用户名: 密码: 验证码:
地铁构架多道焊应力调控与焊接顺序优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转向架构架是轨道车辆的关键承载和传力构件,对行车安全起着至关重要的作用。目前地铁构架属于复杂结构焊接构件,焊缝数量多,且采用多层多道焊焊接。由于焊接过程中不可避免地产生残余应力和变形,影响构架的尺寸稳定性及疲劳寿命。因此开发有效地预测构架焊接残余应力和变形的数值模拟技术,剖析多道焊应力和变形的演变机制及其调控方法,开展复杂结构焊接顺序优化设计研究,对促进构架精密焊接成形技术发展、提高质量及服役安全可靠性具有重要的学术意义和工程应用价值。
     本文研究了焊接数值模拟热源模型参数快速准确求解问题,提出了基于熔池轮廓形状拟合的焊接热源模型参数求解及误差评估方法。该方法采用伪彩色技术和差影法,获得接头熔池轮廓照片和温度场模拟的熔池图像间的色彩分布差值矩阵,构建熔池轮廓形状误差函数,采用模式搜索法反演求解出热源模型参数值。该方法应用于MAG焊T型接头焊接温度场模拟,分别获得了单一双椭球热源模型和高斯+双椭球组合热源模型参数的优化值。计算结果表明,组合热源模型比单一双椭球热源模型更适合T型接头焊接温度场模拟,模拟与试验熔池轮廓形状的误差为17.8%,相比单一双椭球热源模型准确度提高了11.5%。
     本文开展了多道焊残余应力分布影响因素及演变机制研究,提出调控残余应力的方法。对Q345C板材进行了表面堆焊两道焊试验,在焊道问覆盖率为0%和50%两种情况下,测量了先焊焊道的焊趾附近点温度循环曲线和焊后残余应力。利用瞬态三维热弹塑性有限元法并结合试验测试,分析了板材表面堆焊两道焊的焊接温度、应力和应变的变化规律。研究表明:塑性应变不变的位置残余应力会随着弹性应变的降低而降低,利用后焊焊道产生的压缩弹性应变可以影响先焊焊道的拉伸弹性应变,由此调控多道焊的残余应力分布。通过分析焊接热循环峰值温度与残余应力关系、后焊焊道对先焊焊道焊趾附近的热力作用,确定了先焊焊道焊趾附近残余应力因后焊焊道热循环作用而降低的条件,推导出了将先焊焊道的焊趾残余应力转变为压应力的后焊焊道焊接线能量估算公式。
     基于以上研究,本文开展了焊道数量、焊接线能量和焊接顺序对多道焊残余应力的影响研究,提出了调控残余应力的盖面焊工艺设计原则。基于该原则进行构架吊座管板接头盖面焊的焊接工艺多目标优化设计,优化工艺比原始工艺的焊后变形减小7%,焊趾附近残余应力转变为压应力,实现了多道焊残余应力调控的目的。
     考虑到构架焊接装配过程的工位变换与焊接顺序之间的关联与制约,本文开展了考虑焊接装配工位变换次数约束的焊接顺序优化问题研究,提出了含有工位
     约束的基因修复算子遗传优化算法。该方法采用反映焊缝所在工位号、接头组号及其组内序号的多参数级联编码方式,通过个体中的基因排序反映工位约束的要求,对遗传算法的种群产生引入基因修复算子,可剔除种群中无法采用的焊接顺序个体,优化并求解合理的焊接顺序。将该方法应用于转向架构架横梁和侧梁的环形焊缝焊接顺序设计,以焊后结构变形量最小为优化目标,结合焊接变形有限元仿真计算进行优化设计。在工位变换次数最少的情况下,获得了优化的环形焊缝焊接顺序,焊后最大垂向变形差为2.6mm,低于原始工艺,仿真与实测结果相比误差为18%。
Bogie frame is a key bearing and load transmission component of vehicles, and it plays an important role on traffic safety. Usually, a subway bogie frame is a complex welded structure made of several parts using multi-pass welding. The welding process is inevitable due to the residual stress and deformation, has an affect on the size stability and fatigue life of the structure. Therefore, the establishment of the accurate welding residual stress and deformation numerical simulation techniques can be used to analyze the evolution and regulation methods of stress and deformation, and further study on the optimal design of welding sequence. It will promote the development of precision welding forming technology and improve the quality and reliability of service security, which will have important academic significance and application value.
     A welding simulation error quantitative assessment method based on weld bead contour shape was proposed to search for heat source model parameters of welding numerical simulation fast and accurately. Image enhancement processing of tested welded joint photo and simulated temperature field was conducted by pseudo color method and difference image method. A function was constructed to evaluate contour shape error between simulated and tested weld beads quantitatively. Based on the error, an inversion method was established using pattern search method for solving the heat source function parameters. Using this method, the value of the single double ellipsoid heat source function and the Gaussian+double ellipsoid combined heat source function parameters of the T-joint were optimized. Results show that combined heat source function is more suitable than a double ellipsoid heat source function for T-joint welding temperature simulation. The minimum error between simulated and tested weld bead contour shape is17.8%when simulated using the combined heat source function. The accuracy was improved by11.5%compared to the single heat source function.
     In order to study regulation mechanism and factors of welding residual stress distribution by the multi-pass welding, Q345C plates surfacing weld experiments were conducted with coverage were0%and50%respectively. Temperature cycling curve and residual stress were measured near the first weld toe. Based on the measurement results, three-dimensional transient thermal elastic-plastic finite element method was used to simulate and analyze the temperature, stress and strain fields during flat surfacing welding process. Study results have shown that the residual stress will decrease with the elastic strain decrease while plastic strain can remain constant. For multi-pass welding, the elastic compressive strain generated by the following weld bead offsets the initial elastic tensile strain result in the decrease of the initial residual stress. The conditions of reducing the initial residual stress near by the yield strength were studied by analyzing the relationship between welding peak temperature and the residual stress. The welding conditions to reduce the residual stress of the first weld toe to be compressive stress were studied and the weld heat input estimation formula was established.
     According to conditions of the first weld toe generated compressive residual stress, considering the number of weld beads, the heat input and the welding sequence of the weld beads, design principles of capping multi-pass welding to regulate residual stress was proposed. It is applied to capping welding process design of tube-sheet welded joint of the frame bracket. The welding deformation of the optimization process obtained decreases7%compared to the original process and the residual stress at all the weld toes turned into compressive stress. It has achieved the purpose of residual stress regulation.
     In this paper, considering the relationship and constraint of weld position and weld sequence during the welding assembly process, the welding sequence optimization problem was studied with the constraint of change times of weld positions in a complex welded structure. An advanced genetic algorithm optimization method with weld position constraint gene repair operation is proposed. A multi-parameter cascade encoding method is presented to reflect the weld position number, welded joint group number and weld seam number. Based on gene rank adjustment, the constraint optimal problem was solved. Gene repair operator can exclude the unusable welding sequence, so that a more satisfactory initial population becomes possible. The proposed method has been applied for welding sequence optimization in a bogie frame welding assembly process. In order to minimize the deformation after welding, a constrained multi-parametric optimization model was established, combined with welding distortion simulation to optimize the welding sequence. With the least change times of welding position, the optimized welding sequence of the girth weld seams of the bogie frame was obtained. The maximum vertical deformation difference using the optimized welding sequence is2.6mm. The error is18%compared with experimental results.
引文
[1]邓修麟.金属疲劳的定量理论[M].西安:西北工业大学出版社,1994.
    [2]杨亚强.转向架焊接构架疲劳强度研究[D].成都:西南交通大学,2010.
    [3]戴忠晨,朱志民.CRH1型动车组构架焊接制造工艺分析[J].焊接,2011,(5):24-27.
    [4]崔晓芳.箱型结构焊接变形预测控制及应用[D].大连:大连交通大学,2005.
    [5]国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告(2011-2020)[M].北京:科学出版社,2010.
    [6]Mark A F, Francis J A, Dai H, et al. On the evolution of local material properties and residual stress in a three-pass SA508 steel weld[J]. Acta Materialia,2001,60 (8):3268-3278.
    [7]Bate S K, Charles R, Warren A. Finite element analysis of a single bead-on-plate specimen using SYSWELD[J]. International Journal of Pressure Vessels and Piping,2009,86 (1):73-78.
    [8]Warren A P, Bate S K, Hurrell P. The effect of modelling simplifications on the prediction of residual stresses in a multi-pass plate groove weld[C]. American Society of Mechanical Engineers, San Antonio, TX, United States,2007:927-935.
    [9]Krishnasamy R K, Siegele D.3D modelling of a multi pass dissimilar tube welding and post weld heat treatment of nickel based alloy and chromium steel[J]. International Journal of Pressure Vessels and Piping,2010,87 (11):643-649.
    [10]Heinze C, Schwenk C, Rethmeier M. Numerical calculation of residual stress development of multi-pass gas metal arc welding[J]. Journal of Constructional Steel Research,2012,72:12-19.
    [11]Heinze C, Schwenk C, Rethmeier M. Numerical calculation of residual stress development of multi-pass gas metal arc welding under high restraint conditions[J].Materials & Design, 2012,35:201-209.
    [12]Chaise T, Li J, Nelias D. Modelling of multiple impacts for the prediction of distortions and residual stresses induced by ultrasonic shot peening (USP)[J]. Journal of Materials Processing Technology,2012,212(10):2080-2090.
    [13]Xu J J, Gilles P, Duan Y G, et al. Temperature and residual stress simulations of the NeT single-bead-on-plate specimen using SYSWELD[J]. International Journal of Pressure Vessels and Piping,2012,99:51-60.
    [14]Li C, Wang Y. Three-dimensional finite element analysis of temperature and stress distributions for in-service welding process[J]. Materials & Design,2013,52:1052-1057.
    [15]Deng D, Kiyoshima S. Numerical simulation of residual stresses induced by laser beam welding in a SUS316 stainless steel pipe with considering initial residual stress influences[J]. Nuclear Engineering and Design,2010,240 (4):688-696.
    [16]Wang Y, Wang L, Di X, et al. Simulation and analysis of temperature field for in-service multi-pass welding of a sleeve fillet weld[J]. Computational Materials Science,2013,68: 198-205.
    [17]刘志毅.X80管线钢环焊缝焊接残余应力的数值模拟[D].天津:天津大学,2008.
    [18]刘哲,李午申,陈翠欣,等.热-冶金相互作用下焊接温度场的三维动态有限元模拟[J].机械科学与技术,2005,24(12):1397-1399.
    [19]董克权,刘超英,陈英俊.双椭球热源模型加载算法研究[J].机械设计与制造,2008,(11):60-62.
    [20]王继峰.焊接温度场和应力场的热源模型研究[D].秦皇岛:燕山大学,2006.
    [21]Gery D, Long H, Maropoulos P. Effects of welding speed, energy input and heat source distribution on temperature variations in butt joint welding[J]. Journal of Materials Processing Technology,2005,167 (2-3):393-401.
    [22]Heinze C, Schwenk C, Rethmeier M. Effect of heat source configuration on the result quality of numerical calculation of welding-induced distortion[J). Simulation Modelling Practice and Theory,2012,20 (1):112-123.
    [23]付玮,黄国刚,杨新华,等.焊缝形貌对电子束焊接残余应力分布的影响[J].焊接学报,2011,32(6):53-56.
    [24]王煜,赵海燕,吴甦,等.高能束焊接数值模拟中的新型热源模型[J].焊接学报,2004,25(1):91-94.
    [25]熊智军,赵熹华,李永强,等.激光深熔焊接热源模型的研究进展[J].焊接,2006,(12):12-16.
    [26]王能庆,童彦刚,邓德安.热源模型参数对焊接残余应力和变形影响的研究[J].金属铸锻焊技术,2011,40(23):174-176.
    [27]翟磊,孙永兴.熔化极气体保护焊热过程的数值模拟[J].金属铸锻焊技术,2008,27(11):120-122.
    [28]张泽云,杨鑫华,王春生,等.构架焊接热源的仿真与应用[J].大连交通大学,2008,22(5):95-98.
    [29]刘川,张建勋,张林杰.基于焊缝形状的二维焊接温度场模拟热源模型[J].材料热处理学报,2008,29(2):176-180.
    [30]郑振太,吕会敏,张凯,等.熔化焊焊接热源模型及其发展趋势[J].焊接,2008,(4):3-7.
    [31]程久欢,陈俐,于有生.焊接热源模型的研究进展[J].焊接技术,2004,33(1):13-15.
    [32]Bonifaz E A陈翠欣译.单道电弧焊热流的有限元分析[J].国外金属加工,2001,(1):18-23.
    [33]陈家权,肖顺湖,吴刚,等.焊接过程数值模拟热源模式的比较[J].焊接技术,2006,35(1):9-11.
    [34]梁晓燕.中厚板多道焊焊接过程中温度场和应力场的三维数值模拟田].武汉:华中科技大学,2004.
    [35]陈家权,肖顺胡,杨新彦,等.焊接过程数值模拟热源模型的研究进展[J].装备制造技术,2005,(3):10-14.
    [36]肖冯,米彩盈.T型角接头焊接热源模型研究[J].电焊机,2010,40(6):41-45.
    [37]高燕.不锈钢激光焊接热源及过程的模拟与仿真[D].天津:天津大学,2006.
    [38]卢宇峰,陆皓.激光焊接圆锥体热源模型及参数研究[J].焊接,2012,(1):41-44.
    [39]彭善德.钛合金激光搭接焊及数值模拟[D].武汉:华中科技大学,2006.
    [40]刘黎明,迟鸣声,宋刚,等.镁合金激光-TIG复合热源焊接热源模型的建立及其数值模拟[J].机械工程学报,2006,42(2):82-86.
    [41]Yadaiah N, Bag S. Effect of Heat Source Parameters in Thermal and Mechanical Analysis of Linear GTA Welding Process[J]. ISIJ International,2012,52 (11):2069-2075.
    [42]Joshi S, Hildebrand J, Aloraier A S, et al. Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate[J]. Computational Materials Science,2013,69:559-565.
    [43]Azar A S, As S K, Akselsen O M. Determination of welding heat source parameters from actual bead shape[J]. Computational Materials Science,2012,54:176-182.
    [44]张亮.中厚板激光多层焊温度场与应力应变场的数值模拟[D].哈尔滨:哈尔滨工业大学,2011.
    [45]王西昌,左从进,刘方军,等.基于SYSWELD软件的TC4电子束焊接过程的数值模拟[J].新技术新工艺,2007,(1):8-11.
    [46]胡庆贤.穿孔等离子弧焊接温度场的有限元分析[D].济南:山东大学,2007.
    [47]陶军,李冬青,范成磊,等.焊接过程参数反演分析进展[J].焊接,2005,(9):13-16.
    [48]郭晓凯,李培麟,陈俊梅,等.加速步长法反演多丝埋弧焊双椭球热源模型参数[J].焊接学报,2009,30(2):53-56.
    [49]郭晓凯.模式搜索法反演多丝埋弧焊双椭球热源模型参数[D].上海:上海交通大学,2009.
    [50]Goncalves C V, Vilarinho L O, Scotti A, et al. Estimation of heat source and thermal efficiency in GTAW process by using inverse techniques[J]. Journal of Materials Processing Technology, 2006,172(1):42-51.
    [51]Vasconcelos G C, Rodrigues C S, Gilmar G. Application of optimization techniques and the enthalpy method to solve a 3D-inverse problem during a TIG welding process [J]. Applied Thermal Engineering,2013,30 (16):2396-2402.
    [52]Rouquette S, Guo J, Masson P L. Estimation of the parameters of a Gaussian heat source by the Levenberg Marquardt method-Application to the electron beam welding[J]. International Journal of Thermal Sciences,2007,46 (2):128-138.
    [53]Guo J, P. Masson L, Rouquette S, et al. Estimation of a source term in a two-dimensional heat transfer problem:application to an electron beam welding, theoretical and experimental validations[J]. Inverse Problems in Science and Engineering,2007,15(7):743-763.
    [54]李培麟.多丝埋弧焊热源模型与焊缝成形的模拟研究[1D].上海:上海交通大学,2012.
    [55]Binda B, Capello E, Previtali B. A semi-empirical model of the temperature field in the AISI304 laser welding[J]. Journal of Material Processing Technology, 2004,155-156:1235-1341.
    [56]Bag S, De A, DebRoy T. A Genetic algorithm-assisted inverse convective heat transfer model for tailoring weld geometry[J]. Materials and Manufacturing Processes-Material Manufactory Process,2009,24 (3):384-397.
    [57]Bag S, De A. Development of a three-dimensional heat-transfer model for the gas tungsten arc welding process using the finite uncertain input parameters[J]. Metallurgical & Materials Transactions. Part A,2008,39 (11):2698-2710.
    [58]Correia DS, Goncalves C V, Junior S C, et al. GMAW welding optimization using genetic algorithms[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2004,26(1):28-32.
    [59]游秋榕.基于熔池视觉的MAG焊焊接缺陷特征识别[D].南京:南京理工大学,2006.
    [60]刘阳.基于图像处理的PCB焊接缺陷检测技术研究[D].大连:大连理工大学,2009.
    [61]邓德安,清岛祥一.焊接顺序对厚板焊接残余应力分布的影响[J].焊接学报,2011,33(12): 55-58.
    [62]戴晴华,季鹏,殷晨波,等.焊接顺序对中厚板对接焊残余应力的影响[J].机械设计与制造,2011,(7):64-66.
    [63]Ziaee S, Kadivar M H, Jafarpu K. A sequence scheme to reduce the residual stress in welding of circular elements[J]. Iranian Journal of Science & Technology, Transaction B, Engineering, 2008,32:367-383.
    [64]Teng T L, Chang P H, Tseng W C. Effect of welding sequences on residual stresses[J]. Computers & Structures,2003,81(3):273-286.
    [65]Danko J C. Altering residual stresses in welded austenitic stainless steel piping[C]. Advances in Welding Science and Technology, Louisville, TN, USA,1986:545-549
    [66]Yurioka N, Horii Y. Recent developments in repair welding technologies in Japan[J]. Science and Technology of Welding & Joining,2006,11 (3):255-264.
    [67]ASME锅炉及压力容器委员会压力容器分委员会.ASME锅炉及压力容器规范第Ⅸ卷,2010:198.
    [68]李军,张文锋,郑岩松,等.铝合金薄板焊件纵向塑性应变场的数值模拟[J].焊接学报,2013,34(1):4-8.
    [69]张利国,姬书得,方洪渊,等.焊接顺序对T形接头焊接残余应力场的影响[J].机械工程学报,2007,43(2):234-237.
    [70]张亦良,石显,赵建平,赵石雷,等.基于新型回火焊道的焊接残余应力评价[J].焊接学报,2012,33(7):50-52.
    [71]Shi X, Zhang Y L, Zhao J P, et al. Evaluation of welding residual stress based on temper bead welding technique[J]. Advanced Materials Research,2012,418-420:1208-1212.
    [72]张学秋,史慧云,孙丽丽,等.中厚板多层焊后焊层对焊缝纵向残余应力影响的数值分析[J].焊接,2008,(4):30-33.
    [73]Paradowska A, Price J H, Ibrahim R, et al. A neutron diffraction study of residual stress due to welding[J]. Journal of Materials Processing Technology,2005,164-165:1099-1105.
    [74]Paradowska A, Price J H, Ibrahim R, et al. Residual stress measurements by neutron diffraction in multi-bead welding[J]. Physical B:Condensed Matter,2006,385-386, Part 2:890-893.
    [75]蒋文春,王炳英,巩建鸣.焊接残余应力在热处理过程中的演变[J].焊接学报,2011,32(4):45-48.
    [76]Akbarzadeh I, Far I S, Salehi M. Numerical and experimental study of the effect of short-term and long-term creep modeling in stress relaxation of a multi-pass welded austenitic stainless steel pipe[J]. Materials Science and Engineering:A,2011,528 (4-5):2118-2127.
    [77]Deng D. Influence of deposition sequence on welding residual stress and deformation in an austenitic stainless steel J-groove welded joint[J]. Materials & Design,2013,49:1022-1033.
    [78]Smith M C, Smith A C. NeT bead-on-plate round robin:Comparison of residual stress predictions and measurements[J]. International Journal of Pressure Vessels and Piping,2009,86 (1):79-95.
    [79]宋天民.焊接残余应力的产生与消除[M].北京:中国石化出版社,2010.
    [80]王者昌.关于焊接残余应力消除原理的探讨[J].焊接学报,2000,21(2):55-58.
    [81]王者昌.关于焊接应力应变问题的再探讨[J].焊接学报,2006,27(8):108-111.
    [82]王者昌.焊接应力变形原理若干问题的探讨[J].焊接学报,2008,29(6):73-76.
    [83]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [84]汪建华,陆皓.焊接残余应力形成机制与消除原理若干问题的讨论[J].焊接学报,2002,23(6):75-79.
    [85]方洪渊.关于焊接塑性应变的计算与讨论[J].焊接学报,2008,29(7):60-63.
    [86]管建军.焊接残余应力及其爆炸处理的数值模拟[D].沈阳:中国科学院金属所,2008.
    [87]田昕.面向焊接顺序优化的焊接变形仿真技术基础研究[D].南京:南京航空航天大学,2009.
    [88]赵利华.机车构架侧梁焊接数值仿真与变形控制[D].成都:西南交通大学,2012.
    [89]肖俊彦.J型接头结构焊接角变形规律研究及焊接顺序优化[D].上海:上海交通大学,2008.
    [90]黄振华.船体型材对接焊的焊接顺序优化研究[D].大连:大连理工大学,2009.
    [91]傅卫.导弹油箱焊接有限元前处理实现及焊接顺序优化[D].哈尔滨:哈尔滨工业大学,2006.
    [92]朱忠尹.大型构件多层多道焊焊接变形数值模拟[D].成都:西南交通大学,2013.
    [93]马亮,张广明.基于遗传算法的焊接生产线工位平衡规划方法[J].自动化应用,2011(8):9-13.
    [94]Liao Y G. Optimal design of weld pattern in sheet metal assembly based on a genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology,2005,26(9): 512-516.
    [95]Huang M W, Hsieh C C, Arora J S. A genetic algorithm for sequencing type problems in engineering design[J]. International journal for numerical methods in engineering, 1997,40(17):3105-3115.
    [96]Kadivar M H, Jafarpur K G, Baradaran H. Optimizing welding sequence with genetic algorithm[J]. Computational Mechanics,2000,26(6):514-519.
    [97]Kim H J, Kim Y D, Lee D H. Scheduling for an arc-welding robot considering heat-caused distortion[J]. Journal of the Operational Research Society,2005,56(1):39-50.
    [98]Parka S H, Lee D H. Sequencing algorithms for multiple arc-welding robots considering thermal distortion[J]. International Journal of Product Research,2006,48(17):4751-4767.
    [99]刘晓峰.自动分组遗传算法的改进及在结构工程中的应用[D].大连:大连理工大学,2011.
    [100]孙艳丰,郑加齐,王德兴,等.基于遗传算法的约束优化方法评述[J].北方交通大学学报,2000,24(6):14-19.
    [101]刘诚,付宜利.引入基因修复技术的产品装配序列规划方法[J].哈尔滨工业大学学报,2010,42(1):79-82.
    [102]Wang F J, Jia Z Y, Liu W, et al. Genetic algorithms with a new repair operator for assembly job shop scheduling[J]. International Journal of Industrial Engineering,2010,18(7):377-385.
    [103]Kim K Y, Kim D W, Nnaji B O. Robot arc welding task sequencing using genetic algorithms[J]. IIE Transactions,2002,34(10):865-880.
    [104]Mohammed M B, Sun W, Hyde T H. Welding sequence optimization of plasma arc for welded thin structures[C]. Computer Aided Optimum Design in Engineering XII.2012,125:231-242.
    [105]张彦华.焊接力学与结构完整性原理[M].北京:北京航空航天大学出版社,2007.
    [106]郑振太.大型厚壁结构焊接过程的数值模拟研究与应用p].天津:天津大学,2007.
    [107]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2007.
    [108]Pavelic V, Tanbakuchi R, Auyehara O A, et al. Experimental and computed temperature histories in gas tungsten arc welding of thin plates[J]. Welding Journal Research Supplement, 1969,48(7):295-305.
    [109]Goldak A, Chakravarti A, Bibby M. A new finite element model for welding heat source[J].Metallurgical and Materials Transactions.1984,13(15B):299-305.
    [110]陈玮,薛琴,魏胜利.差影算法在轮对踏面磨耗检测中的应用[J].自动化技术与应用,2007,26(6)-74-77.
    [111]降雨志,张义顺,张华军,等.投影法和差影法在焊缝跟踪图像识别中的应用[J].沈阳工业大学学报,2005,27(5):558-561.
    [112]Roing J J, Cao Z L. Color target recognition using omni-directional vision optics[J]. Illumination, and Image Sensing for Machine Vision,1986(30-31):57-64.
    [113]韩九强.机器视觉技术及应用[M].北京:高等教育出版社,2009.
    [114]杨静.基于X射线图像的焊缝缺陷检测与识别技术[D].太原:中北大学,2008.
    [115]梅跃松,于剑桥,陈曦.移动背景下的运动目标跟踪[J].红外与激光工程,2011,40(4):757-760.
    [116]李培麟,陆皓.多丝埋弧焊工艺条件对热源参数的影响[J].焊接学报,2011,32(6):13-16.
    [11 7]李振江.基于SYSWELD的焊接接头温度场和残余应力场研究[D].北京:北京交通大学,2010.
    [118]Wahab M A, Painter M J, Davies M H. The prediction of the temperature distribution and weld pool geometry in the gas metal arc welding process[J]. Journal of Materials Processing Technology,1998,77(1-3):233-239.
    [119]李培麟,陆皓.双椭球热源参数的敏感性分析及预测[J].焊接学报,2011,32(11):89-91.
    [120]陈翠欣,李午申,王庆鹏,等.焊接温度场的三维动态有限元模拟[J].天津大学学报,2005,35(5):465-470.
    [121]刘文卿.实验设计[M].北京:清华大学出版社,2005.
    [122]Zhu X K, Chao Y J. Effects of temperature-dependent material properties on welding simulation[J]. Computers & Structures,2002,80(11):967-976.
    [123]Yupiter H P, Manurung R N, Lidam M R, et al. Welding distortion analysis of multipass joint combination with different sequences using 3D FEM and experiment[J]. International Journal of Pressure Vessels and Piping,2013,111-112(11-12):89-98.
    [124]Lee C H, Chang K H, Park J U. Three-dimensional finite element analysis of residual stresses in dissimilar steel pipe welds[J]. Nuclear Engineering and Design,2013,256:160-168.
    [125]Liu C, Zhang J X, Xue C B. Numerical investigation on residual stress distribution and evolution during multipass narrow gap welding of thick-walled stainless steel pipes[J]. Fusion Engineering and Design,2011,86(4-5):288-295.
    [126]Muranskya O, Smithb M C, Bendeicha P J, et al. Comprehensive numerical analysis of a three-pass bead-in-slot weld and its critical validation using neutron and synchrotron diffraction residual stress measurements[J]. International Journal of Solids and Structures,2012,49(9):1045-1062.
    [127]方洪渊.焊接结构学[M].北京:机械工业出版社,2008.
    [128]任维佳,吴爱萍,赵海燕,等.大型电机转子焊接残余应力的数值分析[J].焊接学报,2002,23(2):92-96.
    [129]陈裕川.焊接工艺设计与实例分析[M].北京:机械工业出版社,2010.
    [130]陈树铭.不同循环载荷和焊接残余应力对高强钢疲劳强度影响的研究[D].沈阳:中国科学院金属所,2009.
    [131]李亚江.焊接冶金学—材料焊接性[M].北京:机械工业出版社,2007.
    [132]Sulaiman M S, Manurung Y H, Haruman E, et al. Simulation and experimental study on distortion of butt and T-joints[J]. Journal of Mechanical Science and Technology,2011,25 (10):2641-2646
    [133]Chen Y, Han J M, Tan J, et al. Study on welding deformation of side beam by numerical simulation and experimental verification[J]. China Welding,2012,21(3):67-72.
    [134]陈跃,韩建民,谭俊,等.核电箱形结构焊接变形的模拟计算与分析[J].热加工工艺,2013,11(42):181-184
    [135]宋昕,谷正气,张清林.基于多岛遗传算法的湍流模型优化研究[J].湖南大学学报(自然科学版),2011,38(2):23-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700