用户名: 密码: 验证码:
土岩组合地层拱盖法隧道施工动态风险评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,城市交通拥挤问题愈发明显,而地铁以其绿色环保、准点迅捷、运载量大、能耗低等优点,被认为是解决城市拥挤问题的最有力手段。我国目前修建地铁的城市有20多座,青岛全市规划城市轨道交通线19条,目前在建的有3条,但由于施工经验的不足以及地层环境的复杂多变,建设工期无法保证。阻碍青岛市地铁建设工期的一个重要因素就是大跨度暗挖车站的建设。暗挖法施工风险大、工作面少且小等缺点,导致青岛地铁多处暗挖车站工期滞后。拱盖法相比较其他暗挖工法,更能合理地利用青岛地区土岩组合的地层特性,达到高效施工、节约成本、缩短工期的效果。但同时,拱盖法的施工风险因素存在于分部开挖、初支架设、临时支撑拆除等各个环节中,且一旦发生事故后果严重。为了在青岛地区推广拱盖法,有必要对其施工过程进行全面细致的风险分析及评估。本文以青岛土岩组合地层为研究背景,对土岩组合地层环境下拱盖法隧道施工动态风险评估进行研究。主要研究内容和结论如下:
     (1)拱盖法在土岩组合复杂地层环境中的适用性研究。研究表明:从控制围岩变形的风险角度来看,拱盖法要优于台阶法和双侧壁导坑法。通过数值模拟手段,对拱盖法施工围岩适用性进行分析,结果表明:拱脚处围岩条件相同时,拱顶沉降随埋深的增加而减小;当埋深相同时,拱脚处围岩条件对地表沉降的影响不大;拱脚座落在中风化岩层时,拱顶和地表沉降均处于安全范围内。
     (2)拱盖法施工的主要风险源筛选。采用专家调查法,筛选出拱盖法施工主要风险源,即开挖工序、支撑拆除以及施工对周边环境的影响。
     (3)拱盖法隧道开挖过程风险评估。采用数值计算与模型试验的方法对拱盖法施工过程中围岩压力变化及土体变形特点进行研究,研究表明:上断面开挖过程中中导洞开挖造成的位移最大,下断面开挖围岩变形几乎不发展,中洞开挖~施做拱部二衬完成阶段为变形发展最急剧阶段;在掌子面推进过程中,监测断面各部位围岩荷载的释放过程具有较大差异性,拱部围岩荷载相比于拱脚和边墙释放更快,且幅度更大。采用模糊综合评价方法对开挖过程风险评估:中洞开挖阶段风险等级为A级,拆除竖撑~施做拱部二衬阶段风险等级为B级,右导洞开挖阶段风险等级为C级,左导洞开挖阶段风险等级为D级,下断面围岩开挖阶段等级为E级。
     (4)拱盖法支撑拆除风险评估。首先针对青岛土岩组合地区拱盖法施工特点,总结了适用于拱盖法隧道的拆撑过程永久初期支护安全控制方法;然后根据数值计算结果,对各拆撑方案进行风险分级,建议现场拆撑采用风险级别较小的方案3,即从两侧向中间间隔对称拆撑。
     (5)拱盖法施工对周边环境的影响及风险评估。首先针对青岛土岩组合地区拱盖法隧道的施工特点,总结了适用于拱盖法隧道分部开挖的位移控制机理;其次采用模型试验的方法对大断面拱盖法施工隧道围岩渐进性塌方破坏机制进行研究,研究结果表明:在竖向超载条件下,隧道围岩破坏区域呈渐进扩大趋势,无支护段围岩最先发生破坏,然后依次扩展至初喷混凝土竖撑段和二衬施做段,最终破坏区面积顺次由大到小;隧洞破坏区均主要集中在各段拱顶部位,是衬砌结构破坏和围岩塌落的主要来源,拱脚及边墙部位未见明显破坏。然后基于实测数据进行动态风险评估,用风险指标法作了计算,根据实测数据分析、现场巡视模型,评价拱盖法隧道施工的安全状态,把对周围环境的影响降到最低,得出了适用于青岛拱盖法隧道施工的各监测项目风险预警值和风险巡视预警标准。
     (6)综合风险评估模型的工程应用。利用层次分析法,对拱盖法隧道施工主要风险因素进行权重分配,综合考虑各项风险因素,建立综合风险评估模型并在某车站中成功应用。
Nowadays, the problem of urban traffic congestion is becoming more and moresevere. The subway has the advantages of less environmental pollution, run faster andpunctuality, strong carrying capacity, low energy consumption etc., which isconsidered to be the most powerful means to solve the problem of urban congestion.There are more than20cities where subway construction is in proceeding in China.Qingdao has been planning19urban rail transit lines, and there are3lines which isunder construction. But troubled with the lack of construction experience andcomplex formation and the environment, the construction period cannot be guaranteed.Because the defect of the risk of underground construction is too big and the workingface is fewer and smaller, such as face few and small faults, several Qingdao subwaymining stations time lagged. Compared with the other method of undergroundexcavation, the arch cover method can make more use of reasonable characteristics ofrock composition with soil formation in Qingdao region, and achieve the effect ofefficient construction, saving cost, shorten the construction period. But at the sametime, the arch cover method of construction’s risk factors exist in the each link ofdivision of the excavation, the erection of temporary support, demolition of thetemporary support and so on. Once accident occurs, there must be seriousconsequences. In order to popularize arch cover method in Qingdao area, it isnecessary to conduct a comprehensive and detailed risk analysis and evaluation for itsconstruction process. Based on the combination of soil and rock formation of Qingdaoas the research background, the dynamic risk assessment of tunnel construction ofarch cover method under complicated formation environment are studied. The mainresearch contents and conclusions are as follows:
     (1) The applicability research of arch-cover method under the condition ofcomplicated stratum of soil-rock assorted environment. The research reveals that:from the perspective of control the risk of surrounding rock’s deformation, the arch cover method is superior to the double wall pilot tunnel method and the steps method.By means of numerical simulation, the main risk factors of the arch coverconstruction were analyzed, and the results show that if the surrounding rock of archfoot has the same conditions, the vault subsidence decreases with the increase ofburied depth; When buried depth are all the same, the conditions of surrounding rockof arch foot has little impact on the surface settlement; If the arch foot located inmoderately weathered rock strata, arch and the surface subsidence are all in a saferange.
     (2)The selection of main risk resources in the arch-cover method construction.The expert investigation method is adopted to screen the main risk resources in thearch-cover method construction, which include excavation steps, support removal andthe influence on surroundings in the process of construction.
     (3) Risk assessment of support removal in arch-cover method construction.Numerical methods and model test are adopted to do researches about the changes ofsurrounding rock pressure and the characteristics of soil deformation. The researchreveals that the displacement causing by middle pilot tunnel excavation during theupper cross-section excavation, the rock deformation is rarely changing through thelower profile excavation, and the most sharp deformation development occurs duringthe second arch lining finished stage of middle pilot tunnel excavation. The researchalso shows that there is large difference in the rock load releasing process of each partof monitoring sections during the process of tunnel face excavation, and the rock loadof arch part releases faster and larger comparing with arch feet and side walls’load.
     Use the fuzzy comprehensive evaluation method for risk assessment duringexcavation:The result is that the risk level of middle pilot tunnel excavation is A,removal of vertical support and the second arch lining is B, the right pilot tunnelexcavation is C, the left pilot tunnel excavation is D, and the lower profile excavationis identified as E.
     (4)Risk assessment of support removal in the process of arch-cover construction.Firstly, aiming to the characteristics of arch cover method construction in soil-stoneassorted areas in Qingdao, safety control method of initial support in the process of dismantling temporary shoring is summarized to apply in arch cover tunnelconstruction. Then, according to the results of numerical calculation and experts’feedback, the risk level of each support removal program is classified. It is suggestedthat the third program should be taken in site support removal because of its lowestrisk, where the support is removed symmetrically and alternately from two sides tothe middle.
     (5)Research about influence on surrounding environment and risk assessmentduring arch cover tunnel construction under the condition of complicated stratum ofsoil and rock combination. First of all, aiming to the characteristics of arch covertunnel construction in soil-stone assorted areas in Qingdao, displacement controlmechanism applied to partial excavation in arch cover tunnel construction issummarized. Then, model test method is adopted to do research on tunnel rockprogressive collapse failure mechanism in large cross-section arch cover construction.The research clears that the failure areas of tunnel rock is gradually becoming largeand the finial failure areas is changing by descending. The result also includes that thetunnel failure areas mainly focus on each dome part. It is the main cause of liningstructural damage and rock collapse. The arch feet and side walls are not damagedcleared. Next, according to the results of analysis of measured data, model test andexperts’ feedback, monitoring program risk warning value and warning standardapplied to arch cover tunnel construction of Qingdao are summarized.
     (6) Engineering application of integrated risk assessment model. AnalyticHierarchy Process is utilized to assign weights of main risk factors in the process ofarch-cover tunnel construction. And take all rick factors into considerationsynthetically, the integrated risk model is to be established and applied in a stationsuccessfully.
引文
[1]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2004.
    [2]孔改红,李富平.采煤沉陷区环境保护与治理研究[J].河北煤炭,2006,(1):4-6.
    [3]阳志元.地铁隧道浅埋大跨度暗挖隧道施工技术研究[D].广东工业大学,2008.
    [4]钟国.地铁隧道的一种新型暗挖施工工法-拱盖法[J].城市轨道交通研究,2012,15(8):145-148.
    [5]周海峰,付强.浅析拱盖法在大连地铁一期工程中山广场站中应用[J].世界家苑,2012,(12):55.
    [6]张光权,杜子建,宋锦泉,等.地铁隧道拱盖法施工沉降监测分析及控制对策[J].岩石力学与工程学报,2012,31(z1):3413-3420.
    [7]雷刚,郑广亮.岩质地区暗挖地铁隧道施工过程地面沉降分析[J].城市建设理论研究(电子版),2012,(3).
    [8]吴学锋.土岩复合地层拱盖法施工三维有限元数值模拟[J].城市轨道交通研究,2012,15(8):135-138.
    [9]刘钊,佘才高,周振强.地铁工程设计与施工[M].北京:人民交通出版社,2006.
    [10]夏明耀,曾进伦.地下工程设计施工手册[M].北京:中国建筑工业出版社,2001.
    [11]肖广智.从国家计委地下停车场工程看土层中大跨度超浅埋隧道的修筑[J].隧道与地下工程,1995(1).
    [12] Lunardi P. The evolution of reinforcement of the advance core using fibreglasselementsforshortand longterm stability oftunnels underdifficult stress--strainconditions:design, technologies and operating methods[C]. Progress in Tunnellingafter2000:Proceedings of the AI-TES-ITA2001WorldTunnelConrgessMilan-Italy10th-13th June2001.Volume II.Bologna: Patron Editore,2001:309-322.
    [13] Lunardi P. TheADECO-RS Approachinthedesignandconstruction oftheRometo Napleshigh speedrailwayline:a comparison between finaldesign speciifcations,consturctiondesign and “as-built”[C].Prorgessin Tunnelling afater2000: Proceedings of the AITES-ITA2001World Tunnel CongressMilan-Italy10th-13th June2001.Volume llI.Bologna: Patron Editore,2001:329-340.
    [14] Lunardi P, Silva C, Focracci A.The Bolognato Florence high speed railwayline:92km thorughthe Appennines[C]. Prorgessin Tunnelling fater2000: Proceedings of the AITES-ITA2001WorldTunnel Conrgess Milan-Itlay10th-13th June2001. Volumell I. Bolonga: Patron Editore,2001:341-351.
    [15] Gattinoni P, Papini M, Scesi L.Geoloigcriskin underground works Progressin Tunnelling fater2000: Porceedings of the AITES-ITA2001World Tunnel Conrgess Milan-Italy10th-13th2001.Volume I.Bologna: Patron Editore,2001:309-318.
    [16]江涛.山区软岩大跨度隧道变形神经网络预测及其工程应用[D].同济大学,2007.
    [17]王伟,黄娟,彭立敏,等.不同施工顺序对偏压连拱隧道结构稳定性的影响分析[J].西部探矿工程,2004,101:105.
    [18]胡学兵,乔玉英.偏压连拱隧道施工方法数值模拟研究[J].地下空间与工程学报,2005(1):374.
    [19]周玉宏,赵燕明,程崇国.偏压连拱隧道施工过程的优化研究[J].岩石力学与工程学报,2002,21(5):679.
    [20]刘涛,沈明荣,袁勇.偏压连拱隧道围岩稳定性模型试验与数值分析[J].同济大学学报(自然科学版),2008,04:460-465.
    [21]漆泰岳,刘强,琚国全,等.软弱岩层大跨度地铁隧道施工优化与地表沉降控制[J].岩石力学与工程学报,2010,29(4):804-813.
    [22]周顺华,张先锋,佘才高,杨龙才.南京地铁软流塑地层浅埋暗挖法施工技术的探讨[J].岩石力学与工程学报.2005.24(3):526-531.
    [23]黄俊,张顶立.地铁重叠隧道上覆地层变形的数值模拟[J].岩石力学与工程学报.2005.24(12):2176-2182.
    [24]王贵君.节理裂隙岩体中不同埋深无支护暗挖隧道稳定性的离散元数值分析[J].岩石力学与工程学报.2004.23(7):1154-1157.
    [25]焦苍,祝江林,范鹏,徐成家.浅埋软岩隧道开挖围岩变形非线性模拟分析[J].地下空间与工程学报,2005.1(5):703-706.
    [26]吴波,刘维宁,高波,等.城市浅埋隧道施工性态的时空效应[J].岩土工程学报,2004.26(3):340-343.
    [27]陈志荣.软土地基浅埋暗挖隧道性状分析[D].福州大学,2005.
    [28]陈晓婷.富水砂卵石地层条件下浅埋暗挖法隧道设计与施工对策[D].西南交通大学,2006:14-49.
    [29]孙辉.黄土连拱隧道围岩与支护结构稳定性研究[D].重庆大学,2005.
    [30]傅鑫彬.浅埋软弱围岩大跨隧道的施工技术研究[D].西南交通大学,2006.
    [31]申玉生.软弱围岩双连拱隧道设计施工关键技术研究[D].西南交通大学,2005.
    [32]汪成兵.软弱破碎隧道围岩渐进性破坏机理研究[D].同济大学,2007.
    [33]谈杜勇.连拱隧道开挖过程的模型试验研究及其三维数值模拟[D].同济大学,2006.
    [34] Sharma J S, Bolton M D. A new technique for simulation of collapse of a tunnel in a drumcentrifuge [R]. CUED/D-Soild TRZ86,[S.l.]:[s.n.],1995.
    [35] Chambon P, Cortj F. Shallow Tunnels in Cohesionless Soil Stability of Tunnel Face [J]. Journal ofGeotechnical Engineering,1994,120(7):1148-1165.
    [36] Murakami E. Stability and failure mechanisms of a tunnel face wih a shallow depth; proceedingsof the Proceedings of the8th Congress of the International Society for Rock Mechanics, F,1995[C]. Intenrational Society for Rock Mechanics.
    [37] Atkinson J H, Potts D M.Subsidence above shallowtunnels in soft Ground.[J]. Geotech. Engrg,ASCE,1977,103:307-325.
    [38] Potts D M. Behaviours of lined and unlined tunnels inlands ph D thesis, England: AambridgeUniversity,1976.
    [39] Cording J, Hansmire W H, Macpherson H H, e tal. Displacement around tunnels inSoils.Reportprepared for department of transportation[D]. Urbana:University of Illinois, Ill,1976.
    [40] Guttler U, Stoffers U. Investigation of the deformation and collapse behaviour of circular linedtunnels incentrifuge model tests. Centrifuges in Soil Mechanics.Rotterdam: Balkema,1988.183-186.
    [41] Lee I M, Nam S W. The study of seepage forces acting on the tunnel lining and tunnel face inshallow tunnels[J]. Tunnelling and Underground Space Technology,2001,16:31-40.
    [42]周小文,濮家骆.砂土中隧洞开挖引起的地面沉降试验研究[J].岩土力学,2002,23(5):559-563.
    [43]魏星,沈乐等.富水软岩隧道突泥塌方及地层沉降的模型实验[J].岩土力学,2012,33(8):2291-2296.
    [44]张敏江,张丽萍等.弱胶结砂层突涌机理及预测研究[J].金属矿山,2002,10:3-6.
    [45]汪成兵,朱合华.隧道围岩渐进性破坏机理模型实验方法研究[J].铁道工程学报,2009,(3):48-53.
    [46]彭海明,彭振斌,韩金田,等.岩性相似材料研究[J].广东土木与建筑,2002,12(3):13-17.
    [47]周维垣.高等岩石力学[M].北京:水利电力出版社,1990.
    [48]赵震英.洞群开挖围岩破坏过程试验[J].水利学报,1995(12):24-28.
    [49]李斌,漆泰岳,等.新意法在浏阳河隧道参数设计中的应用[J].现代隧道技术,2009,46(4):83-88.
    [50]罗彦斌,陈建勋.软弱围岩隧道锁脚锚杆受力特性及其力学计算模型[J].岩土工程学报,2013,08:1519-1525.
    [51]吉小明,吕纬.含水砂层隧道围岩失稳破坏机制及控制研究现状综述[J].岩土力学,2009,S2:291-296.
    [52]郑颖人,赵尚毅.岩土工程极限分析有限元法及其应用[J].土木工程学报,2005,38(1):91-104.
    [53]姜功良.浅埋软土隧道稳定性极限分析[J].土木工程学报,1998,32(5):65-72.
    [54]彭芳乐,曹延波.加筋砂土挡墙承载力及渐进性变形破坏的有限元分析方法[J].岩石力学与工程学报,2011,V30(S2):3703-3713.
    [55]吴波,刘维宁,等.城市浅埋隧道施工性态的时空效应分析[J].岩土工程学报,2004,3:340-343.
    [56]李力.粉细砂地层注浆管棚作用机理及在暗挖隧道施工中的应用[D].北京交通大学,2007.
    [57]贾贵宝.拱盖法在地铁隧道施工中的应用[J].合作经济与科技,2011,12:126-127.
    [58]刘道亮.地铁站主体结构设计及其技术要点[J].科技传播,2011,24:28-29.
    [59]李磊.深埋大断面隧道有限元二维应力分析[J].科技信息,2012,33:357-358.
    [60]华福才,雷刚,郑广亮.硬岩地区大跨度矿山法地铁隧道的沉降分析研究[A].中国土木工程学会、中国土木工程学会隧道及地下工程分会.中国土木工程学会第十五届年会暨隧道及地下工程分会第十七届年会论文集[C].中国土木工程学会、中国土木工程学会隧道及地下工程分会,2012.7.
    [61]张光权,杜子建,宋锦泉,蔡建德,陶铁军.地铁隧道拱盖法施工沉降监测分析及控制对策[J].岩石力学与工程学报,2012,S1:3413-3420.
    [62]杜子建.大跨隧道拱盖法施工地层沉降分析[J].铁道标准设计,2014,03:110-113+118.
    [63]姚宣德.浅埋暗挖法城市隧道及地下工程施工风险分析与评估[D].北京交通大学,2009.
    [64]陈龙,黄宏伟.软土盾构隧道施工期风险损失分析[J].地下空间与工程学报,2006,01:74-78.
    [65]丁士昭.工业发达国家建设工程合同管理及风险管理[J].建筑,2001,09:40-42.
    [66] Einstein H.H, Vick S.G, Geologic model for a tunnel model[C]. Proceedings of Rapid excavationand tunneling conference,1974,(2):1701-1720.
    [67] Burland J.B, Wroth C.P, Settlements on buildings and associated damage[J], In: Proceedings ofConference on Settlement of structures. Cambridge: BTS;1974,611–654.
    [68] Reilly J and Brown J, Management and control of cost and risk for tunneling and infrastructureprojects[C], proceeding of the30th ITA-AITES World Tunnel Congress,22-27May2004,Singapore.
    [69] Snel A.J, van Hasselt D.R.S. Risk management in the Amsterdam North/South Metro line: Amatter of process-communication instead of calculation[A]. Proceedings of the world tunnelcongress99[C],1999,179-186.
    [70] Nilsen B, Palmstrom A, Stille H. Quality control of a sub-sea tunnel project in complex groundconditions[J]. Challenges for the21st century,1992,137-145.
    [71] Siren Deign Eskesen, Per Tandberg, Guidelines for Tunneling Risk Management [C], Proceedingsof the28th ITA-AITES World Tunnel Congress,2002.
    [72]郭仲伟.风险分析与决策[M].北京:机械工业出版社,1986.
    [73]于九如.投资项目风险分析[M].北京:机械工业出版社,1997.
    [74]姜青航,李心丹,姜树元.风险度量理论—数学模型研究[R],国家社会科学基金课题组,1998.
    [75]丁士昭.风险管理与工程保险[C].风险管理与工程保险研讨会论文集,1993.
    [76]同济大学.崇明越江通道工程风险分析研究报告[R].上海:同济大学,2003
    [77]刘国彬,冯虎.宁波市轨道交通1号线一期工程风险评估报告[R].上海,上海同是工程科技有限公司,2009.
    [78]万明富.超大跨公路隧道开挖力学行为研究[D].东北大学,2009.
    [79]吴学锋.土岩复合地层拱盖法施工三维有限元数值模拟[J].城市轨道交通研究,2012,15(8):135-138.
    [80]刘金杰.大断面连拱隧道监控量测及施工力学研究[D].重庆交通大学,2008.
    [81] Bull A. Stress in the Linings of shield-driven tunnels[J]. Trans.A.S.C.E,1944,(11).
    [82] Reyes S F, Deere D U. Elastic-plastic analysis of underground openings by the finite elementmethodProc.1st Cong.Int.Soc.Rock Mech.Lisbon,1966.
    [83] Zienkiewicz O C, Valliappan S, King I P. Stress analysis of rockas a no-tension material[J].Geotechnique,1968.
    [84] Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated visco-plasticity andplasticity in soil mechanics[J]. Geotechnique,1975,(4).
    [85] Kulhawy F H. Stress and displacement around openings in homogeneous rocks[J]. InternationalJournal of Rock Mechanics,1975.
    [86] Bettess P. Infinite elements[J]. International Journal for Numerical Methods in Engineering,1977,(1).
    [87] Gplser J. The new Austrianl, unnelling Method[M].隧道译丛, March1984:14-29.
    [88]蒋树屏,黄伦海,等.利用相似模型试验方法研究公路施工力学形态[J].岩石力学与工程学报,2002,21(5):662-666.
    [89]陈兴华.脆性材料结构模型实验[M].北京:水利电力出版社,1983.
    [90]林韵梅.实验岩石力学[M].北京:煤炭工业出版社,1984.
    [91]陈陆望.物理模型试验技术研究及其在岩土工程中的应用[D].中国科学院武汉岩土力学研究所,2006.
    [92]段王拴.富水覆岩综放开采工作面透水机理及控制技术研究[D].西安科技大学,2010.
    [93]崔广心.相似理论与模型实验[M].中国矿业大学出版社,1990.9
    [94]左东启,等.模型实验的理论和方法[M].水利电力出版社,1984.8
    [95]张艳丽.大型地下工程三维可加载物理模拟实验方法研究[D].西安科技大学,2009.
    [96]李峰.胶乳水泥作为相似材料模拟软岩蠕变的实验研究[D].青岛科技大学,2012.
    [97]中华人民共和国国家质量监督检验疫总局.中华人民共和国建设部发布.锚杆喷射混凝土支护技术规范(GB50086-2001)[S].北京:中国计划出版社,2001:31-33.
    [98]徐小荷,廖国华,马光.采矿手册:第2卷[M].北京:冶金工业出版社,1990:103-119.
    [99]张国军.大连地铁分岔隧道施工风险评估[D].大连理工大学,2013.
    [100]贺志军.山岭铁路隧道工程施工风险评估及其应用研究[D].中南大学,2009.
    [101]董路钰.复杂地质条件下轨道交通隧道施工风险评估研究[D].重庆大学,2012.
    [102]赵艳萍,贡文伟.模糊故障树分析及其应用研究[J].中国安全科学学报,2001,11(6):31-35.
    [103]梁杰,侯志伟. AHP法专家调查法与神经网络相结合的综合定权方法[J].系统工程理论与实践,2001,03:59-63.
    [104]徐田坤.城市轨道交通网络运营安全风险评估理论与方法研究[D].北京交通大学,2012.
    [105]王卓甫.工程项目风险管理理论、方法与应用[M].北京:中国水利水电出版社,2003.
    [106]麻荣永.土石坝风险分析方法及应用[M].北京:科学出版社,2004.
    [107]洪选华.胶州湾海底隧道典型施工风险评估与研究[D].上海:同济大学,2008.
    [108]陈洁金.下穿既有设施城市隧道施工风险管理与系统开发[D].中南大学,2009.
    [109]安永林.结合邻近结构物变形控制的隧道施工风险评估研究[D].长沙:中南大学,2009.
    [110]王旭东,周生华,迟建平,吴学峰.上软下硬地层浅埋暗挖隧道覆跨比研究[J].地下空间与工程学报,2011,04:700-705.
    [111]戢放.浅埋暗挖法开挖地铁隧道地表沉降规律分析[D].河北工程大学,2010.
    [112]王旭东,迟建平,袁勇.浅埋暗挖隧道施工过程安全系数动态变化特征[J].地下空间与工程学报,2011,S1:1454-1458+1464.
    [113]吉小明,谭文.浅埋暗挖大跨隧道中的施工力学原理与施工技术研究[J].隧道建设,2010,30(S1):95-100.
    [114]赵勇,刘建友,田四明.深埋隧道软弱围岩支护体系受力特征的试验研究[J].岩石力学与工程学报,2011,08:1663-1670.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700