for sensor placement withdiagnosability purpose [C]. Proceeding of18th International Workshop on Principlesof Diagnosis (DX-07), Nashville, USA,2007.
    [51] Yassine A A, Ploix S, Flaus JM. Structural approach for sensorplacement with diagnosability purpose [C]. Proceedings of the17th IFAC WorldCongress, Seoul, Korea,2008,5494-5499.
    [52] Flynn E B., Todd M D. A Bayesian approach to optimal sensorplacement for structural health monitoring with application to active sensing [J].Mechanical Systems and Signal Processing,2010,24:891-903.
    [53] Guratzsch R F, Mahadevan S. Structural health monitoring sensorplacement optimization under uncertainty [J]. AIAA journal,2010,48:1281-1289.
    [54] Sepulveda A E, Jin I M, Schmit Jr L A. Optimal placement of activeelements in control augmented structural systhesis [J]. AIAA Journal,1993,31(10):1906-1915.
    [55] Sepulveda A E, Schmit Jr L A. Optimal placement of actuators andsensors in control augmented structural optimization. In:31st Structures, StructuralDynamics and Materials Conference [C]. AIAA-90-1055-cp,1990,217-230.
    [56] Sunar M, Rao S S. Thermo piezoelectric control design and actuatorplacement. AIAA Journal,1997,35(2):534-539.
    [57]赵小崇.地下结构健康监测中的传感器优化布置方法研究[D],天津:河北工业大学,2007.
    [58]刘娟,黄维平.传感器优化配置的修正逐步累积法[J].青岛海洋大学学报,2003,33(3):476-482.
    [59]黄民水,朱宏平.桥梁结构模态测试中传感器优化布置的序列法及应用[J].桥梁建设,2007,(5):80-83.
    [60]伊廷华,李宏男,顾明等.基于MATLAB平台的传感器优化布置工具箱的开发及应用[J].土木工程学报,2010,43(12):87-93.
    [61] G.S. Chen, R.J. Bruno, M. Salama, Optimal placement of active/passivemembers in truss structures using simulated annealing [J], AIAA Journal,1991,29:1327-1343.
    [62] L. Yao, W. A. Sethares, D. C. Kammer. Sensor placement for on-orbitmodal identification via a genetic algorithm [J]. AIAA Journal,1993,31:1922-1928.
    [63] M.M. Abdullah, A. Richardson, H. Jameel. Placement ofsensors/actuators on civil structures using genetic algorithms [J], EarthquakeEngineering and Structural Dynamics,2001,30:1167-1184.
    [64]黄维平,刘娟,李华军.基于遗传算法的传感器优化配置[J].工程力学,2005,22(1):113-117.
    [65] W. Liu, W.C. Gao, Y. Sun, M.J. Xu. Optimal sensor placement forspatial lattice structure based on genetic algorithms [J]. Journal of Sound andVibration,2008,317:175-189.
    [66] B. Isabelle, G. Laurent, N. Shahram. Optimal piezoelectric actuator andsensor location for active vibration control, using genetic algorithm [J]. Journal ofSound and Vibration,2010,329:1615–1635.
    [67] K. Joonhyo, P. Byungkyu, L. Joyoung, W. Jongsun. Determiningoptimal sensor locations in freeway using genetic algorithm-based optimization [J].Engineering Applications of Artificial Intelligence,2011,24:318-324.
    [68]常虹,殷琨,林涛.环境激励下工作模态参数识别[J].山西建筑,2010,36(5):63-64.
    [69]曹树谦,张文德,萧龙翔.振动结构模态分析-理论、实验与应用[M].天津:天津大学出版社,2001.
    [70]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [71]李国强,李杰.工程结构动力检测理论应用[M].北京:科学出版社,2001.
    [72]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2002.
    [73] Ibrahim S.R. Random decrement technique for modal identification ofstructures [J], AIA Journal of Spacecraft and Rockets,1977,14(11):696-700.
    [74] Ibrahim S.R., Mikulcik E.C. The experimental determination of vibrationParameters from time response [J], The Shock and Vibration Bulletin,1976,46(5):537-546.
    [75] Bendat J.S., Piersol A.G. Engineering Application of Correlation andSpectral Analysis. Second Edition [M]. NewYork:1993.
    [76] Wei-Xin Ren, Wael Zatarc, Issam E.Harik. Ambient vibration-basedseismic evaluation of a continuous girder bridge [J]. Engineering Structures,2004,26:631-640.
    [77] Wei-Xin Ren, Xue-Lin Peng, et al. Experimental and analytical studieson dynamic characteristics of a large span cable-stayed bridge [J]. EngineeringStructures,2005,27(4):535-548.
    [78] E. Luz, J. Wallaschek. Experiment Modal Analysis Using AmbientVibration [J]. The International Journal of Analytical and Experimental ModalAnalysis, Jan1992,7:29-39.
    [79]李中付,华宏星,宋汉文等.用时域峰值法计算频率和阻尼振动[J].振动与冲击,2001,20(3):5-6.
    [80] Ibrahim S.R. A time domain modal vibration test technique [J]. TheShock and Vibration Bulletin,1973,43(4):34-39.
    [81] Ibrahim S.R., Mikulcik E.C. The experimental determination of vibrationparameter from time responses [J]. The Shock and Vibration Bulletin,1976,46(5):183-198.
    [82] Ibrahim S.R., Mikulcik E.C. A method for the direct identification ofvibration parameters from the free response [J]. The Shock and Vibration Bulletin,1977,47(4):183-198.
    [83] Ibrahim S.R. Random decrement technique for modal identification ofstructures [J]. AIAA Journal of Spacecraft and Rockets,1977,14(3):696-700.
    [84] Ibrahim S.R. Modal confedence factor in vibration testing [J], AIAAJournal of Spacecraft and Rockets,1978,15(5):313-316.
    [85] Ibrahim S R. The use of random decrement technique for identificationof structures modes of vibration [C], AIAA/ASME,18th Structures. StructuresDynamics and Materials Conference,1977.
    [86] Ibrahim S R. Application of random domain analysis to dynamics flightmeasurements. Shock and Vibration Bulletin [J],1979,49(2):165-170.
    [87]淳庆,邱洪义.基于环境激励下刚桁架桥的模态参数识别[J].特种结构,2005,62-65.
    [88]刘昉,练继建,辜晋德.基于自回归模型的水流脉动压力频谱特征研究[J].水利学报,2009,40(11):1397-1402.
    [89] James H.G., Came G.T. The natural excitation technique (NExT) formodal parameter Extraction from operating wind turbines [C]. Sandia NationalLaboratory, Albuquerque, NM,1993, SAND92-1666.
    [90] C. Gontier, D. George, M. Raffy. Energetic mode contributions instochastic modal analysis: An application to mode classification [J]. Journal of Soundand Vibration,2006,294(4-5):944-965.
    [91] Kim J.T., Stubbs N. Improved damage identification method based onmodal information [J]. Journal of Sound and Vibration,2002,252(2):223-238.
    [92] Shen F, Zheng M, Shi D F, et al. Using the cross-correlation technique toextract modal parameters on response-only data [J]. Journal of Sound and Vibration,2003,259(5):1163-1179.
    [93]章国稳,汤宝平,潘飞.特征系统实现方法的虚假模态剔除方法[J].重庆大学学报,2012,35(3):20-25.
    [94]李炜明,朱宏平,吴贤国等.未知激励下框架结构系统辨识的特征系统实现法[J].振动与冲击,2010,29(8):228-231.
    [95] Darby J. Luscher, James M. W. Brownjohn, Hoon Sohn, et al. Modalparameter extraction of Z24Bridge data [C]. Proc. of Model IMAC, Kissimmee,Florida, USA,2001,836-841.
    [96]章伟宜.随机子空间方法结构模态识别的数值仿真[J].工程与建设,2011,25(2):162-163.
    [97] Peeters B, De Roeck G. Reference based stochastic subspaceidentification in civil engineering. Inverse Problems in Engineering,2000,8(1):47-74.
    [98]韩建平,李达文,王飞行.基于Hilbert-Huang变换和随机子空间识别的模态参数识别[J].地震工程与工程振动,2010,30(1):53-59.
    [99] Peeters B art. System identification and damage detection in civilengineering [D]. Ph.D. thesis, Department of Civil Engineering, K.U.Leuven,Belgium,2000.
    [100]史东峰,郑敏,申凡等.工程结构工作模态的子空间辨识方法[J].振动工程学报,2000,13(3):406-412.
    [101]徐良,江见鲸,过静珺.随机子空间识别在悬索桥实验模态分析中的应用[J].工程力学,2002,19(4):46-49.
    [102]张志谊,樊江玲,祝华等.风载和冲击荷载激励下的框架结构的模态参数辨识[J].振动工程学报,2004,17(S):668-672.
    [103]张敏,谢慧才,Sung-Han Sim等.基于随机子空间的分布式结构模态参数识别[J].深圳大学学报(理工版),2009,26(4):394-399.
    [104] Peeters B, G De Roeck, T Pollet, et al. Stoehastic subspace techniquesapplied to parameter identification of civil engineering structures [C]. Proceedings ofNew Advances in Modal Synthesis of Large Structures: Nolinear, Damped andNondetenninistic Cases, Lyon, France,1995,151-162.
    [105] Brincker Rune, Ventura C E, Andersen P. Damping estimation byfrequency domain decomposition [C]. Proc International Modal Analysis Conference(IMAC), Kissimmee, Florida,2001,698-703.
    [106] Cawley. P, Adams.R.D, The location of defects in structures frommeasurements of natural frequencies, Journal of Strain Anslysis,1979,4(2):49-57.
    [107]马宏伟,杨桂通.结构损伤探测的基本方法和研究进展[J].力学进展,1999,29(4):513-527.
    [108]程林.基于结构振动模态分析的损伤识别数值与试验研究[D].汕头:汕头大学,2007.
    [109] Park Y S, Park H S, Lee S S. Weighted-error-matrix application to detectstiffness damage by dynamic-characteristic measurement [C]. The InternationalJournal of Analytical and Experimental Modal Analysis,1988, Vol.3:101-107.
    [110] Pandey A K,Biswas M. Damage detection in structures using changes inflexibility [J]. Journal of sound and Vibration,1994,169(1):3-17.
    [111]綦宝晖,邬瑞锋,李桂华等.基于柔度阵的悬臂弯剪型建筑结构损伤识别方法[J].工业建筑,2000,30(4):64-66.
    [112]陈立.基于柔度曲率矩阵的结构损伤识别研究[D].大连:大连理工大学,2009.
    [113]秦权,张卫国.悬索桥的损伤识别[J].清华大学学报(自然科学版),1998,38(12):44-47.
    [114]姜增国,张祯.结构损伤检测类MAC应变频响函数识别指标的研究[J].交通科技,2006,214(1):7-9.
    [115] Jean Proulx, Patrick Paultre, Julien Rheault, et al. An experimentalinvestigation of water level effects on the dynamic behaviour of a large arch dam [J].Earthquake Engineering&Structural Dynamics,2001,30(8):1147-1166.
    [116]王柏生,何宗成,赵琛.混凝土大坝结构损伤检测振动法的可行性[J].建筑科学与工程学报,2005,22(2):51-56.
    [117] Anun Patjawit, Chaiyuth Chinnarasri, Worsak Kanok-Nukulchai. DamHealth monitoring based on dynamic properties [C]. GeoCongress2008:223-230.
    [118]练继建,张建伟,李火坤等.泄洪激励下高拱坝模态参数识别研究[J].振动与冲击,2007,26(12):101-105.
    [119]练继建,张建伟,王海军.基于泄流响应的导墙损伤诊断研究[J].水力发电学报,2008,27(1):96-101.
    [120]李松辉,练继建.水电站厂房结构模态参数的遗传识别方法[J].天津大学学报,2009,42(1):11-16.
    [121]练继建,李松辉.基于支持向量机和模态参数识别的导墙结构损伤诊断研究[J].水利学报,2008,39(6):652-658.
    [122]李火坤,练继建.高拱坝泄流激励下基于频域法的工作模态参数识别[J].振动与冲击,2008,27(7):149-153.
    [123] Lian Jijian, He Longjun, Wang Haijun. Optimal sensor placement inhydropower house based on improved triaxial Effective Independence method [J].Water Science and Engineering,2012,5(3):329-339.
    [124] Kammer D C, Tinker M L. Optimal placement of triaxial accelerometersfor modal vibration tests [J]. Mechanical Systems and Signal Processing,2004,18(1),29-41.
    [125] Imamovic, N. Validation of large structural dynamics models usingmodal test data [D]. London: Imperial College,1998.
    [126]吴子燕,代凤娟,杨海峰.结构健康监测中传感器优化设置方法研究[J].郑州大学学报(工学版),2006,27(4):92-96.
    [127]张志涌.精通MATLAB6.5版[M].北京:北京航空航天大学出版社,2003.
    [128]杨雅勋,郝宪武,孙磊.基于能量系数-有效独立法的桥梁结构传感器优化布置[J].振动与冲击,2010,29(11):119-123,134.
    [129] Kennedy J, Eberhart R C. Particle swarm optimization [C]. In: ProcIEEE Conf on Neural Networks, Perth,1995,4:1942-1948.
    [130] Shi Y, Eberhart R C. A modified particle swarm optimizer [C].Proceedings of the IEEE international conference on evolutionary computation, IEEEPress, Piscataway, NJ,1998,69-73.
    [131]王凌,刘波.微粒群优化与调度算法[M].北京:清华大学出版社,2008.
    [132] Kennedy J and Eberhart R C. A discrete binary version of the particleswarm algorithm [C]. Proceedings of the Conference on Systems, Man, andCybernetics, IEEE Service Center, Piscataway, NJ,1997,5:4104-4108.
    [133] Clerc M. Discrete particle swarm optimization, illustrated by travelingsalesman problem [C]. New optimization techinques in engineering, Berlin:Springer-Verlag,2004,219-239.
    [134] Tasgetiren M F, Sevkli M, Liang Y C, et al. Particle swarm optimizationalgorithm for permutation flowshop sequencing problem[C]. Lecture Notes inComputer Science,2004,3172:382-389.
    [135] Shi Y and Eberhart R C. Parameter selection in particle swarmoptimization [C]. Proceedings of the7th Annual Conference on EvolutionaryProgramming, New York, USA,1998,591-600.
    [136]吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420.
    [137]胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868.
    [138] Chen D B, Zhao C X. Particle swarm optimization with adaptivepopulation size and its application [J]. Applied Soft Computing,2009,9(1):39-48.
    [139] Suganthan P N. Particle swarm optimiser with neighbourhood operator
    [C]. Proceedings of the IEEE Congress on Evolutionary Computation (CEC99),1999,1958-1962.
    [140] Wolpert D H and Macready W G. No free lunch theorems foroptimization [J]. IEEE Transactions on Evolutionary Computation,1997,1(1):67–82.
    [141] Fan S K S, Liang Y C, Zahara E. Hybrid simplex search and particleswarm optmization for the global optimization of multimodal functions [J].Engineering Optimization,2004,36(4):401-418.
    [142] Kao Y T, Zahara E. A hybrid genetic algorithm and particle swarmoptimization for multimodal functions [J]. Applied Soft Computing,2008,8(2):849-857.
    [143]刘丽珏,蔡自兴.基于克隆选择的粒子群优化算法[J].小型微型计算机系统,2006,27(9):1708-1710.
    [144] Zhang C S, Ning J X, Lu S, et al. A novel hybrid differential evolutionand particle swarm optimization algorithm for unconstrained optimization[J].Operations Research Letters,2009,37(2):117-122.
    [145] Pulido G T, Coello C A C. A constraint-handling mechanism for particleswarm optimization [C]. Proceedings of the IEEE Congress on EvolutionaryComputation (CEC2004),2004,1396-1403.
    [146] Reyes-Sierra M and Coello C A C. Multi-objective particle swarmoptimizers: a survey of the state-of-the-art [J]. International Journal of ComputationalIntelligence Research,2006,2(3):287-308.
    [147]高海兵,高亮,周驰等.基于粒子群优化的神经网络训练算法研究[J].电子学报,2004,32(9):1572-1574.
    [148] Shi X H, Liang Y C, Lee H P, et al. Particle swarm optimization-basedalgorithms for TSP and generalized TSP [J]. Information Processing Letters,2007,103(5):169-176.
    [149]王旸,刘晓东,徐小慧等.基于粒子群优化的数据分类算法[J].系统仿真学报,2008,20(22):6158-6162,6168.
    [150] Rasmussen T K, Krink T. Improved Hidden Markov Model training formultiple sequence alignment by a particle swarm optimization-evolutionary algorithmhybrid [J]. Biosystems,2003,72(1-2):5-17.
    [151] Burnet F M. The clonal selection theory of acquired immunity [M].Cambridge: Cambridge University Press,1959.
    [152] De Castro L N, Von Zuben F J. Learning and optimization using theclonal selection principle [C]. IEEE Transactions on Evolutionary Computation,Special Issue on Artificial Immune Systems,2002,6(3):239–251.
    [153] Clark P J, Evans F C. On some aspects of spatial pattern in biologicalpopulations [J]. Science,1955,121397-8.
    [154] Cliff AD, Ord JK. Spatial Autocorrelation [M]. Pion: London,1973.
    [155] Cliff AD, Ord JK. Spatial Processes: Models and Applications [M]. Pion:London,1981.
    [156]王济,胡晓. MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [157]张笑华,任伟新,禹丹江.结构模态参数识别的随机子空间法[J].福州大学学报(自然科学版),2005,33(10):46-49.
    [158]王安丽,史志富,张安.基于熵的空中目标识别模型及应用[J].火力与指挥控制,2005,30(2):110-112.
    [159]杨文献,任兴民,姜节胜.基于奇异熵的信号降噪技术研究[J].西北工业大学学报,2001,19(3):368-371.
    [160]孙增寿.基于小波的土木工程结构损伤识别方法研究[D].福州:福州大学,2006.
    [161] Meruane V, Heylen W. An hybrid real genetic algorithm to detectstructural damage using modal properties [J]. Mechanical Systems and SignalProcessing,2011,25(5):1559-1573.
    [162] Doebling S W, Farrar C R, Prime M B. A summary review ofvibration-based damage identification methods [J]. Shock and Vibration Digest,1998,30(2):91-105.
    [163] Qian J R, Ji X D, Zhang W J. Damage detection test of a substructuremodel of the National Swimming Center [J]. Sci China Ser E-Tech Sci,2008,51:940-948.
    [164] Fang H, Wang T J. A new method for nondestructive damageidentification of lattice materials [J]. Sci China Ser E-Tech Sci,2009,52:1293-1300.
    [165]李火坤,练继建,杨敏等.强震后基于泄流激励的映秀湾水电站拦河闸动态检测与损伤评估研究[J].振动与冲击,2010,29(9):64-68.
    [166] Li H J, Liu F S, Hu S J. Employing incomplete complex modes formodel updating and damage detection of damped structures [J]. Sci China Ser E-TechSci,2008,51:2254-2268.
    [167]李广,李庆斌,张文翠.光纤传感器应变量测的标定系数修正[J].清华大学学报(自然科学版),2001,41(11):102-105.
    [168] Tsuda H, Toyama N, Urabe K, et al. Impact damage detection in CFRPusing fiber Bragg gratings [J]. Smart Materials&Structures,2004,13:719-724.
    [169]刘晖,瞿伟廉,李功标等.光纤光栅传感系统在结构损伤识别中的应用[J].应用基础与工程科学学报,2009,17(3):395-401.
    [170]彭细荣,路新瀛,隋允康等.一种环境激励下基于应变测试的结构损伤指标[J].北京工业大学学报,2008,34(5):449-450.
    [171]顾培英,陈厚群,李同春等.基于损伤应变模态的结构损伤识别直接指标法[J].自然科学进展,2007,17(2):240-247.
    [172]廖延彪.光纤光学[M].北京:清华大学出版社,2000:197-214.
    [173]卓锋,赵玉成,延凤平.采用光纤光栅的温度和应力传感技术[J].光通信技术,2000,24(2):134-137.
    [174]黄建辉,赵洋.光纤布拉格光栅传感器实现应力测量的最新进展[J].光电子激光,2000,11(2):216-220.
    [175]江毅,李建蜀,陈伟民等.光纤布拉格光栅应变传感器[J].压电与声光,1995,17(2):9-13.
    [176] Jaehoon Jung, Namkyoo Park, and Byoungho Lee. Simultaneousmeasurement of strain and temperature by use of a single fiber Bragg grating writtenin an erbium: ytterbium-doped fiber [J]. Applied Optics,2000,39(7):1118-1120.
    [177] M.A. Davis, A.D. Kersey. Matched-filter interrogation technique forfiber Bragg grating arrays [J]. Electronics Letters,1995,31(10):822-825.
    [178] Y J Rao. Recent progress in applications of in-fibre Bragg gratingsensors [J]. Optics and Lasers in Engineering,1999,31:297-324.
    [179]鲍吉龙,章献民,陈抗生.光纤光栅传感器及其应用[J].激光技术,2000,24(3):174-179.
    [180]邓焱,严普强.桥梁结构损伤的振动模态检测[J].振动、测试与诊断,1999,19(3):157-163.
    [181]伊立言.电阻应变计在试验模态分析中的应用[C].中国第二届振动理论及应用学术交流会,1984.
    [182] Tsuda H, Toyama N, Urabe K, et al. Impact damage detection in CFRPusing fiber Bragg gratings [J]. Smart Materials&Structures,2004,13:719-724.
    [183]刘晖,瞿伟廉,李功标等.光纤光栅传感系统在结构损伤识别中的应用[J].应用基础与工程科学学报,2009,17(3):395-401.
    [184]何龙军,练继建,马斌等.基于距离系数-有效独立法的大型空间结构传感器优化布置[J].振动与冲击,2013.
    [185]顾培英,邓昌.基于环境激励下的工作应变模态频域识别方法[J].振动与冲击,2008,27(8):68-70.
    [186] Basseville M, Mevel L, Goursat M. Statistical model-based damagedetection and localization: subspace-based residuals and damage-to-noise sensitivityratios [J]. Journal of Sound and Vibration,2004,275(3-5):769-794.
    [187] Gontier C. Energetic classifying of vibration modes in subspacestochastic modal analysis [J]. Mechanical Systems and Signal Processing,2005,19:1-19.
    [188]张建伟,张翌娜,赵瑜.泄流激励下水工结构应变模态参数时域辨识研究[J].水力发电学报,2012,31(3):199-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700