用户名: 密码: 验证码:
齿轮箱复合故障诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
齿轮箱是机械设备中必不可少的动力传输部件,其运行状态将直接影响到整个机械设备能否正常工作,因此,研究齿轮箱故障诊断技术对保障机械设备的正常运行具有重要意义。采用各种信号处理方法从齿轮箱振动信号中提取故障特征信息是齿轮箱故障诊断的关键。
     大量工程实践表明,机械设备中的故障通常不止一处,往往表现为复合故障。不同部位、不同形式、不同程度的复合故障会对机械设备产生不同的影响,且各故障成分相互影响、彼此干扰,特别是在转速变化情况下,故障特征相互重叠,给机械设备故障的全面诊断带来了挑战,因此机械设备的复合故障诊断是当前故障诊断的难点。针对上述问题,本文在国家自然科学基金项目(项目编号:51275161)和湖南省科技计划(项目编号:2012SK3184)的资助下,以齿轮箱为研究对象,以现代信号处理方法为研究手段,以复合故障诊断为研究目标,重点对变转速齿轮箱复合故障振动信号中的故障特征成分分离和故障特征提取进行了深入系统地研究。
     论文的主要研究工作和创新性成果有
     (1)在分析齿轮箱中各零部件失效比重的基础上,对其主要失效部件一齿轮和滚动轴承的失效形式、失效原因、失效表现及振动机理进行了分析,并建立了齿轮和滚动轴承的局部故障振动信号模型。研究表明,当齿轮出现局部故障时,其振动信号中会产生调幅调频成分,而当滚动轴承出现局部故障时,其振动信号中会产生周期性的振荡衰减冲击成分。
     (2)针对齿轮箱复合故障振动信号中齿轮故障成分和轴承故障成分的分离和故障调制信息的提取问题,提出了基于形态分量分析(Morphological component analysis, MCA)与能量算子解调的齿轮箱复合故障诊断方法。该方法先用MCA方法分离齿轮箱复合故障振动信号中的齿轮故障成分和轴承故障成分;再对分离后的齿轮故障成分和轴承故障成分进行能量算子解调分析,以提取两成分中的故障调制信息。利用该方法对包含齿轮和滚动轴承局部故障的齿轮箱复合故障振动信号进行了算法仿真和应用实例分析,分析结果表明,对齿轮箱复合故障振动信号中的各故障成分进行分离后,再进行能量算子解调分析,可有效凸显各故障特征。
     (3)针对变转速齿轮箱复合故障振动信号中的故障特征提取与分离问题,提出了基于MCA与阶次跟踪的变转速齿轮箱复合故障诊断方法。该方法先用MCA方法分离变转速齿轮箱复合故障振动信号中的各故障成分;再对分离后的各故障成分进行等角度重采样,将其转变为角域信号;最后对重采样后的各故障成分进行Hilbert包络解调分析,以提取各故障调制信息。
     通过算法仿真和应用实例对变转速下的齿轮局部故障和滚动轴承局部故障进行了分析,结果表明,该方法可有效分离变转速下的齿轮和滚动轴承故障特征。
     (4)针对循环平稳解调方法不适合提取变转速齿轮箱复合故障振动信号中故障调制信息的问题,提出了基于线调频小波路径追踪(Chirplet path pursuit, CPP)与循环平稳解调的齿轮箱复合故障诊断方法。该方法先用CPP方法自适应地从变转速齿轮箱复合故障振动信号中估计出转速信息;再依据该转速信息对信号进行等角度重采样;最后对重采样后的角域信号进行循环平稳解调分析,以提取信号中的故障调制信息。利用该方法对变转速下的齿轮箱复合故障振动信号进行了算法仿真和应用实例分析,结果表明,该方法可在无转速计的情况下有效提取变转速齿轮箱复合故障振动信号中的故障调制信息。
     (5)在转速大范围变化情况下,用EEMD方法分析齿轮箱振动信号会产生模态混淆。针对这一问题,提出了基于CPP与EEMD的齿轮箱复合故障诊断方法,并将其应用于变转速下的齿轮箱复合故障诊断中。该方法先用CPP方法从变转速齿轮箱复合故障振动信号中提取转速信息;然后依据该转速信息对变转速齿轮箱复合故障振动信号进行等角度重采样,获取其角域信号;再对角域信号进行EEMD分解,获取各IMF分量,并根据各IMF分量与角域信号的相关系数选取包含故障信息的IMF分量;最后对选取的IMF分量进行Hilbert包络解调分析,以提取各故障调制信息。算法仿真和应用实例表明,该方法可有效地提取变转速齿轮箱复合故障振动信号中的故障特征。
     机械设备的复合故障诊断是目前机械故障诊断领域的一大难点。本文以齿轮箱为研究对象,对其恒定转速和变转速下的齿轮和滚动轴承复合故障振动信号进行分析。算法仿真和应用实例表明,将MCA、能量算子解调、CPP、阶次跟踪、循环平稳解调等方法相结合,可弥补单一信号分析方法在诊断复合故障时的不足,以实现优势互补,具有良好的应用前景。
Gearbox is an indispensible power transmission component, whose working condition will directly affect the performance of the whole mechanical equipment. Therefore, the research on the fault diagnosis technology for gearbox is of great significance to the normal operation of mechanical equipment. Extracting fault feature information from the gearbox's vibration signal by using various kinds of signal processing methods has been the key to the fault diagnosis for gearbox.
     Hundreds of engineering practices show that there is usually more than one fault in a mechanical unit, which demonstrate as compound faults. The compound faults in different positions,, with different failure modes and degrees have different effects onto the mechanical equipment. Besides, the interaction and the mutual interference among the different fault components, especially the overlap of fault features under changing rotating speed situation, bring great challenge to the comprehensive fault diagnosis of mechanical equipment, thus, the compound fault diagnosis has become a hard problem in the fault diagnosis of mechanical equipments. Aiming at the problems above, sponsored by National Natural Science Foundation (project number:51275161) and Hunan Science and Technology Plan (project number:2012SK3184), taking gearbox as the research object, modern signal processing methods as the research tool, and compound fault diagnosis as the research target, the dissertation has carried on a profound and systematic research mainly on the fault features separation and the fault characteristics extraction from the vibration signal of a rotating speed changing gearbox with compound faults.
     The main research work and innovative achievements of the dissertation are as follows
     (1) On the basis of failure ratio analysis among the components in gearbox, the failure modes, reasons, appearances and vibration mechanism of the main failure components-gears and rolling bearings are analyzed, and the local fault vibration signal model of gears and rolling bearings have been set up. The study shows that, when a local fault occurs in a gear, there will be AM-FM component in the vibration signal, whereas, when a local fault occurs in rolling bearings, there will be periodic impulse component with damped oscillation.
     (2) Aiming at the separation of gear fault component and bearing fault component and the extraction of fault modulation information from the vibration signal of a gearbox with compound faults, a compound fault diagnosis method for gearbox based on morphological component analysis (MCA) and energy operator demodulation is proposed. Firstly, the fault components of gears and bearings are separated by MCA; then, energy operator demodulation is carried onto the separated fault components of gears and bearings to extract the fault modulation information. Algorithm simulation and application examples show that the fault component separation, followed by the energy operator demodulating, can effectively highlight the fault characteristic of each fault component.
     (3) Aiming at the separation and extraction of fault characteristics from the vibration signal of a rotation speed changing gearbox with compound faults, a compound fault diagnosis method for gearbox based on MCA and order tracking is proposed. Firstly, each fault component is separated by MCA; then, the separated fault components are transformed to angular domain signals through even angle resampling; finally, Hilbert envelop demodulation will be carried out onto each resampled fault component to extract the fault modulation information. By algorithm simulation and application examples, the local faults of gears and rolling bearings are analyzed. The results show that the proposed method can effectively separate the fault characteristics of gears and rolling bearings from the vibration signal of a gearbox under the condition of rotating speed changing.
     (4) Aiming at the unsuitableness of cyclostationary demodulating method in extracting fault modulation information from the vibration signal of a rotating speed changing gearbox with compound faults, a compound fault diagnosis method for gearbox based on chirplet path pursuit (CPP) and cyclostationary demodulating is proposed. Firstly, the rotating speed is estimated adaptively from the vibration signal by using CPP; then, with the estimated rotating speed, even angle resampling is carried on to the vibration signal; finally, the resampled angular domain signal is analyzed with cyclostationary demodulating to extract the fault modulation information. Algorithm simulation and application examples show that the proposed method, without the presence of a tachometer, can effectively extract the fault modulation information from the vibration signal of a rotating speed changing gearbox with compound faults.
     (5) When rotating speed is changing dramatically, analyzing gearbox vibration signal with ensemble empirical mode decomposition (EEMD) will result in mode confusion. Aiming at this problem, a compound fault diagnosis method for gearbox based on CPP and EEMD is proposed. Firstly, rotating speed information is extracted from the vibration signal of a rotating speed changing gearbox with compound faults using CPP; secondly, according to the extracted rotating speed, the vibration signal is resampled with even angle to obtain its angular domain signal; then, the intrinsic mode function (IMF) components can be acquired by the EEMD analysis to the angular domain signal, and the IMF component containing fault information is selected in terms of the correlation coefficient for IMF component and angular signal; finally, Hilbert envelop spectrum analysis is carried on to the IMF component selected to extract each fault modulation information. Algorithm simulation and application examples show that, under the condition of rotating speed changing, the proposed method can extract fault characteristics from the vibration signal of a gearbox with compound faults effectively.
     Currently, the compound fault diagnosis has been a hard problem in the fault diagnosis of mechanical equipments. This dissertation, taking gearbox as the research object, makes an exhaustive study on the fault diagnosis of gearbox with compound faults consisting of gear and rolling bearing local failures under constant rotating speed and changing rotating speed. Algorithm simulation and application examples indicate that the combination methods, obtained by combining MCA with energy operator demodulating, CPP, order tracking, cyclostationary demodulating, etc, take complementary advantage of each single signal processing method, and can effectively extract and separate the compound faults characteristics from the gearbox vibration signal. Therefore, the combination methods have a brilliant application prospect in the fault diagnosis of mechanical equipments.
引文
[1]张培林,李兵,徐超,等.齿轮箱故障诊断技术的油液、振动信息融合方法.北京:机械工业出版社,2011.
    [2]丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术.北京:机械工业出版社,2005.
    [3]Randall R B, Ho D. Optimization of bearing diagnostic techniques using simulated and actual bearing fault signals. Mechanical Systems and Signal Processing,2000,14(5):763-788.
    [4]Liang M, Bozchalooi I S. An energy operator approach to joint application of amplitude and frequency-demodulations for bearing fault detection. Mechanical Systems and Signal Processing,2010,24(5):1473-1494.
    [5]Cheng J S, Yu D J, Yang Y. Application of an impulse response wavelet to fault diagnosis of rolling bearings. Mechanical Systems and Signal Processing,2007, 21(2):920-929.
    [6]Qiu Ha, Lee J, Lin J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics. Journal of Sound and Vibration,2006,289(4-5):1066-1099.
    [7]Nikolaou N G, Antoniadis I A. Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted Morlet wavelets. Mechanical Systems and Signal Processing,2002,16(4):677-694.
    [8]Cheng J S, Yu D J, Yang Y. The application of energy operator demodulation approach based on EMD in machinery fault diagnosis. Mechanical Systems and Signal Processing,2007,21(2):668-677.
    [9]Ricci R, Pennacchi P. Diagnostic of gear faults based on EMD and automatic selection of intrinsic mode functions. Mechanical Systems and Signal Processing, 2011,25(3):821-838.
    [10]Lei Y G, He Z J, Zi Y Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing,2009,23(4): 1327-1338.
    [11]明安波,褚福磊,张炜.滚动轴承复合故障特征分离的小波-频谱自相关方法.机械工程学报,2013,49(3):80-87.
    [12]袁静,何正嘉,訾艳阳.基于提升多小波的机电设备复合故障分离与提取.机 械工程学报,2010,46(1):79-85,91.
    [13]王晓东,何正嘉,訾艳阳.多小波自适应构造方法及滚动轴承复合故障诊断研究.振动工程学报,2010,23(4):438-444.
    [14]Behzad M, Bastami A R, Mba D. A new model for estimating vibrations generated in the defective rolling element bearings. ASME Transactions on Journal of Vibration and Acoustics,2011,133(4),041101.
    [15]Liu J, Shao Y M, Lim T C. Vibration analysis of ball bearings with a localized defect appling piecewise response function. Mechanical and Machine Theory, 2012,56:156-169.
    [16]Muir D, Howe B. On-line oil debris monitor (ODM) for the advanced tactical fighter engines. SAEP Paper No.961308, May 1996.
    [17]Hong H, Liang M. A fractional calculus technique for on-line detection of oil debris. Measurement Science and Technology,2008,19(5):1-14.
    [18]Yoshioka T, Korenaga A, Mano M, et al. Diagnosis of rolling bearing by measuring time interval of acoustic emission generation. ASME Transactions on Journal of Tribology,1999,121(3):468-472.
    [19]Jamaludin N, Mba D. Monitoring extremely slow rolling element bearing Part 1. NDT&E International,2002,35(6):349-358.
    [20]姜旭峰,费逸伟,李华强,等.航空发动机润滑油综合监测技术研究.润滑与密封,2005,2:110-115.
    [21]郝如江,卢文秀,褚福磊.声发射检测技术用于滚动轴承故障诊断的研究综述.振动与冲击,2008,27(3):75-79.
    [22]Mba D, Rao R B K N. Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines:bearings, pumps, gearboxes, engines and rotating structures. The shock and vibration digest,2006,38(1):3-16.
    [23]黄文虎,夏松波,刘瑞岩,等.设备故障诊断原理、技术及应用.北京:科学技术出版社,1996.
    [24]胡劲松.面向旋转机械故障诊断的经验模态分解时频分析方法及实验研究:[博士学位论文].杭州:浙江大学,2003.
    [25]胡爱军.Hilbert-Huang变换在旋转机械振动信号分析中的应用研究:[博士学位论文].保定:华北电力大学,2008.
    [26]陈长征,胡立新,周勃,等.设备振动分析与故障诊断技术.北京:科学出版社,2007.
    [27]Hong H, Liang M. K-Hybrid:a kurtosis-based hybrid thresholding method for mechanical signal denoising. ASME Transactions on Journal of Vibration and Acoustics,2007,129(4):458-470.
    [28]谭继勇,陈雪峰,何正嘉.冲击信号的随机共振自适应检测方法.机械工程学报,2010,46(23):61-67.
    [29]樊永生.机械设备故障的现代信号处理方法.北京:国防工业出版社,2009.
    [30]罗洁思.基于多尺度线调频小波路径追踪的机械故障诊断方法研究:[博士学位论文].长沙:湖南大学,2011.
    [31]沈国际,陶利民,徐永成.时域同步平均的相位误差积累效应研究.振动工程学报,2007,20(4):335-339.
    [32]Braun S. The extraction of periodic waveforms by time domain averaging. Aoustica,1975,32(2):69-77.
    [33]McFadden P D. Examination of a technique for the early detection of failure in gears by signal processing of the time domain average of the meshing vibration. Mechanical Systems and Signal Processing,2000,14(6):891-906.
    [34]孟涛,廖明夫,李辉.齿轮故障诊断的时延相关解调法.航空动力学报,2003,18(1):197-201.
    [35]袁佳胜,冯志华.基于相关分析与小波变换的齿轮箱故障诊断.农业机械学报,2007,38(8):120-123.
    [36]Chaturvedi G K, Thomas D W. Bearing fault detection using adaptive noise canceling. Journal of Sound and Vibration,1982,104:280-289.
    [37]李智炜,傅毅.自适应消噪与轴承故障诊断.航空动力学报,1990,5(3):199-203.
    [38]Shao Y M, Nezu K. Detection of self-aligning rolling bearing fault by asynchronous adaptive noise canceling technology. JSME International Journal, Series C,1999,42(1):33-43.
    [39]彭富强.多尺度线调频基稀疏信号分解及其在齿轮箱故障诊断中的应用:[博士学位论文].长沙:湖南大学,2010.
    [40]胡广书.现代信号处理教程.北京:清华大学出版社,2004.
    [41]王志杰,丁康.汽车变速器故障振动特征提取的试验研究.汽车工程,1994,16(4):242-249,218.
    [42]丁康,朱小勇,陈亚华.齿轮箱典型故障振动特征与诊断策略.振动与冲击,2001,20(3):7-12.
    [43]丁康,胡晓斌,谢明.解调分析的一种优化方法.振动工程学报,1998,11(2):235-240.
    [44]李力,屈梁生,循环统计量方法在滚动轴承故障诊断中的应用.振动、测试与诊断,2003,23(2):116-119.
    [45]Teager H M. Some observations on oral air flow during phonation. IEEE Transactions on Acoustics, Speech and Signal Processing,1980,28(5):599-601.
    [46]胡清忠,褚福磊.基于Hilbert解调的滚动轴承故障诊断分析.振动与冲击,2010,29(S):242-244.
    [47]贾民平,杨建文.滚动轴承振动的周期平稳性分析及故障诊断.机械工程学报,2007,43(1):144-146,151.
    [48]崔玲丽,高立新,蔡立刚,等.基于循环平稳解调的齿轮裂纹早期故障诊断研究.振动工程学报,2008,21(3):274-278.
    [49]刘红星,陈涛,屈梁生,等.能量算子解调方法及其在机械信号解调中的应用.机械工程学报,1998,34(5):85-90.
    [50]武和雷,朱善安,林瑞仲,等.基于能量算子解调法的滚动轴承故障诊断.农业机械学报,2003,34(1):118-120,133.
    [51]杨江天,陈家骥,曾子平.双谱分析及其在故障诊断中的应用.中国机械工程,2000,11(4):424-426.
    [52]李淩均,韩捷,李朋勇,等.矢双谱分析及其在机械故障诊断中的应用.机械工程学报,2011,47(17):50-54.
    [53]郑海波,陈心昭,李志远.基于双谱的齿轮故障特征提取与识别.振动工程学报,2002,12(3):354-358.
    [54]McCormick A C, Nandi A K. Bispectral and trispectral features for machine condition diagnosis. IEE Proceedings-vision Image and Signal Processing,1999, 146(5):229-234.
    [55]Fonollosa J R, Nikias C L. Wigner higher-order moment spectra:definitions, properties, computation and applications to transient signal detection. IEEE Transaction on Signal Processing,1993,42(1):245-266.
    [56]Barker R W, Klute G A, Hinich M J. Monitoring rotating tool wear using high order spectral features. ASME Transactions on Journal of Engineering for industry, 1993,115:23-29.
    [57]李志农,丁启全,吴昭同,等.转子裂纹的高阶谱分析.振动与冲击,2002,21(1):60-62.
    [58]来五星,悬建平,史铁林,等.、Vigner-Ville时频分布研究及其在齿轮故障诊断中的应用.振动工程学报,2003,16(2):247-250.
    [59]丁康,谢明,张彼德,等.基于复解析带通滤波器的复调制细化谱分析原理和方法.振动工程学报,2001,14(1):29-35.
    [60]段孔祥,张来斌,王朝晖,等.往复泵泵阀故障的细化谱诊断法.仪器仪表学报,2004,25(4):568-570.
    [61]Badaoui M E, Antoni J, Guillet F, et al. Use of the moving cepstrum integral to detect and localize tooth spalls in gears. Mechanical Systems and Signal Processing.2001,15(5):873-885.
    [62]Zheng G T, Wang W J. A new cepstral analysis procedure of recovering excitations for transient components of vibration signals and applications to rotating machinery condition monitoring. ASME Transactions on Journal of Vibration and Acoustics,2001,123(2):222-229.
    [63]屈梁生,史东峰.全息谱十年:回顾与展望.振动工程学报,1998,18(4):235-242.
    [64]杜威,汤宝平,陈仁祥.基于频谱细化和相位差校正的全息研究.中国机械工程,2011,22(21):2577-2582.
    [65]褚福磊,彭志科,冯志鹏,等.机械故障诊断中的现代信号处理方法.北京:科学出版社,2009.
    [66]王勇,姜义成.一种自适应Chirplet分解的快速算法.电子学报,2007,35(4):701-704.
    [67]程军圣,杨宇,于德介.基于广义解调时频分析的多分量信号分解方法.振动工程学报,2007,20(6):563-569.
    [68]樊剑,吕超,张辉.基于S变换的地震波时频分析及人工调整.振动工程学报,2008,21(4):381-386.
    [69]Iyama J, Kuwamura H. Application of wavelets to analysis and simulation of earthquake motions. Earthquake Engineering and Structural Dynamics,1999,28: 255-272.
    [70]Wang W J, McFadden P D. Early detection of gear failure by vibration analysis-I:Calculation of the time-frequency distribution. Mechanical Systems and Signal Processing,1993,7(3):193-203.
    [71]Stazewski W J, Tomlinson G R. Local tooth fault detection in gearboxes using a moving window procedure. Mechanical Systems and Signal Processing,1997, 11(3):331-350.
    [72]胡晓依,何庆复,王华胜,等.基于STFT的振动信号解调方法及其在轴承故障检测中的应用.振动与冲击,2008,27(2):82-86.
    [73]丁夏完,刘葆,刘金朝,等.基于自适应STFT的货车滚动轴承故障诊断.中国铁道科学,2005,26(6):24-27.
    [74]刘小峰,柏林,秦树人.基于瞬时转速的变窗STFT变换.振动与冲击,2010,29(4):27-29,58.
    [75]韩中合,朱霄殉,李文华,等.基于EMD消除Wigner-Ville分布交叉项的研究. 汽轮机技术,2010,52(3):211-214.
    76]姜鸣,陈进,汪慰军.几种Cohen类时频分布的比较及应用.机械工程学报,2003,39(8):129-134.
    77] Meng Q F, Qu L S. Rotating machinery fault diagnosis using Wigner distribution. Mechanical Systems and Signal Processing,1991,5(5):155-166.
    78] Chillaz M, Favre B. Engine noise characterization with Wigner-Ville time-frequency analysis. Mechanical Systems and Signal Processing,1993,7(5): 375-400.
    79] Baydar N, Ball A. A comparative study of acoustic and vibration signals in detection of gear failure using Wigner-Ville distribution. Mechanical Systems and Signal Processing,2001,15(6):1091-1107.
    80]孙云岭,朴甲哲,张永祥.Wigner-Ville时频分布在内燃机故障诊断中的应用.中国机械工程,2004,15(6):505-507.
    81]李志农,何永勇,褚福磊.基于Wigner高阶谱的机械故障诊断的研究.机械工程学报,2005,41(4):119-122.
    82] Choi H, Williams W J. Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Transactions on Acoustics, Speech and Signal Processing,1989,37(6):862-871.
    83] Zhao Y, Atlas L E, Marks R J. The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals. IEEE Transactions on Signal Processing,1990,38(7):1084-1091.
    84] Auger F, Flandrin P. Improving the readability of time-frequency and time-scale representations by the reassignment method. IEEE Transactions on Signal Processing,1995,43(5):1068-1089.
    85]邹红星,戴琼海,李衍达,等.不含交叉干扰项且具有WVD聚集性的时频分布之不存在性.中国科学(E辑),2001,31(4):348-354.
    86]张贤达.现代信号处理(第三版).北京:清华大学出版社,2002.
    87]何正嘉,李富才,杜远,等.小波技术在机械监测诊断领域的应用现状与进展.西安交通大学学报,2001,35(5):540-545.
    88] Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packets. NDT & E International,2002,35(3):197-205.
    89]马辉,宋雪萍,赵鑫,等.小波包分析在转子裂纹故障检测中的应用.振动、测试与诊断,2006,26(4):300-304.
    90]程发斌,汤宝平,钟佑明.基于最优Morlet小波和SVD的滤波消噪方法及故障诊断的应用.振动与冲击,2008,27(2):91-94,128.
    [91]徐科,杨德斌,徐金梧.小波变换在齿轮局部缺陷诊断中的应用.机械工程学报,1999,35(3):105-107.
    [92]于德介,程军圣,成琼.基于复小波变换相位谱的齿轮故障诊断.振动、测试与诊断,2004,24(4):275-276.
    [93]李宏坤,赵长生,周帅,等.基于小波包-坐标变换的滚动轴承故障特征增强方法.机械工程学报,2011,47(19):74-80.
    [94]Lin J, Qu L S. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnsosis. Journal of Sound and Vibration,2000,234(1): 135-148.
    [95]Peng Z K, Chu F L, He Y Y. Vibration signal analysis and feature extraction based on reassigned wavelet scalogram. Journal of Sound and Vibration,2000,253(5): 1087-1100.
    [96]Cheng J S, Yu D J, Yang Y. Application of an impulse response wavelet to fault diagnosis of rolling bearings. Mechanical Systems and Signal Processing,2007, 21(2):920-929.
    [97]Fan X F, Zuo M J. Gearbox fault detection using Hilbert and wavelet packet transform. Mechanical Systems and Signal Processing,2006,20(4):966-982.
    [98]王计生,黄惟公,喻俊馨.小波分析和神经网络技术在故障诊断中的应用.振动、测试与诊断,2004,24(1):46-49.
    [99]訾艳阳,何正嘉,张周锁.小波分形技术在机械设备非平稳故障诊断中的应用.西安交通大学学报,2000,34(9):82-87.
    [100]董绍江,汤宝平,张炎.基于非广延小波特征尺度熵和支持向量机的轴承状态识别.振动与冲击,31(15):50-54.
    [101]Chen D, Wang W J. Classification of wavelet map patterns using multi-layer neural networks of gear fault detection. Mechanical Systems and Signal Processing,2002,16(4):695-704.
    [102]Luo X S, Loparo K A. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing,2004,18(5): 1077-1095.
    [103]Sweldens W. The lifting scheme:A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis,1996,3(2):186-200.
    [104]Jiang H K, He Z J, Duan C D, et al. Gearbox fault diagnosis using adaptive redundant lifting scheme. Mechanical Systems and Signal Processing,2006,20(2): 1992-2006.
    [105]Mann S, Haykin S. The chirplet transform:Physical considerations. IEEE Transactions on Signal Processing,1995,43(11):2745-2761.
    [106]胡静涛,郭前进.基于线调频小波变换的旋转机械故障诊断.仪器仪表学报,2006,27(6):395-398.
    [107]Selesnick I W. Wavelet transform with tunable Q-factor. IEEE Transaction On Signal Processing,2011,59(8):3560-3575.
    [108]陈向民,于德介,罗洁思.基于信号共振稀疏分解的包络解调方法及其在轴承故障诊断中的应用.振动工程学报,2012,25(6):628-636.
    [109]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non linear non-stationary time series analysis. Proceedings of the Royal Society of London A,1998,454(1971):903-995.
    [110]Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:the Hilbert spectrum. Annual Review of Fluid Mechanics,1999,31:417-457.
    [111]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法.北京:科学出版社,2006.
    [112]Flandrin P, Rilling G, Goncalves P. Empirical Mode Decomposition as a filter Bank. IEEE Signal Processing Letters,2004,11(2):112-114.
    [113]Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method. Proceedings of the Royal Society of London A,2004,460(2046):1597-1611.
    [114]钟佑明,秦树人,汤宝平.Hilbert-Huang变换中的理论研究.振动与冲击,2002,21(4):13-17.
    [115]程军圣,于德介,杨宇.基于支持矢量回归机的Hilbert-Huang变换端点效应问题的处理方法.机械工程学报,2006,42(4):23-31.
    [116]蔡艳平,李艾华,张玮,等.HHT端点效应的最大Lyapunov指数边界延拓方法.仪器仪表学报,2011,32(6):1330-1336.
    [117]曹冲锋,杨世锡,杨将新.一种抑制EMD端点效应新方法及其在信号特征提取中的应用.振动工程学报,2008,21(6):588-593.
    [118]盖强,马孝江,张海勇,等.一种消除局域波法中边界效应的新方法.大连理工大学学报,2002,42(1):115-117.
    [119]胡爱军,安连锁,唐贵基.Hilbert-Huang变换端点效应处理新方法.机械工程学报,2008,44(4):154-158.
    [120]Peng Z K, Tse P W, Chu F L. An improved Hilbert-Huang transform and its application in vibration signal analysis. Journal of Sound and Vibration,2005, 286(1-2):187-205.
    [121]Loutridis S J. Instantaneous energy density as a feature for gear fault detection. Mechanical Systems and Signal Processing,2006,20(5):1239-1253.
    [122]Yu D J, Cheng J S, Yang Y. Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mechanical Systems and Signal Processing, 2005,19(2) 259-270.
    [123]唐贵基,向玲,朱永利.基于HHT的旋转机械油膜涡动和油膜振动故障特征分析.中国电机工程学报.2008,28(2):77-81.
    [124]王珍,马孝江.局域波时频法在柴油机缸套活塞磨损诊断中的应用研究.内燃机学报,2000,20(2):157-160.
    [125]Yang Y, Yu D J, Cheng J S. A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM. Measurement,2007,40(9):943-950
    [126]秦太龙,杨勇,程珩,等.基于IMF能量矩和神经网络的轴承故障诊断.振动、测试与诊断,2008,28(3):229-232.
    [127]程军圣,于德介,杨宇.基于EMD和分形维数的转子系统故障诊断.中国机械工程,2005,16(12):1088-1091.
    [128]Huang N E, Wu M-L C, Long S R, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proceedings of the Royal Society of London A,2003,459:2317-2345.
    [129]Boashash B. Estimating and interpreting the instantaneous frequency of a signal-part 1:Fundamentals. Proceedings of the IEEE,1992,80(4):520-538.
    [130]Boashash B. Estimating and interpreting the instantaneous frequency of a signal-part 2:Algorithms and applications. Proceedings of the IEEE,1992,80(4): 540-568.
    [131]Smith J S. The local mean decomposition and its application to EEG perception data. Journal of the Royal Society Interface,2005,2(5):443-454.
    [132]Cheng J S, Zhang K, Yang Y. An order tracking technique for the gear fault diagnosis using local mean decomposition method. Mechanism and Machine Theory,2012,55(9):67-76.
    [133]Wu Z H, Huang N E. Ensemble empirical mode decomposition:A noise-assisted data analysis method. Advances in Adaptive Data Analysis,2009,1(1):1-41.
    [134]陈仁祥,汤宝平,马婧华.基于EEMD的振动信号自适应降噪方法.振动与冲击,2012,3 1(15):82-86.
    [135]Frei M G, Osorio I. Intrinsic time-scale decomposition:Time-frequency-energy analysis and real-time filtering of non-stationary signals. Proceedings of the Royal Society of London A,2007,463:321-342.
    [136]An X L, Jiang D X, Chen J, et al. Application of the intrinsic time-scale decomposition method to fault diagnosis of wind turbine bearing. Journal of Vibration and Control,2012,18(2):240-245.
    [137]程军圣,郑近德,杨宇.基于局部特征尺度分解的经验包络解调方法及其在机械故障诊断中的应用.机械工程学报,2012,48(19):87-94.
    [138]Grochenig K. Describing functions:Atomic decompositions versus frames. Monatshefie fur Mathmetik,1991,112(1):1-41.
    [139]Coifman R R, Wickerhauser M V. Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory,1992,38(2):718-3-718.
    [140]Grochenig K. Acceleration of the frame algorithm. IEEE Transactions on Signal Processing,1993,41(12):3331-3340.
    [141]Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [142]Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal of Scientific Computing,1998,20(1):33-61.
    [143]Liu B, Ling S F, Gribonval R. Bearing failure detection using matching pursuit. NDT& E International,2002,35(4):255-262.
    [144]Peng F Q, Yu D J, Luo J S. Sparse signal decomposition method based on multi-scale chirplet and its application to the fault diagnosis of gearboxes. Mechanical Systems and Signal Processing,2011,25(2):549-557.
    [145]Yang H Y, Mathew J, Ma L. Fault diagnosis of rolling element bearings using basis pursuit. Mechanical Systems and Signal Processing,2005,19(2):341-356.
    [146]范虹,孟庆丰,张优云,等.基于改进匹配追踪算法的特征提取及其应用.机械工程学报,2007,43(7):115-119.
    [147]费晓琪,孟庆丰,何正嘉.基于冲击时频原子的匹配追踪信号分解及机械故障特征提取技术,振动与冲击,2003,22(2):22,26-29.
    [148]唐海峰,陈进,董广明.基于匹配追踪的复杂度分析方法在轴承故障诊断中的应用研究.振动工程学报,2010,23(5):541-545.
    [149]郑海波,陈心昭,李志远.基追踪降噪及在齿轮故障诊断中的应用.振动、测试与诊断,2003,23(2):128-130.
    [150]冯志鹏,朱萍玉,刘立,等.基追踪在齿轮损伤识别中的应用.北京科技大学学报,2008,30(1):84-89.
    [151]刘丹华,石光明,周佳社.一种冗余字典下的信号稀疏分解新方法.西安电子科技大学学报,2008,35(2):228-232.
    [152]高强,张发启,孙德明,等.遗传算法降低匹配追踪算法计算量的研究.振动、测试与诊断,2003,23(3):165-167.
    [153]张含蕾,周洁敏,李刚.基于小波分析的感应电动机复合故障诊断.中国电机工程学报,2006,26(8):159-162.
    [154]沈仁发,郑海起,金海薇,等.MMAS与粗糙集在轴承复合故障诊断中的应用.振动、测试与诊断,2009,30(2):128-131.
    [155]高亚东,邓升平.直升机旋翼不平衡复合故障对机体振动过的影响.振动、测试与诊断,2011,31(6):763-766.
    [156]张雄希,刘振兴.共振解调与小波降噪在电机故障诊断中的应用.电机与控制学报,2010,14(6):66-70.
    [157]崔玲丽,高立新,殷海晨,等.基于第二代小波和EMD的解调方法及其应用研究.振动与冲击,2008,27(6):1-13.
    [158]陈晓理,王仲生,姜洪开,等.基于改进样板去噪源分离的轴承复合故障诊断.中国机械工程,2011,22(17):2080-2084.
    [159]杨杰,郑海起,关贞珍,等.基于形态成分分析的轴承复合故障诊断.轴承,2011,8:38-42.
    [160]李辉,郑海起,唐力伟.基于改进形态分量分析的齿轮箱轴承多故障诊断研究.振动与冲击,2012,31(12):135-140.
    [161]骆志高,陈保磊,庞朝丽,等.基于遗传算法的滚动轴承复合故障诊断研究.振动与冲击,2010,29(6):174-177.
    [162]姜万录,牛慧峰,刘思远.免疫支持向量机复合故障诊断方法及试验研究.振动与冲击,2011,30(6):176-180,212.
    [163]陈丁跃.基于信息融合与神经网络的复合振动故障诊断.振动、测试与诊断,2004,24(4):290-293.
    [164]Bachschmid N, Pennacchi P, Vania A. Identification of multiple faults in rotor systems. Journal of Sound and Vibration,2002,254(2):327-366.
    [165]Patel T H, Darpe A K. Coupled bending-torsional vibration analysis of rotor with rub and crack. Journal of Sound and Vibration,2009,326(3-5):740-752.
    [166]Hong H, Liang M. Separation of fault features from a single-channel mechanical signal mixture using wavelet decomposition. Mechanical Systems and Signal Processing,2007,21(5):2025-2040.
    [167]Randall R B. Detection and diagnosis of incipient bearing failure in helicopter gearboxes. Engineering Failure Analysis,2004,11(2):177-190.
    [168]Jing J P, Meng G. A novel method for multi-fault diagnosis of rotor system. Mechanism and Machine Theory,2009,44(4):697-709.
    [169]Lei Y G, He Z J, Zi Yanyang. Application of a novel hybrid intelligent method to compound fault diagnosis of locomotive roller bearings. ASME Transactions on Journal of Vibration and Acoustics,2008,130(3):1-6.
    [170]Purushotham V, Narayanana S, Prasad A N. Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition. Journal of NDT&E International,2005,38(8):654-664.
    [171]Wu F Qi, Meng G. Compound rub malfunctions feature extraction based on full-spectrum cascade analysis and SVM. Mechanical Systems and Signal Processing,2006,20(8):2007-2021.
    [172]Abbasion S, Rafsanjani A, Farshidianfar A, et al. Rolling bearing element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mechanical Systems and Signal Processing,2007,21(7): 2933-2945.
    [173]何正嘉,訾艳阳,陈雪峰,等.内积变换原理与机械故障诊断.振动工程学报,2007,20(5):528-833.
    [174]王诗彬,朱忠奎,王安柱.基于瞬态冲击响应参数辨识的轴承故障特征检测.振动工程学报,2010,23(4):445-449.
    [175]Candes E J, Charlton P R, Helgason H, et al. Detecting highly oscillatory signals by chirplet path pursuit. Applied and Computational Harmonic Analysis,2008, 24(1):14-40.
    [176]Fyfe K R, Munck E D S. Analysis of computed order tracking. Mechanical System and Signal Processing,1997,11(2):187-205.
    [177]Bossley K M, McKendrick R J. Hybrid computed order tracking. Mechanical System and Signal Processing,1999,13(4):627-641.
    [178]许雪贵,徐文琴.齿轮箱故障的振动机理与故障特征研究.机械制造与自动化,2012,41(4):74-77.
    [179]王春.基于小波和分形理论的齿轮故障特征提取及噪声的和谐化研究:[博士学位论文].重庆:重庆大学,2006.
    [180]盛兆顺,尹琦岭.设备状态监测与故障诊断技术及应用.北京:化学工业出版社,2003.
    [181]吕蓬.旋转机械故障模式识别方法研究:[博士学位论文].保定:华北电力大学,2010.
    [182]赵传国.滚动轴承失效分析概论.轴承,1996,1:39-46.
    [183]Lou X S. Fault detection and diagnosis for rolling element bearings: [Dissertation]. Cleveland:Case Western Reserve University,2000.
    [184]侯者非.强背景噪声下滚动轴承故障诊断的关键技术研究:[博士学位论文].武汉:武汉理工大学,2010.
    [185]Liang M, Bozchalooi I S. An energy operator approach to joint application of amplitude and frequency-demodulations for bearing fault detection. Mechanical Systems and Signal Processing,2010,24(5):1473-1494.
    [186]程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用.机械工程学报,2004,40(8):115-118.
    [187]Starck J L, Moudden Y, Robin J. Morphological component analysis. Proceedings of SPIE,2005,59(14):1-15.
    [188]李映,张艳宁,许星.基于信号稀疏表示的形态成分分析:进展和展望.电子学报,2009,37(1):146-152.
    [189]Starck J L, Elad M, Donoho D. Redundant multiscale transforms and their application for morphological component separation. Advances in Imaging and Electron Physics,2004,132(82):287-384.
    [190]Elad M, Starck J L, Querre P. Simultaneous cartoon and texture image inpainting using morphological component analysis(MCA). Applied and Computational Harmonic Analysis,2005,19(3):340-358.
    [191]Bobin J, Starck J L, Fadili J. Morphological component analysis:an adaptive thresholding strategy. IEEE Transaction on Image Processing,2007,16(11): 2675-2681.
    [192]Gao H Y, Bruce A G. Waveshrink and semisoft shrinkage. Statistical Science Research Report,1995,39:1-25.
    [193]Heyns T, Godsill S J, Villiers J P, et al. Statistical gear health analysis which is robust to fluctuating loads and operating speeds. Mechanical Systems and Signal Processing,2012,27:651-666.
    [194]Shao H, Jin W, Qian S. Order tracking by discrete Gabor expansion. IEEE Transactions on Instrumentation and Measurement,2003,52(3):754-761.
    [195]Saavedra P N, Rodriguez C G. Accurate assessment of computed order tracking. Shock and Vibration,2006,13(1):13-32.
    [196]汤宝平,何启源,魏玉果,等.基于角加速度的复合计算阶次跟踪方法.机械工程学报,2008,44(8):143-147.
    [197]李辉,郑海起,唐力伟.基于阶次跟踪和变换时频谱的轴承故障诊断.振动、测试与诊断,2010,30(2):138-142.
    [198]郭瑜,秦树人.基于瞬时频率估计及时频滤波的阶比分量提取.中国机械工程,2003,14(17):1506-1509.
    [199]赵晓平.旋转机械阶比分析研究与软件实现:[博士学位论文].南京:南京航空航天大学,2008.
    [200]刘坚,彭富强,于德介.基于线调频小波路径追踪阶比跟踪算法的齿轮箱故障诊断研究.机械工程学报,2009,45(7):81-86.
    [201]周福昌,陈进,何俊,等.循环自相关函数的解调特性分析及其在故障诊断中的应用.振动工程学报,2004,17(S):280-283.
    [202]陈向民,于德介,罗洁思.基于线调频小波路径追踪阶比循环平稳解调的齿轮故障诊断.机械工程学报,2012,48(3):95-101.
    [203]McCormick A C, Nandi A K. Cyclostationary in rotating machine vibrations. Mechanical Systems and Signal Processing,1998,12(2):225-242.
    [204]Antoniadis I, Glossiotis G. Cyclostationary analysis of rolling-element bearing vibration signals. Journal of Sound and Vibration,2001,248(5):829-845.
    [205]丁康,孔正国,何志达.振动调幅信号的循环平稳解调原理与应用.振动工程学报,2005,18(3):304-308.
    [206]张克南,徐光华,谢里阳,等.应用循环平稳方法分离电机系统故障.振动、测试与诊断,2006,26(2):87-91.
    [207]郭瑜,秦树人,汤宝平,等.基于瞬时频率估计的旋转机械阶比跟踪.机械工程学报,2003,39(3):32-36.
    [208]赵晓平,张令弥,郭勤涛.基于瞬时频率估计的自适应Vold-Kalman阶比跟踪研究.振动与冲击,2008,27(12):112-116.
    [209]陈光化,曹家麟,王健,等.应用WVD估计AM-FM的瞬时频率.电子与信息学报,2003,25(2):206-211.
    [210]秦毅,秦树人,毛永芳.基于小波脊线的解调方法及其在旋转机械故障诊断中的应用.机械工程学报,2009,45(2):231-237,242.
    [211]罗洁思,于德介,陈向民.线调频小波路径追踪算法和FrFT相结合的升降速齿轮故障诊断方法.机械工程学报,2012,48(7):56-61.
    [212]陈向民,于德介,任凌志,等.基于线调频小波路径追踪阶比能量解调的齿轮轮齿裂纹故障诊断.中国机械工程,2011,22(21):2598-2603.
    [213]Qian S, Chen D. Joint time-frequency analysis. Englewood Cliffs:Prentice Hall, 1996.
    [214]罗洁思,于德介,彭富强.齿轮箱故障振动信号的阶比多尺度形态学解调.机械工程学报,2010,46(11):114-120,128.
    [215]蔡艳平,李艾华,徐斌,等.集成经验模态分解中加入白噪声的自适应准则.振动、测试与诊断,2011,31(6):709-714,811.
    [216]窦东阳,赵英凯.集合经验模式分解在旋转机械故障诊断中的应用.农业工程学报,2010,26(2):190-196.
    [217]陈仁祥,汤宝平,吕中良.基于相关系数的EEMD转子振动信号降噪方法.振 动、测试与诊断,2012,32(4):542-546.
    [218]彭富强,于德介,刘坚.一种基于多尺度线调频基的稀疏信号分解方法.振动工程学报,2010,23(3):333-338.
    [219]郭奇,刘卜瑜,史立波,等.基于二次EEMD的Wigner-Ville分布旋转机械故障信号分析及试验研究.振动与冲击,2012,31(13):129-133,153.
    [220]于德介,程军圣,杨宇Hilbert-Huang变换在齿轮故障诊断中的应用.机械工程学报,2005,41(6):102-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700