用户名: 密码: 验证码:
基于热成形高强钢板的车身结构轻量化分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车车身结构设计和制造业不断发展新材料和新技术以适应轻量化设计的要求。具有强度、刚度、抗冲击性、回收使用和低成本等方面综合优势的高强度钢板在车身轻量化设计中得到越来越广泛的关注。本文以轻质高强度钢为对象,进行了基于热问题的性能研究、成形性分析,并以某自主品牌轿车车身为载体,采用建立的MSOT方法(M-多维因数车身模型、S-构件筛选、0-板厚多目标优化、T-实验验证)进行了结构轻量化分析和优化问题的系统研究。
     从表面形貌和成分能谱、心部的显微组织和成分能谱,对高强度热成形钢的微观组织进行了实验研究,并对比分析了未加热和加热后的显微组织和成分;以铁碳合金相图为基础,对亚共析钢类型的热成形钢进行了热处理工艺理论分析和热模拟试验的研究,获得了高强度硼化钢的CCT曲线。通过冷态拉伸试验和热模拟试验,测试分析了热成形硼钢在不同温度、不同变形速率下力学性能,并采用幂指数本构方程对常温和淬火后的应力应变曲线进行了拟合,采用热态材料模型对高温状态下应力应变曲线进行了拟合。通过高温成形极限试验,研究了热成形硼钢分别在600℃、700℃、800℃的成形极限,得到了成形极限图。
     针对轻量化车身的高强度结构件热成形问题,研究了热成形过程的数值模拟和工艺参数的优化。给出了热冲压成形方案流程,说明了热成形数值模拟中的热处理、相变和成形过程之间关系,分析了热冲压有限变形理论,热力学参数的关系和求解算法;建立了典型的车身部件热冲压的力学模型和有限元分析模型,并进行了部件的展开反求分析、热成形仿真求解和成形性结果的分析评价。
     热成形高强度钢的采用将使在车身结构的材料构成更加复杂,材料的强度等级范围更宽,这就使得车身结构的设计与分析应该具有对应的方法。针对轻量化车身结构性能目标问题,系统的进行了多维因数下车身结构仿真分析,主要包括:建立了车身结构的刚度、模态CAE模型,对它们进行了弯曲刚度、扭转刚度、模态特性分析和评价;建立了车身结构强度CAE模型,对它们进行了各极限工况下的结构强度分析和评价;建立了整车碰撞CAE模型,对车身结构进行了40%ODB偏置碰撞和侧面碰撞仿真分析和评价。通过对车身结构在碰撞和极限工况等情况下的受力特征分析、各构件板厚灵敏度分析计算,得到了车身结构高强度钢板的分布规律,筛选出了轻量化优化的目标零部件。
     由于热成形高强度钢板的使用,车身构件的钢板进一步变薄,而且全车将由不同强度和厚度的钢板所构成,因此研究板厚对结构性能的影响将更加重要。由此分析总结了车身板厚结构多目标优化的基本理论和优化算法的相关技术体系、综合减重流程和方法。以此为基础,分别建立了基于静动态性能近似模型和轻量化优化数学模型、基于正面偏置碰撞安全性的近似模型和轻量化优化数学模型、基于侧面碰撞安全性的近似模型和轻量化优化数学模型,并采用非支配多目标遗传算法NSGA-Ⅱ对数学优化模型进行了求解计算,分别得到了结构质量和扭转刚度、结构质量和吸能、结构质量和加速度的Pareto解集。分别选取其中两种方案代入到有限元模型中计算,并与优化前仿真结果进行对比分析,研究表明优化的方法和结果是可行和有效的。
     通过白车身模态试验和仿真结果对比研究、40%ODB偏置实车碰撞试验和仿真结果对比研究、侧面实车碰撞试验和仿真结果对比研究,结果表明,在前述分析过程中建立的白车身和整车碰撞CAE模型是满足综合工程模拟仿真精度要求的。对车身结构多目标优化解,从疲劳强度、正面碰撞安全性、侧面碰撞安全性等角度对优化减重后两方案进行仿真分析,并与优化前的初始模型仿真计算结果进行对比研究,验证了轻量化车身板厚结构多目标优化的综合效果。
In order to satisfy the demand of vehicle lightweight design, the automobiledesign and manufacturing industry are keeping developing new materials andtechnologies. High-strength steel is receiving more and more attention, because of itsadvantage in strength, stiffness, impact resistance, recoverability and cost. In thispaper, light high-strength steel is taken as an object to carry out properties study andforming study on thermal problem; and an independent brand sedan body is taken as acarrier for lightweight structural analysis and optimization based on the MSOTmethod established.
     This paper studies the microstructure of high-strength hot forming steel by itssurface morphology and component spectrum, the core microstructure and componentspectrum. And we compare the microstructure and components before and afterheating. Based on the iron-carbon alloy phase diagram, this paper studies theheat-treatment process theory and thermal simulation on hypo-eutectoid hot formingsteel, and acquires the CCT curve of high-strength boronization steel. We test andanalyze the mechanical performance of hot forming boronization steel in differenttemperatures and shape-changing rates by means of cold-state tensile experiment andthermal simulation, and fit the stress-strain curve in normal temperature and afterquenching and the stress-strain curve in high temperature, with the help ofexponential constitutive equation and thermal state model respectively. We also studythe forming limit of hot forming boronization steel in600℃,700℃and800℃, andacquire forming limit diagram.
     According to the forming difficulty of high-strength structural parts, this paperstudies the numerical simulation and process parameters optimization among hotforming process. A hot stamping process is presented in this paper. And this paper alsoexplains the relationship among heat-treatment, phase transition and forming processin hot forming numerical simulation, and analyzes hot stamping finite deformationtheory, the relationship of thermodynamic parameters and solution algorithm. Besides,this paper establishes a hot stamping mechanical model and finite element analysismodel of a typical automotive body parts, and analyzes the parts expansion reverse,hot forming simulation solution and formability result.
     Using high-strength hot forming steel will make material composite more complex and strength grade range wider. It needs corresponding methods to solvethese two problems. In order to propose the performance objectives of lightweightautomotive body structure, this paper builds a strength and modal CAE model, andanalyzes and evaluates its bending stiffness, torsional stiffness and modalcharacteristics. This paper also builds an automotive body structure strength CAEmodel to study its structural strength under different limiting conditions. A whole carimpact CAE model is built to analyze and evaluate the40%ODB offset impact andside impact performance. After that, the mechanics characteristic distribution ofautomotive body structure high-strength steel is obtained, which can help to selecttarget parts for lightweight optimization.
     Steel plate used in vehicle body component will be thinner if using high-strengthhot forming steel. The whole body will be composed by different strength anddifferent thickness steel plate, so it’s very important to study how the thickness affectsstructural performance. Based on the basic theory of automotive body multi-objectiveoptimization and some related technology system about optimization algorithm, webuild approximate models and lightweight optimization mathematic models ondynamic and static performance, safety performance in frontal offset impact and sideimpact, and acquire the Pareto solution set of structural quality and torsional stiffness,structural quality and energy-absorbing, and structural quality and acceleration,respectively. Two projects are selected to carry on finite element model simulation.The result is compared with the simulation result before optimization, which showsthe optimization method works effectively.
     The comparisons between the test and simulation of BIW modal model and twocollision models show both the BIW model and whole car collision CAE modelsatisfy simulation precision demand. From different aspects, such as fatigue strength,safety performance in frontal impact and side impact, this paper compares thesimulation result of these two projects before and after optimization, which verifiesthe comprehensive effect of lightweight automotive body multi-objectiveoptimization.
引文
[1] http://www.gov.cn/zwgk/2009-03/20/content_1264324.htm,汽车产业调整和振兴规划
    [2]王连芬.中国汽车产业竞争力的研究[D].长春:吉林大学博士学位论文,2005
    [3]可持续发展与汽车产业面临的机遇与挑战[N].中国工业报,2011年5月27日第A02版
    [4]刘文华,国务院发展研究中心产业经济研究部.中国汽车产业发展报告[M].北京:社会科学文献出版社,
    [5] http://www.caam.org.cn/newslist/a35-1.html,中国汽车工业协会
    [6] http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20130221_402874525.htm,2012年国民经济和社会发展统计公报
    [7] Cornette D. and Galtier A. Influence of the forming processing on crashing and fatigue performance ofhigh strength steels for automotive components[R]. SAE Technical Paper2002-01-0642.
    [8] BenedYK J.C. Light metals in automotive applications[J].Light Metal Age,2000,10(1):34–35.
    [9] Zhang Y, Zhu P, Chen GL. Lightweight Design of Automotive Front Side Rail Based on RobustOptimization. Thin-walled Structures2007;45(7-8):670-676.
    [10] Hosseini-Tehrani Parisa, Nikahd Mossa. Two materials S-frame representation for improvingcrashworthiness and lightening. Thin-walled Structures2006;44(4):407-414.
    [11]田浩彬,林建平,刘瑞同,等.汽车车身轻量化及其相关成形技术综述[J].汽车工程,2005,27(3):382-355
    [12]刘文华,何天明.高强度钢在汽车轻量化中的应用[J].汽车工艺与材料,2008,(11):49-51
    [13]马鸣图,M. F. Shi.先进的高强度钢及其在汽车工业中的应用[J].钢铁,2004,39(7):68-72
    [14] Tarigopula V, Langseth M, Hopperstad O S, et al. Axial crushing of thin-walled high-strength steelsections. Int J Impact Engng2006;32(5):847-82.
    [15] Deb A, Mahendrakumar MS, Chavan C, et al. Design of an aluminum-based vehicle platform for frontimpact safety. Int J Impact Engng2004;30(8-9):1055-1079.
    [16] Lanzerath H, Schilling R. Crash simulation of structural foam[R].Transactions of SAE International,2003-01-0328:73-81.
    [17] Automotive Group of International Iron and Steel Institute[R]. ULSAB-AVC Engineering Report.2001.
    [18]范军锋,陈铭.中国汽车轻量化之路初探[J].铸造,2006,55(10):995-1003.
    [19] Junbo Jia, Anders UIfvarson. A parametric study for the structural behavior of a Light-weight deck[J].Engineering Structures,2004,26:963-977
    [20]张宇,朱平,陈关龙,等.基于有限元法的轿车发动机罩板轻量化设计[J].上海交通大学学报,2006,40(1):163-166.
    [21]龙江启.混合材料白车身结构开发理论及轻量化方法研究[D].广州:华南理工大学博士学位论文,2009
    [22]周云郊.钢铝混合材料车身结构轻量化设计关键问题与应用研究[D].广州:华南理工大学博士学位论文,2011
    [23]蒋浩民,陈军.先进高强度钢板的冲压成形特性及其应用[J].塑性工程学报,2009,16(4):183-186
    [24] ULSAB-AVC body structure materials. ULSAB-AVC Consortium. Technical Transfer Dispatch6[R].SAE,2001.
    [25]史文方,王怀国,周昆.镁合金材料研发进展概况[J].新材料产业,2011,2:27-33
    [26]王利,杨雄飞,陆匠心.汽车轻量化用高强度钢板的发展[J].钢铁,2006.9(41):1-8
    [27] Oren E.C. Automotive Materials and Technologies for the21st Century. The39th MWSP ConfProc[C].ISS,1998. p639-643
    [28]杨沿平,唐杰.我国汽车轻量化技术现状及研发重点[J].汽车与配件,2006,42(20):20-22
    [29] Drewes, Ernst-Juergen, Engl, et al. Potential for lightweight car-body construction using steel[J].Technische Mitteilungen Krupp (English Edition),1994.4:25-32
    [30]许珞萍,邵光杰,李麟,等.汽车轻量化用金属材料及其发展动态[J].上海金属,2002,24(3):1-7
    [31]肖艳.现代车用金属材料及其发展趋势[J].金属世界,2005.4:48-51
    [32]中国汽车工程学会.世界汽车技术发展跟踪研究[M].北京:北京理工大学出版社,2006:1-234.
    [33]林忠钦.汽车板精益成形技术[M].北京:机械工业出版社,2009.4
    [34]江海涛,唐荻,米振莉.汽车用先进高强度钢的开发及应用进展[J].钢铁研究学报,2007,19(8):1-6
    [35] Thorpe M.D, Adam H, ULSAB-Advanced vehicle concepts-overview and design[R], SAE TechnicalPaper.2002-01-0036,2002
    [36] Shaw J., Roth R., Achieving and affordable low emission steel vehicle and economic assessment ofthe ULSAB-AVC program design[R], SAE Technical Paper.2002-01-0361,2002
    [37]叶平,沈剑平,王光耀等.汽车轻量化用高强度钢现状及其发展趋势[J].机械工程材料,2006,30(3):4-7
    [38]李剑省,陈学涛.汽车用钢的开发现状及发展趋势[J].山东冶金,2008,30(2):15-18
    [39]谭善锟,潘兴旺.奇瑞轿车用钢板[J].汽车工艺与材料,2001,(6):59-64
    [40]汽车轻量化技术创新战略联盟2012年工作会议资料[J].保定:中国汽车工程学会,2012
    [41]张熠虎.吉利,下一页更可靠.产品可靠性报告[R].2009,(9):20-27
    [42]李明曦.安全造就“都市装甲车”一汽奔腾轿车[J].汽车与安全,2006,(1):22-25
    [43]陆匠心,王利,应白桦等.高强度汽车钢板的特性及应用[J].汽车工艺与材料,2004,(6):13-15
    [44]王利,陆匠心.宝钢高等级汽车板的生产技术及发展[C].2004年全国炼钢轧钢生产技术会议论文集.无锡:中国金属学会,2004:57-63
    [45] Shinji N, Masaru I. Investigation of car body structural optimization method[J]. VehicleDesign,1990,11(1):79-86
    [46]程耿东.工程结构优化设计基础[M].北京:水利电力出版社1984.3
    [47]孙焕柴,柴山.离散变量结构优化设计[M].大连:大连理工大学出版社1995.10
    [48]隋允康.建模·变换·优化:结构综合方法新进展[M].大连:大连理工大学出版社1996.10
    [49] DORN W, GOMORY R, GREENBERG H. Automatic design of optimal structures[J]. DeMechanique,1964,3(1):25-28
    [50] Radaj D., Zimmer A., Gersster H.. Finite Element Analysis, an Automobile Engineer’s Tools[R]. SAEPaper740038
    [51] Frederic Dieu. Structural Optimization of a Vehicle Using Finite Element Techniques[R]. SAE Paper885135
    [52] Wu S.R., Cheng J.. Advanced Development of Explicit FEA in Automotive Application [J]. ComputerMethod in Applied Mechanics and Engineering,1997,149(1-4):189-199
    [53] YANG R J, CHEN C J. Stress-based topology optimization[J]. Structural and multi-disciplinaryoptimization,1996,(12):98-105
    [54] Yang R.J., Chuang Ching-Hung, Che Xiangdong, et al. New applications of topology optimization inautomotive industry[J]. International Journal of Vehicle Design,2000,23(1-2):1-15
    [55] PEDERSON C B W. Topology optimization design of crushed2D-frames for desired energyabsorption[J]. Structural and Multidisciplinary Optimization,2003,25(5):368-382
    [56] Wang Liangsheng, Basu Prodyot K and Leiva Juan Pablo. Automobile body reinforcement by finiteelement optimization[J]. Finite Elements in Analysis and Design, May2004,40(8):879-893
    [57] Fredricson, Harald. Structural topology optimisation: An application review[J]. International Journalof Vehicle Design,2005,37(1):67-80
    [58] YANG R J, CHAHANDE A I. Automotive applications of topology optimization[J]. Structural andMultidisci-plinary Optimization,1995,9(3):245-249
    [59] Eom J.S., Ju B.H., Choi N., et al. Optimization on the spot welded configuration of vehiclecomponents considering the structural performance[J]. Key Engineering Materials,2006, v326-328II,p957-962
    [60] Volz K., Dirschmid F., Duddeck, F. Crash optimization of the body-in-white in the early phase of theproduct development process [J]. VDI Berichte,2006,1967l:199-216
    [61] Lyu N., Lee B., Saitou K. Optimal subassembly partitioning of space frame structures for in-processdimensional adjustability and stiffness[J]. Journal of Mechanical Design, Transactions of the ASME,May2006,128(3):527-535
    [62] Yamazaki K, HanJ. Maximization of the crushing energy absorption of tubes[J]. StructuralOptimization,1998,16(1):37-46
    [63] L.T.Kisielewic, S.Goto, Y.Matsuoka, et al. Structural crashworthiness optimization of large vehiclesusing detailed models[C]. PUCA’98,193-205
    [64] S.-Y.Chen. An approach for impact structure optimization using the robust genetic algorithm[J]. FiniteElements in Analysis and Design,2001,7:431-446
    [65] Smith A E, David M Tate. Genetic optimization using a penalty function[J]. Proceedings of t he FifthInternational Conference on Genetic Algorit hus,1993:499–505
    [66] Kennedy J, Eberhart R C. Particle swarm optimization[J]. IEEEInt. Conf. Neural Networks Pert h,1995,5:1942–1948
    [67]高云凯,蓝晓理,陈鑫.轿车车身模态修改灵敏度计算分析[J].汽车工程,2001,23(5),352-355
    [68]胡志远,浦耿强,高云凯.轻型客车车身刚度灵敏度分析及优化[J].机械强度,2003,25(1):67-70
    [69]兰凤崇,陈吉清,林建国.面向设计的车身结构刚度与强度分析[J].农业机械学报,2005,36(4):22-25
    [70]雷雨成,张平,高翔等.轿车车身模态分析及结构优化设计[J].汽车技术,2006,4:5-9
    [71]陈国定,武力.轿车白车身结构的相对灵敏度分析[J].机械设计,2007,24(4):22-24
    [72]韩旭,朱平,余海东,等.基于刚度和模态性能的轿车车身轻量化研究[J].汽车工程,2007,29(7):545-549
    [73]李亦文,徐涛,左文杰等.基于相对灵敏度的车身结构模型修改[J].吉林大学学报(工学版),2009,39(6):1435-1440
    [74]刘伟萍,毛春升,钟邵华. A级车仪表板总成性能分析及优化[J].汽车工程师,2010(1):23-25
    [75]李红建,邱少波,林逸,等.汽车车身复杂钣金件的拓扑优化设计[J].汽车工程,2003,25(3):303-307
    [76]石琴,洪洋,张雷等.拓扑及参数优化方法在专用汽车车架结构设计中的应用[J].机械设计,2005,22(12):30-33
    [77]范文杰,范子杰,苏瑞意.汽车车架结构多目标拓扑优化方法研究[J].中国机械工程,2006,19(12):1505-1508
    [78]杨树凯,朱启昕,吴仕赋.基于有限元技术的汽车支架拓扑优化设计研究[J].汽车技术,2006,3:16-18
    [79]高云凯,孟德建,姜欣.电动改装轿车车身结构拓扑优化分析[J].中国机械工程,2006.12,17(23):2522-2525
    [80]陈茹雯,李守成,吴小平.基于有限元法的拓扑优化技术在某军车车身骨架设计中的应用研究[J].汽车工程,2006,28(4):390-393
    [81]胥志刚,林忠钦,来新民,等.面向车身结构轻量化设计的水平集拓扑优化[J].上海交通大学学报,2007,41(9):1393-1401
    [82]孙光永,李光耀,王建华,等.可靠性优化设计在汽车构件耐撞性中的应用[J].计算机辅助设计与图形学学报,2007,19(10):1308-1314
    [83]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化[J].机械工程学报,2007,4(8):142-147
    [84]陈仙燕,龙述尧.薄壁管抗撞性能的多目标结构优化[J].数值计算与计算机应用,2008,29(3):161-170
    [85]谢然,兰凤崇,陈吉清,等.满足可靠性要求的轻量化车身结构多目标优化方法[J].机械工程学报,2011,47(4):117-124
    [86]王金轮.基于高强度钢板的车身结构设计关键理论与应用研究[D].广州:华南理工大学博士学位论文,2011
    [87]2011广州国际先进汽车制造技术及装备研讨会演讲集[C].广州:中国汽车工程学会,2011
    [88]2012年中国汽车轻量化技术研讨会演讲集[C].北京:中国汽车工程学会,2012
    [89]2012年欧洲车身会议演讲集[C].汽车轻量化技术创新战略联盟:中国汽车工程学会,2012
    [90]汽车工业发展对特殊钢的需求及发展对策[J].汽车轻量化技术创新战略联盟:中国汽车工程学会,2012
    [91]中国汽车轻量化技术研讨会论文集[M].北京:北京理工大学,2012.9
    [92] kerstr m, P. Modeling and simulation of hot stamping[D]. Doctoral Theses, Lule University ofTechnology, Sweden,2006.
    [93] Berglund, G. The history of hardening of boron steel in northern sweden.1st International Conferenceon Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,175-177.
    [94] Aspacher, J. Forming hardening concepts.1st International Conference on Hot Sheet Metal Formingof High-Performance Steel, Kassel, Germany,2008,77-81.
    [95]徐伟力,艾键,罗爱辉.车身零件热冲压技术[J].现代零部件,2011,(3):26-32
    [96]马宁,胡平,翟述基,郭威.高强度钢板热成形技术及其工程实现,汽车工艺与材料,2009(12):28-30.
    [97] Patent GB1490535. Manufacturing a hardened steel article, Norrbottens Jaernverk AB,1977
    [98]徐伟力,艾健.钢板热冲压新技术介绍[J].塑性工程学报,2009,(4):39-43
    [99]周全.汽车超高强度硼钢热成形工艺研究[D].上海:同济大学,2007
    [100] P. Akerstrom, M.Oldenburg. Austenite decomposition during press hardening of a boron steelcomputer simulation and test [J]. Journal of Materials Processing Technology,2006,174:399-406
    [101]马林.高强度钢热成形技术若干研究[D].大连:大连理工大学,2010
    [102] Ma Ning, Hu Ping, Guo Wei, et al. Feasible methods applied to the design and manufacturing processof hot forming. IDDRG2009conference, Golden, CO USA,2009,835-843.
    [103] Olle, P, Behrens, B. A, Weilandt, K, Lange, F,2008. Numerical modeling of phase transformation inhot stamping and deep drawing. The9st International Conference on Technology of Plasticity, CIRP,1937-1942.
    [104] Oldenburg, M, kerstr m, P, Bergman, G. Simulation of the microstructure evolution in a presshardened component.1st International Conference on Hot Sheet Metal Forming ofHigh-Performance Steel, Kassel, Germany,2008,3-13.
    [105] Casas, B, Latre, D, Rodriguez, N, Valls, I. Tailor made tool materials for the present and upcomingtooling solutions in hot sheet metal forming.1st International Conference on Hot Sheet MetalForming of High-Performance Steel, Kassel, Germany,2008,23-35
    [106] Faderl, J, Manzenreiter, T, Radlmayr, M. Press hardening of hot-dip galvanized22MnB5: A stableand reproducible process.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel, Kassel, Germany,2008,199-205.
    [107] Bergman G, Oldenburg M. A finite element model for thermomechanical analysis of sheet metalforming. International Journal for Numerical Methods in Engineering,2004,59:1167-1186.
    [108] Eriksson M, Oldenburg M, Somani MC, Karjalainen LP. Testing and evaluation of material data foranalysis of forming and hardening of boron steel components. Modelling Simul. Mater. Sci. Eng,2002,10:277–294.
    [109] Naderi M, Durrenberger L, Molinari A, et al. Constitutive relationships for22MnB5boron steeldeformed isothermally at high temperatures. Materials Science and Engineering A,2008,478:130-139.
    [110] Merklein M, Lechler J. Determination of material and process characteristics for hot stampingprocesses of quenchenable ultra high strength steels with respect to a FE-based process design[R].SAE World Congress: Innovations in Steel and Applications of Advanced High Strength Steels forAutomotive Structures, Paper No.2008-0853.
    [111] Yanagida, A, Azushima, A,2009. Evaluation of coefficients of friction in hot stamping by hot flatdrawing test. CIRP Annals-Manufacturing Technology,58,247-250.
    [112] MyungKi Park, HyunSung Son, TaiHo Kim, et al. Formability, flow and heat transfer simulation ofhot press forming b-pillar part and tools[J], AIP Conference Proceedings, NUMIFORM2010(2010),344-347.
    [113]邢忠文,包军,杨玉英等.可淬火硼钢板热冲压成形实验研究[J].材料科学与工艺,2008,16(2):172-175
    [114]林建平,王立影,田浩彬等.超高强度钢热流变行为[J].塑性工程学报,2009,16(2):180-183
    [115]马宁,胡平,闫康康,等.高强度硼钢热成形技术研究及其应用,机械工程学报,2010,46(14):177-181
    [116] Ma Ning, Hu Ping, Shen Guozhe, et al. Model and numerical simulation of hot forming[C].International Symposium on Automotive Steel, ISAS conference proceedings, September,2009,Dalian, China. Beijing:Metallurgical Industry Press,2009:362-367
    [117]马宁,胡平,郭威.热成形硼钢热、力及相变耦合关系研究,材料热处理学报,2010,12(5):33-40.
    [118]马宁,武文华,申国哲,胡平.高强度钢板热成形研究数值模拟-静力显式,计算力学学报,2011(3).
    [119]马宁,胡平,郭威.高强度钢板热成形成套技术及装备[J],汽车与配件,2009(45):
    [120]朱文英.汽车轻量化与高强度钢板的研究进展[J].上海金属,2003,25(4):11-15.
    [121]马鸣图.先进的汽车用钢[M]北京:化学工业出版社,2008.1
    [122] ARCELORMITTAL. Usibor1500and Hot-Stamping[C]. AP&T Press Hardening Seminar, AP&TPress Hardening proceedings, October2,2008, Dearborn MI, USA. Dearborn:AP&T,2008:1-41.
    [123] Naderi, M, Durrenberger, L, Molinari, A., Bleck, W. Constitutive relationships for22MnB5boronsteel deformed isothermally at high temperatures. Materials Science and Engineering, A2008,478:130-139.
    [124] Garcia Aranda, L, Chastel, Y, Fernández Pascual, J, Dal Negro, T,2002. Experiments and simulationof hot stamping of quenchable steels. Advanced Technology of Plasticity,2002,2:1135-1140.
    [125] Borsetto, F, Ghiotti, A, Bruschi, S. Investigation of the high strength Steel Al-Si coating during hotstamping operations. Key Engineering Materials, Vols.2009,410-411,289-296.
    [126] Goedicke, S, Sepeur, S, Frenzer, G, Breyer, Ch. Wet chemical coating materials for hot sheet forming-anti scaling and corrosion protection.1st International Conference on Hot Sheet Metal Forming ofHigh-Performance Steel, Kassel, Germany,2008,37-44.
    [127] Paar, U, Becker, H. H, Alsmann, M. Press-hardened components from kassel–chances andchallenges.1st International Conference on Hot Sheet Metal Forming of High-Performance Steel,Kassel, Germany,2008,153-163.28-30.
    [128] Mori, K., Ito, D.,2009. Prevention of oxidation in hot stamping of quenchable steel sheet byoxidation preventive oil. CIRP Annals-Manufacturing Technology,2009,58(1):267-270.
    [129]王焕庭,李茅华,徐善国.机械工程材料[M].大连:大连理工大学,1995.9
    [130]崔忠圻.金属学与热处理[M].北京:机械工业出版社,1997.10
    [131]汪大年.金属塑性成形原理[M].北京:高等教育出版社,1986
    [132] Neubauer, I., Hübner, K., Wicke, T. Thermo-mechanically coupled analysis: The next Step in sheetmetal forming simulation.1st International Conference on Hot Sheet Metal Forming ofHigh-Performance Steel, Kassel, Germany,2008,275-283.
    [133]马宁,胡平,等.高强度钢板热成形本构理论与实验分析[J].力学学报,2011,2:384-356
    [134] Lechler, J, Merklein, M. Geiger, M. Determination of Thermal and Mechanical Material Properties ofUltra-high Strength Steels for Hot Stamping. Steel Research International,2009,79(2):98-104.
    [135]李泷杲,王书恒、徐岩.金属板料成形有限元模拟基础[M]北京:北京航空航天大学出版社.2008.10
    [136] T. Belytschko and C.-S. Tsay, A stabilization procedure for the quadrilateral plate element withone-point quadrature. Int. J. Num. Meth. Engng.1983,19:405-419
    [137] T. J. R. Hughes, Recent developments in computer methods for structural analysis. Nucl. Eng. Des.1980,57(2):427-439.
    [138] Bassani J L, Yield characterization of metals with transversely isotropic plastic properties, Int. J.Mech. Sci,1977(19):651.
    [139] Gotoh M, A theory of plastic anisotropy based on a yield function of fourth order (plane stress state),Int. J. Mech. Sci,1977(19):505.
    [140] Wang N M and Tang S C, Analysis of bending effects in sheet forming operations, Proc.NUMIFORM86Conf.,1986:71-76
    [141]胡平,大型覆盖件冲压成形CAE软件系统,中国科协第九次“青年科学家论坛”报告文集[C].清华大学出版社,1996:126-134.
    [142] P.Hu, J.Lian, Y.Q. Liu and Y.X. Li, A Quasi-flow corner theory of elastic plastic finite deformation,Int J. Solids&Struct., Vol.35, No.15,1998,1827-1845.
    [143] D. Y. Li, P. Hu, Y. Cao and Y. X. Li, Section analysis of industrial sheet-metal stamping processes, J.Mater. Proc. Tech., Vol.120,2002:37-44.
    [144] G Z SHEN, P HU, X K ZHANG, X B CHEN and X D LI, Spring-back simulation and tool surfacecompensation algorithm for sheet metal forming, Proceedings of NUMISHEET2005, Detroit,2005,57-65.
    [145]蒋浩民.锻造工程三维数值模拟系统H-FORGE3D的开发与应用[D].哈尔滨工业大学博士论文.1998.
    [146]雷正保.汽车覆盖件冲压成形CAE技术[M].长沙:国防科技大学出版社,2003.5
    [147]谢水生,王祖唐.金属塑性成形工步的有限元数值模拟[M].北京:冶金出版社,1997.8
    [148]肖景容,姜奎华.冲压工艺学[M].北京:机械工业出版社,1988.7
    [149]曾霞文.冲压工艺及模具设计[M].北京:北京理工大学出版社.2011.4
    [150]鄂大辛.成形工艺与模具设计[M].北京:北京理工大学出版社.2007.8
    [151] Barlat,F.and Lian,J.,Plastic behavior and stretch ability of sheet metals.Part I:A yield function fororthotropic sheets under plane stress conditions,Int.J.Plasticity,1989,5:123-130.
    [152] Barlat,F.and Lian,J.,Plastic behavior and stretchability of sheet metals Part II:Effect of yield surfaceshape on sheet forming limit,Int.J.Plasticity,1989,5:131-147.
    [153]柳玉起,胡平,等.板材冲压成形变形局部化与动边界摩擦约束[J].固体力学学报,1997,18-25.
    [154] J.C.Choi.A Compact and Practical CAD/CAM System for the Blanking or Piercing of IrregularShaped-sheet Metal Products for Progressive Working.Journal of Materials ProcessingTechnology,2001,110(1):36-46.
    [155] S.B.Park,Y.Choi,B.M.Kim,J.C.Choi,A Study of a Computer-aided Process Design for AxisymmetricDeep-drawing Products[J].Journal of Materials Processing Technology,1998,75:17-26.
    [156]那景新,焦键,闫亚坤,胡平,改进型逆有限元法在弯曲成形模拟中的应用[J].机械工程学报,2004,40(11):113-116.
    [157]鲍益东,那景新,胡平,汽车覆盖件成形模面快速等矩算法[J].机械工程学报,2004,40(8):166-169.
    [158]胡平.汽车覆盖件模具设计[M].北京:机械工业出版社,2012.1
    [159] Okamoto, I, Takahashi, A, etc, Computer aided design and evaluation system for stamping dies inToyota[R]. SAE paper No.880527.
    [160] Bergman, G., Oldenburg, M. A finite element model for thermo-mechanical analysis of sheet-metalforming[J]. International Journal for Numerical Methods in Engineering,2004,59:1167-1186.
    [161] Merklein, M., Lechler, J. Determination of material and process characteristics for hot stampingprocesses of quenchable ultra high strength steels with respect to a FE-based process design[R]. SAEWorld Congress: Innovations in Steel and Applications of Advanced High Strength Steels forAutomobile Structures,2008, Paper No.2008-0853.
    [162]关正西,强洪夫.有限元分析的概念与应用[M].西安:西安交通大学出版社,2004.11
    [163]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988
    [164] Neubauer, I., Hübner, K., Wicke, T. Thermo-mechanically coupled analysis: The next step in sheetmetal forming simulation.1st International Conference on Hot Sheet Metal Forming ofHigh-Performance Steel, Kassel, Germany,2008,275-283.
    [165] E.L.Wilson., Automation of the finite element method, A personal historical view[J]. Finite ElementAnalysis Design.1993, Vol.13, p91-l04.
    [166] C.A.Hall, Transfinite interpolation and applications to engineering problems, Theory ofapproximation,1976, Academic Press,p308-331.
    [167] Iwata N, Matsui M and Gotoh M, An elastic plastic analysis of square cup drawing process: finiteelement simulation of deformation and breakage in sheet metal forming-2[J]. JSTP,1992,33(381):1202-1207.
    [168]石琴.基于现代设计理论的车身结构设计方法研究[D].合肥:合肥工业大学博士学位论文,2006
    [169]黄金陵.汽车车身设计[M].北京:机械工业出版社,2008
    [170]成艾国,沈阳,姚佐平.汽车车身先进设计方法与流程[M].北京:机械工业出版社,2011
    [171]赖宇阳. Isight参数优化理论与实例详解[M].北京:北京航空航天大学出版社,,2012
    [172]于开平. Hypermesh从入门到精通[M].北京:科学出版社,2005
    [173]李楚琳,张胜兰,冯缨. Hyperworks分析应用实例[M].北京:机械工业出版社,2008
    [174]赵海欧. LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003
    [175]张永昌. MSC.Nastran有限元分析理论基础与应用[M].北京:科学出版社,2004
    [176]王国军. MSC.FATIGUE疲劳分析实例指导教程[M].北京:机械工业出版社,2005
    [177]李增刚,詹福良. Virtual.lab Acoustics声学仿真计算高级应用实例[M].北京:国防工业出版社,2010.8
    [178]孙凌玉.车身结构轻量化设计理论、方法与工程实例[M].北京:国防工业出版社,2011.5
    [179]马鸣图,路洪洲,李志刚.论轿车白车身轻量化的表征参量和评价方法[J].汽车工程,2009.31(5):403-406
    [180] T.Howard,k.Raghavan,J.Buttles.Application of advanced high srength steel to NVH components[R].Transactions of SAE International.2009-01-0801
    [181]高云凯.汽车车身结构分析[M].北京:北京理工大学出版社,2006
    [182] Frank J, Mark E, Raj Mohan, et al. Evolution of Phases, Microstructure, and Surface Roughnessduring Heat Treatment of Aluminized Low Carbon Steel, Metallurgical and Materials Transactions A,2009,6:1554-1563.
    [183] Fan DW, Kim MS, Physical Metallurgy of Hot Press Forming Ultra High Strength Steel[J].MaterialsScience&Technology,2008,1710-1721.
    [184] Lorenz, D., Roll, K. Simulation of Hot Stamping and Quenching of Boron Alloyed Steel.7thInt.ESAFORM Conf. on Mat. Forming, April28-302004, Trondheim, Norway, pp.659-662
    [185] M Suehiro. K Kusumi. T Miyakoshi, etal. Properties of Aluminium-coated Steels for Hoforming [J].Nippon Steel Technical Report No.88,2003.
    [186]刘云旭金属热处理原理[M].北京:机械工业出版社,1981.
    [187] Honeyeombe R W K Steel Microstucture and Properties.1981:43
    [188]李文凯重轨端部热处理连续冷却转变曲线的测定及组织特征分析[D].武汉:武汉科技大学硕士学位论文,2010.
    [189] K. Grange, J. Kiefer. The transformation of austenite by continuous cooling, Trans ASM,1941,29-32.
    [190] GLEEBLE SYSTEMS AND APPLICATIONS.1998-2007Dynamic Systems Inc. All rightsreserved.
    [191]章守华.合金钢[M].北京:冶金工业出版社,1981.
    [192]李毅.大客车侧翻碰撞安全性设计与优化关键技术研究[D].广州:华南理工大学博士学位论文,2012
    [193] GB/T228-2002,金属材料室温拉伸试验方法[S].2002
    [194] Ludwik p.Elemente der techanologishen mechanik [M].Berlin:Springer-Verlag OHG,1909.
    [195] Hollomon J H. Tensile deformation [J].Trans AIME,1945,162:268-290.
    [96] Swift H W J.Mech.Phys [J].Solid.1952,1:1-18.
    [197] Ghosh A k, Backofen W A.Strain hardening and instability in biaxially stretchedsheets[J].Metallurgical Transaction A,1973,4:1113-1123.
    [198] GB/T5028-2008,金属材料薄板和薄带拉伸应变硬化指数的测定[S].2008
    [199] Eriksson M, Oldenburg M, Somani MC, Karjalainen LP. Testing and evaluation of material data foranalysis of forming and hardening of boron steel components. Modelling Simul. Mater. Sci. Eng,2002,10:277–294.
    [200] Ma N., Hu P., Shen G. Z., et al. Modeling, testing and numerical simulation on hot forming[C]. AIPConference Proceedings, Plenary lecture of NUMIFORM2010(2010),18-27.
    [201] Karbasian H, Brosius A, Tekkaya A. E, et al. Numerical Process Design of Hot Stamping ProcessesBased on Verified thermo-mechanical characteristics[J]. Materials Science and Technology,2008,1733-1743.
    [202] M. Merklein, J. Lechler, M. Geiger: Characterization of the flow properties of thequenchenable ultrahigh strength steel22MnB5. Annals of the CIRP,55/1/(2006), p229-236.
    [203] Nemat-Nasser, S,1999. Experimentally-based micromechanical modeling of metal plasticity withhomogenization form micro-to-macro-scale properties. IUTAM Symposium on Micro-andMacrostructural Aspects of Thermoplasticity,101-113.
    [204] Johnson, G. R., Cook, W. H.,1983. A constitutive model and data for metals subjected to largestrains,high strain-rates and high temperature[C].The7th Symposium on Ballistic,541-547.
    [205] Aranda L.Garcia, Chaster Y. Modeling hot stamping of quenchable steels[C]. AGH University ofScience and Technology:5thInternational ESAFORM Conference on Material Forming.2002,4
    [206] Tong, L, Stahel, S, Hora, P,2005. Modeling for the FE simulation of warm metal formingprocesses[C].The6th International Conference and Workshop on Numerical Simulation of3D SheetMetal Forming Processes,625-629.
    [207] Ghosh A., Kikuchi N.1988. Finite Element Formulation for the Simulation of Hot Sheet MetalForming Processes[J]. International Journal of Engineering Science,26Nr.2,143-161.
    [208] Molinari A.M, Ravichandran G.2005. Constitutive modeling of the high-strain-rate deformation inmetals based on the evolution of an effective microstructural length[J]. Mechanics of Materials,37,737-752.
    [209] Merklein M, Lechler J. Determination of material and process characteristics for hot stampingprocesses of quenchenable ultra high strength steels with respect to a FE-based process design[R].SAE World Congress: Innovations in Steel and Applications of Advanced High Strength Steels forAutomotive Structures, Paper No.2008-0853.
    [210] A. Turetta, A. Ghiotti and S. Bruschi, Investigation of22MnB5Formability in Hot StampingOperations[J]. Journal of Materials Processing Technology177(2006),396-400.
    [211] Hoffmann H, So H, Steinbeiss H (2007) Design of hot stamping tools with cooling system. Annals ofthe CIRP2007,56/1:269-272.
    [212] Keeler Stuart P. Circular grid system-a valuable aid for evaluating sheet metal formability[R]. SAETrans,1968, No.680092:371-379
    [213] Goodwin Gorton M. Application of strain analysis to sheet metal forming problems in the pressshop[R]. SAE Trans,1968, No.680093:380-387.
    [214] GB/T15825.8-2008,金属薄板成形性能与试验方法第8部分:成形极限图(FLD)测定指南[S].2008
    [215] Wang N M and Tang S C, Analysis of bending effects in sheet forming operations[C]. Proc.NUMIFORM’86Conf,1986:71-76.
    [216] Nakamachi E, A finite element simulation of the sheet metal forming process, Int.J. Num. Meth.Engng,1988(25):282-292.
    [217] Nakamachi E, Computer aided simulation of sheet metal forming processes by thin shell finiteelement analysis, Proc.3rd ICTP,1990:1745.
    [218] Bathe K J, Finite element procedures in engineering analysis, Prentice Hull Inc, Englewood Cliffs,New Jersey,1982.
    [219] Bergman, G. Modeling and simultaneous forming and quenching[D].Doctoral Theses, LuleUniversity of Technology, Schweden,1999.
    [220] Bergman, G., Oldenburg, M. A finite element model for thermo-mechanical analysis of sheet-metalforming[J].International Journal for Numerical Methods in Engineering,200459,1167-1186.
    [221] kerstr m, P., Bergman, G., Oldenburg, M. Numerical implementation of a constitutive model forsimulation of hot stamping[J]. Materials Science and Engineering,200715,105-119.
    [222] Merklein, M., Lechler, J., Geiger, M.,2006. Characterisation of the flow properties of the quenchableultra high strength steel22MnB5. CIRP Annals-Manufacturing Technology,2006,55,229-232.
    [223] Merklein, M., Lechler, J. Determination of material and process characteristics for hot stampingprocesses of quenchable ultra high strength steels with respect to a FE-based process design[R].SAE World Congress: Innovations in Steel and Applications of Advanced High Strength Steels forAutomobile Structures,2008, Paper No.2008-0853.
    [224]马宁,胡平,郭威.热成形硼钢热、力及相变耦合关系研究[J].材料热处理学报,2010,12(5):33-40.
    [225] Frnekel&smti,分子模拟一从算法到应用[M].化学工业出版社,2002.
    [226]林忠钦,李淑慧等.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2005
    [227]李泷杲,王书恒,徐岩.金属板料成形有限元模拟基础[M].北京:北京航空航天大学出版社,2008
    [228]朱亚群,徐伟力,杨玉英,林忠钦.冲压仿真中Mindlin壳单元的关键技术问题[J].材料科学与工艺.2003,3:92~96
    [229]刘庄,吴肇基,吴景之等.热处理过程的数字模拟[M].北京:科学出版社,1996
    [230] T.Inoue, Inelastic Constitutive Relationships and Applications to Some Thermomechani-calProcesses Involving Phase Transformations, in Thermal StressⅢ(by R.B.Hetnarski)[M]. ElsevierScience Publishers B.V., Amsterdam, Netherlands,1989
    [231] Ma N, Hu P, Guo W., et al. Feasible methods applied to the design and manufacturing process of hotforming[C]. IDDRG2009conference, Golden, CO USA,2009, p.835~843.
    [232]申国哲,胡平,王锦程.改进的速度迭代弹塑性大变形动力半显式算法[J].固体力学学报,2003,24(4):463-468.
    [233]富田佳宏(著),胡平,李运兴,柳玉起译.数值弹塑性力学[M].吉林:吉林科学技术出版社.1995.
    [234] Lechler J, Merklein M. Hot stamping of ultra high strength steels as a key technology for lightweightconstruction [J].Materials Science and Technology (MS&T), October5-9,2008,1698-1709.
    [235] Incropera F P, DeWitt D P. Fundamentals of Heat and Mass Transfer [J]. John Wiley&Sons,19903rd ed.0-471-51729-1.
    [236]俞佐平,陆煜.传热学[M].北京:高等教育出版社,1995
    [237]屠传经,沈珞婵,吴子静.热传导[M].北京:高等教育出版社,1992
    [238]周军.基于CAE的薄板冲压毛坯反算技术与应用[D].长沙:湖南大学,2002
    [239] CH Lee,H Huh. Three dimensional multi-step inverse analysis for the optimum blank design in sheetmetal forming process [J].Journal of mateials Processing Technology,1998,80-81:76-82.
    [240] S Yossifon,K Sweeney, M Ahmetoglu and T Altan. On the acceptale blank-holder force range in thedeep-drawing process.[J].Journal of mateials Processing Technology,1992(33):175-194.
    [241] Dalton Gregory M, Schey John A. Effects of bead finish orientation on friction and galling in thedrawbead test[R]. SAE Trans of Material&Manufacturing,1992,No.920632:509~519.
    [242]谭继锦,张代胜.汽车结构有限元分析[M].北京:清华大学出版社,2009.11
    [243]李楚琳,张胜兰,冯樱,等. Hyperworks分析应用实例[M].北京:机械工业出版社,2008.9
    [244]叶远林,徐有忠,吴沈荣,等.焊点模拟方法对白车身刚度分析影响研究[A].第五届中国工程分析技术年会论文集[C]:517-522
    [245]宋海生,史文库,龙岩,等.整车模态分析中焊点模拟方法的研究[J].汽车工程,2011,33(11):920-923
    [246]白化同,郭继忠.模态分析理论与实践[M].北京:北京理工大学出版社,2006.1
    [247]庞剑,何华.汽车噪声与振动-理论与实践[M].北京:北京理工大学出版社,2006.6
    [248] Moller N, Brüel S.G. Application of Operational Modal Analysis on Cars [J].SAE TECHNICALPAPER SERIES,2003-01-1599.
    [249]朱清君.客车骨架静动态分析[D].合肥:合肥工业大学,2010
    [250]赵常虎,郭永进,余海东.轿车白车身骨架低阶模态特性研究[J].机械设计与制造,2007(11):180-181
    [251]李纪雄.某皮卡振动噪声诊断分析与悬置系统隔振性能优化[J].汽车工程学报,2011(10)
    [252]庄良飘.工程设计阶段汽车平顺性分析方法研究[D].广州:华南理工大学,2010
    [253]李纪雄.基于等效试车原理的的汽车可靠性试验规范的开发[J].汽车工程,2011,33(11)
    [254]张金换,杜汇良,马春生,等.汽车碰撞安全性设计[M].北京:清华大学出版社,2010.2
    [255]朱西产,钟荣华.薄壁直梁件碰撞性能计算机仿真方法的研究[J].汽车工程,2000,22(2):85-89
    [256]钟阳. SUV侧面碰撞仿真分析及B柱优化设计研究[D].广州:华南理工大学,2010
    [257]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.5:30-59
    [258]胡远志等.基于LS-DYNA和HyperWorks的汽车安全仿真与分析[M].北京:清华大学出版社,2009.9
    [259]田晟.汽车正碰安全性组合拟合设计方法与应用[D].广州:华南理工大学,2011
    [260]腾科.汽车正面偏置碰撞计算机仿真分析[D].沈阳:东北大学,2008
    [261]王志涛,门永新,汤志鸿,等.汽车偏置碰撞中的前横梁改进[J].汽车技术,2010,7:51-54
    [262]亓文果,金先龙,张晓云.汽车车身碰撞性能的有限元仿真与改进[J].上海交通大学学报,2005,39(9):1452-1456
    [263]王大志.基于乘员保护的汽车正面碰撞结构设计与变形控制研究[D].北京:清华大学,2006
    [264] Proche Engineering Services. ULSAB-AVC Technical Transfer Dispatch#2(Description ofULSAB-AVC CAE Analysis for Crashworthiness),1999
    [265]谢然.多目标优化方法在车身结构轻量化设计中的应用研究[D].广州:华南理工大学,2010
    [266]王助成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1996
    [267]唐志坚.白车身静动态性能灵敏度分析及优化研究[D].广州:华南理工大学,2012
    [268] Simpson T W.A Concept Exploration Method for Produce Family Design[D].Atlanta,GA:GeorgiaInstitute of Technology,1998
    [269]陈魁.试验设计与分析[M].北京:清华大学出版社,2005
    [270]刘文卿.试验设计[M].北京:清华大学出版社,2005
    [271]任露泉.试验优化设计与分析[M].长春:吉林科学技术出版社,2001.5
    [272] Montgomery D C Design and Analysis of Experiments[M].7th ed.New York:John Wiley&Sons,2008
    [273] Simpson T W.A Concept Exploration Method for Product Family Design[D].Atlanta, GA: Georgiainstitute of technology,1998
    [274] Palmer K D. Data Collection Plans and Meta Models for Chemical Process FlowsheetSimulations[D]. Atlanta,GA:Georgia Institute of Technology,1998
    [275] Sacks J,Schiller S B,Welch W J. Designs for Computer Experiments[J]. Technometrics.1989,31(1)
    [276] Ye K Q, Li W, Sudjianto A. Algorithmic Constructionn of Optimal Symmetric Latin HypercubeDesigns[J]. Journal of Statistical Planning And Inference.2000,90(1):145-159
    [277] Liefvendahl M, Stocki R. A Study on Algorithms for Optimization of Latin Hypercbes[J]. Journalof Statistical Planning and Inference.2006,136(9):3231-3247
    [278] Jin R, Chen W, Sudjianto A. An Efficient Algorithm for Constructing Optimal Design of ComputerExperiments[C]. Proceedings of the ASME Design Engineering Technical Conference. Chicago,United States,2003:545-554
    [279] Johnson M E, Moore L M, Ylvisaker D. Minimax and Maximin Distance Designs[J]. Journal ofStatistical Planning and Inference.1990,26(2):131-148
    [280] Morris M D, Mitchell T J. Exploratory Designs for Computational Experiments[J]. Journal ofStatistical Planning and Inference.1995,43(3):381-402
    [281] Dassault Systemes simulia Coporation. Isight Component Guide
    [282] Myers R H, Montgomery D C, Anderson-Cook C M. Response Surface Methodology: Process andProduct Optimization Using Designed Experiments[M].3rd ed. New York:John Wiley&Sons.2009
    [283] Stander N.LS-OPT Training Class Optimization Theory
    [284] Hardy R L. Multiquadric Equations of Topography and Other Irregular Surfaces[J]. Journal ofGeophysical Research.1971,76:1905-1915
    [285] Krishnamurthy T. Response Surface Approximation With Augmented And Compactly SupportedRadial Basis Functions[C].Proceedings of44thAIAA/ASME/ASCE/AHS/ASC Structures, StructuralDynamics and Material Conference. Norfolk, VA:2003
    [286] Cressie N A C. Statistics for Spatial Data[M].New York:John Wiley&Sons,1993
    [287] Franke R. Scattered data interpolation:tests of some methods[J].Mathematics of Computation,1982,38:181-200
    [288]陈吉清,郑炳杰,兰凤崇等.基于SORA方法的汽车前端抗撞性优化[J].汽车工程.2013,(12)
    [289] Pan F, Zhu P. Design Optimisation of Vehicle Roof Structures:Benefits of Using MultipleSurrogates[J]. International Journal of Crashworthiness.2011,16(1):85-95
    [290] Goel T, Haftka R T, Shyy W, et al. Ensemble of Surrogates[J]. Structural and MultidisciplinaryOptmization.2007,33(3):199-216
    [291] E.Acar, M.A. Guler, B. Gerceker, etal. Multi-objective crashworthiness optimization of taperedthin-walled tubes with axisymmetric indentations[J].Thin-Walled Structures,2011,49:94-105
    [292] Hongbing Fang, Mark F. Horstemeyer. Global response approxmation with radial basisfunctions[J].Engineering Optimization,2006,38:04,407-424
    [293]王小平,曹立明.遗传算法—理论、应用与软件实现[M].西安:西安交通大学出版社,2002
    [294]雷英杰,张善文,李续武等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005
    [295] Deb K,Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation.2002,6(2):182-197
    [296]郑强.带精英策略的非支配排序遗传算法的研究与应用[D].浙江大学,2006
    [297]高晖,李光耀,李铁柱.基于遗传算法和可靠性分析的乘员约束系统优化[J].汽车工程.2008,30(12):1052-1055

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700