用户名: 密码: 验证码:
考虑认知不确定性的结构可靠性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实际工程问题中广泛存在着与几何尺寸、材料属性、边界条件等相关的不确定性,采用合理有效的理论与方法度量、传播和控制这些不确定性对于提高产品或结构的安全性能具有极其重要的意义。不确定性可分为随机不确定性和认知不确定性两大类,随机不确定性建模通常需要大量的样本信息以构造不确定性参数的精确概率分布,且不能随着认识水平的增加而消除;而认知不确定性则往往是由于样本信息匮乏无法构建精确的概率分布,且会随着认识水平的增加而逐渐消除。现代产品和结构的设计、制造、服役及老化等全生命周期普遍存在认知不确定性,仅仅采用传统的随机建模、分析与设计将无法对认知不确定性下结构的性能做出客观有效的评估,甚至可能导致不可靠的设计。
     目前,以概率论这一个统一完善的理论体系的支撑,随机不确定性结构响应与可靠性分析在理论方法与工程应用均发展的较为成熟。相对而言,认知不确定性的建模与分析手段则存在多种理论体系并存的状况,这就使得认知不确定性的建模与分析在一定程度上较随机不确定性的处理方法更为复杂。尽管认知不确定性结构响应与可靠性分析得到了较为迅速地发展,但整体而言该领域的研究依然处于初步阶段,还有诸多关键问题亟待解决。为此,本文将从认知不确定性建模较为方便的两类方法即凸模型和证据理论入手,着重针对基于证据理论的结构不确定性分析、考虑区间与随机场混合不确定性结构分析、基于凸模型的高效非概率可靠性分析和基于证据理论的可靠性分析等方面展开研究。基于此思路,本论文开展和完成了如下的研究工作:
     (1)针对证据不确定性下结构响应问题,将证据理论直接与有限元方法结合,从而发展出基于证据理论的不确定性结构分析方法。通过引入概率论中的矩概念,并针对证据变量和证据函数发展出相应的证变量矩和证据函数矩;通过区间运算计算证据变量矩和证据函数矩;将矩概念分别与静力学有限元方法和动力学有限元方法结合发展出结构静动态响应分析方法来计算不确定性结构的响应区间矩。此外,在每一焦元上采用区间结构分析来高效求解结构的近似响应边界。
     (2)针对带有区间相关长度的随机场结构响应分析问题,发展出一种区间与随机场混合的不确定结构分析方法。实验数据匮乏情况下的随机场相关模型的相关长度采用区间进行度量,基于这种混合模型将能更为合理的描述不确定参数的空间变异特性;基于Karhunen-Loeve级数展式离散带有区间相关长度的随机场,并获得均值单元刚度矩阵和区间加权单元刚度矩阵;基于带有区间权系数的多项式混沌展式近似结构位移响应;通过Element-by-Element(EBE)技术将单元刚度矩阵组装为整体刚度矩阵,以消除单元刚度矩阵中区间元素耦合对计算精度的影响;基于Galerkin法构造出一区间线性方程组,通过求解获取相应的区间权系数,进而获得结构响应的区间矩。
     (3)针对具有黑盒子型极限状态函数的椭球非概率可靠性分析问题,借鉴传统的概率可靠性分析中的经典响应面法思想,发展出了一种基于序列迭代响应面的椭球非概率可靠性分析方法。基于相关性分析技术构建多维椭球模型,从而使多维椭球模型的构建更为方便经济;通过不带交叉项二次多项式构建真实极限状态函数的代理模型,并采用迭代策略对采样中心、设计空间和代理模型进行更新直至逼近于真实的极限状态函数。
     (4)提出了一种基于局部加密代理模型的椭球非概率可靠性分析方法。通过在第一迭代步采用不带交叉项二次多项式构建极限状态函数的代理模型,并求解获取近似设计点以作为整体设计域的采样中心;在随后的迭代步,采用径向基函数构建极限状态函数的代理模型,并将该迭代步获得的近似设计点加入先前的样本集实现代理模型的逐步更新。该方法着重于提高极限状态函数在设计点附近区域的近似精度,所需的样本大大减少,因而能进一步提高可靠性分析的效率。
     (5)针对证据理论在描述不确定性变量的不连续性而带来的计算极端耗时问题,分别基于不带交叉项二次多项式响应面、径向基函数和结合移动最小二乘法的高维代理模型发展出三种基于代理模型的证据可靠性分析方法。相比于概率可靠性分析和椭球非概率可靠性分析,证据可靠性分析则需要对穿过辨识框架的极限状态函数而非对设计点局部区域具有较高的近似精度。通过引入一统计量指标,在不同的样本点数、阈值设置、基本概率分配数及不同问题规模等多个方面对三种方法的优势和劣势进行系统比较研究以考察不同代理模型方法在证据可靠性分析中的适用性。此外,还针对工程中常见的低失效概率问题进一步研究了三种方法的优缺点。
     (6)针对证据不确定性下的系统可靠度问题,分别针对串联系统和并联系统发展出高效的结构系统可靠度分析方法。通过引入系统可靠度的概念,给出串并联系统下证据失效概率信度和似真度的定义。针对串联系统和并联系统分别构造出相应的两层优化格式以判断焦元与系统失效域的相对位置,从而高效确定属于失效概率信度和似真度的焦元集合。对于极大极小和极小极大优化问题,将其转换为一单层优化问题并结合泰勒展式及单纯形方法实现高效判断焦元与系统失效域的相对位置;对于极小极小和极大极大优化问题,通过区间分析方法来高效求解每一焦元上极值以判断焦元与系统失效域的相对位置。
Uncertainties associated with geometric tolerances, material properties, boundary conditions widely exist in practical engineering problems. Quantifying, propagating and managing the concerned uncertainty based on related uncertainty theory have become extremely important to improve the performances of products or structures. Uncertainty can be categorized into stochastic and epistemic types. Stochastic uncertainty quantification always requires a large amount of experimental samples to construct the precise probability distributions of uncertain parameters, and cann't be reducible as the state of knowledge increases. While epistemic uncertainty arises from lack of knowledge without sufficient sample information to construct the corresponding precise probability distributions, and can be reducible as the state of knowledge increases. Actually, epistemic uncertainty widely exists during the design, manufacturing, service and aging stages of the whole life cycle of current products or structures. Structural analysis and design by only using stocastic modeling may not provide effective assessments of structural performances under epistemic uncertainties, or even will lead to unreliable designs.
     Comparatively, structural stochastic response analysis and reliability theory has exhibited full developments presently in support of a unified systematic framework of probability theory. In contrast, there co-exist several theories to characterize the epistemic uncertainty, which makes epistemic uncertainty quantification more complicated. Several progresses have been made in the field of structural response and reliability analysis theories and algorithms under epistemic uncertainty in recent years, however, it seems that it is still in its preliminary stages and several related important issues have not been well solved. Thus, this dissertation concentrates on two types of relatively convinent uncertainty modeling approaches, namely convex sets and evidence theory, and conducts systematic studies at structural response analysis algorithm based on evidence theory, structural response analysis under convex sets and probability hybrid uncertainty model, non-probability reliability analysis methods by using ellipsoid-type convex model, and evidence-theory-based structural reliability analysis. As a result, the following studies are carried out in this dissertation:
     (1) A structural uncertainty analysis method is developed to calculate the structural static and dynamic response under epistemic uncertainties by directly integrating evidence theory with finite element method. By introducing the moment concept in probability theory, the moments of evidence variables and associated functions are developed to describe their distributions. The static and dynamic response analysis method is developed by integrating the moment concept with static and dynamic finite element method to compute the respone moments. Besides, the interval structural analysis technique is used to efficiently calculate the approximate response for each focal element.
     (2) A structural uncertainty analysis method with interval and stochastic field hybrid model is proposed to conduct structural response analysis under stochastic field with interval correlation length. The correlation length of the stochastic correlation model is quantified by using interval due to lack of sufficient experimental data, and this proposed hybrid model can more reasonably describe the spatial variability characteristics of the uncertain parameters. The stochastic field with interval correlation length is discretized based on Karhunen-Loeve series expansion, and the mean element stiffness matrix and the interval weighted element stiffness matrix can be further obtained. The structural displacement response is approximated by using polynomial chaos expansion with interval weights. The Element-by-Element technique is used to assemble the corresponding global stiffness matrix to avoid the couping effects of the element stiffness matrices. An extended-order system of interval linear equations is formulated, and is further solved to obtain the corresponding interval weights, and the interval moments of the structural response can be achieved.
     (3) For ellipsoid-model-based non-probabilistic reliability problems with black-box limit-state equations, a sequential response surface method is developed to conduct reliability analysis by referring to the basic ideas of conventional response surface method in probability-based reliability analysis. The correlation analysis technique is used to construct the multi-dimensional ellipsoid model, which will be more convenient and economic to quantify uncertain parameters. A quadratic polynomial without cross terms is adopted to approximate the limit-state function, and an iterative strategy is employed to update sampling center, design space and metamodel until the convergence criteria is satisfied.
     (4) A local-densifying metamodeling approach is suggested to conduct ellipsoid-model-based non-probabilistic reliability analysis. A quadratic polynomial without cross terms is used to approximate the limit-state function in the first iterative step, and the approximate design point is located based on the created metamodel as the sampling center of the design space. In subsequent iterative steps, radial basis function is used to construct the metamodel of the limit-state function, and the obtained approximate design point is added into the previous sampling point sets to update the metamodel. The proposed method can gradually improve the approximation accuracy of the limit-state function at the local region nearby the design point, and hence much less samples are required comprared with the sequential response surface method, and whereby improve the reliability analysis solution efficiency.
     (5) For the extremely computational cost problems due to the discontinuous nature of epistemic uncertainty quantification based on evidence theory, three types of evidence-theory-based reliability analysis method are developed by intergating the quadratic polynomial without cross terms, radial basis function and high-dimensional model representation in combination with moving least square method to overcome the low-efficiency problem, respectively. Compared to probability-based and convex-model-based reliability analysis, evidence-theory-based reliability analysis requires relatively high approximation accuracy of the limit-state function across the frame of discernment. The proposed three metamodel-based approaches are systematically compared to test the applicability of different metamodeling techniques in evidence-theory-based reliability analysis under different sampling points, threshold setting, basic probability assignments, and different problem scale by introducing a statistical measure. Besides, their advantages and disadvantages are further investigated for low-failure-probability problems.
     (6) A structural system reliability analysis method is developed to deal with series and parallel system under epistemic uncertainty by extending evidence theory to system reliability problems. By introducing the concept of system reliabillity, the definitions of failure probability belief and plausibility for series and parallel systems are provided. By constructing two-level optimization formulations to locate the relative position between the focal element and system failure region, and whereby efficiently determine the focal element sets belonging to failure belief or plausibility. The first-order Taylor expansion and simplex method are employed to determine the relative positions for the max-min and min-max optimization problems, while the interval analysis method is used for min-min and max-max optimization problems.
引文
[1]邱志平,王晓军.不确定性结构力学问题的集合理论凸方法.北京:科学出版社,2008.
    [2]赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社,2000.
    [3]王震鸣,杜善义,张横等.复合材料及其结构力学、设计、应用和评价.北京:北京大学出版社,1998.
    [4]Wang Z M, Kwan A K H, Chan H C. Mesoscopic study of concrete Ⅰ: generation of random aggregate structure and finite element mesh. Computers and Structures, 1999,58:533-544.
    [5]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂.清华大学学报(自然科学版),1996,36(1):84-89.
    [6]侯善芹.复合材料宏观性能的统计特征分析:[大连理工大学硕士学位论文].大连:大连理工大学,2006.
    [7]张旭强,罗爱辉,张延松等.点焊热镀锌双相高强度钢的电极磨损规律.焊接学报,2006,27(9):108-112.
    [8]Fukumoto S, Lum I, Biro E, et al. Effects of electrode degratation on electrode life in resistance spot welding of aluminum alloy 5182. Welding Journal,2003,82(11): 307-312.
    [9]孙光永,李光耀,陈涛等.基于6σ的稳健优化设计在薄板冲压成形中的应用.机械工程学报,2008,44(11):248-254.
    [10]马怀波,陈建桥,王书恒.汽车横梁拉深成形的有限元分析.润滑与密封,2006,11(183):123-129.
    [11]胡海岩.结构阻尼模型及系统时域动响应.振动工程学报,1992,5(1):8-16.
    [12]王德铎,张艳萍,闫军等.多体结构瑞利阻尼系数的确定.机械设计与制造,2010,1:230-231.
    [13]Ditlevsen O. Model uncertainty in structural reliability. Structural Safety,1982, 1(1):73-86.
    [14]徐日庆,龚晓南,王明祥.粘弹性本构模型的识别与变形预报.水利学报,1998,4:75-80.
    [15]刘宁.可靠度随机有限元法及其工程应用.北京:中国水利水电出版社,2001.
    [16]Rowe W D. Understanding uncertainty. Risk Analysis,1994,14(5):743-750.
    [17]Regan H M, Colyvan M, Burgman M A. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecological Application,2002, 12(2):618-628.
    [18]Du X P. Uncertainty analysis with probability and evidence theory. In: Proceedings of ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC/CIE), Philadelphia, PA, USA,2006.
    [19]王光远.工程软设计理论.北京:科学出版社,1992.
    [20]Ben-Haim Y, Elishakoff I. Convex models of uncertainties in applied mechanics. Amsterdam:Elsevier Science Publisher,1990.
    [21]郭书祥,吕震宙,冯元生.基于区间分析的结构非概率可靠性模型.计算力学学报,2001,18(1):56-60.
    [22]Nie J, Ellingwood B R. Directional methods for structural reliability analysis. Structural Safety,2000,22:233-249.
    [23]Wei D, Rahman S. Structural reliability analysis by univariate decomposition and numerical integration. Probabilistic Engineering Mechanics,2007,22:27-38.
    [24]Lin C Y. Huang W H, Jeng M C, et al. Study of an assembly tolerance allocation model based on Monte Carlo simulation, Journal of Materials Processing Technology,1997,70:9-16.
    [25]Papadrakakis M, Papadopoulos V, Lagaro N. Structural reliability analysis of elastic-plastic structures using neural networks and Monte Carlo simulation. Computer Methods in Applied Mechanics and Engineering,1996,136:145-63.
    [26]Hasofer A M, Lind N C. An exact and invariant first order reliability format. ASCE-Journal of the Engineering Mechanics Division,1974,100(1):111-121.
    [27]Breitung K. Asymptotic approximation for multinormal integrals. Journal of Engineering Mechanics,1984,110(3):357-366.
    [28]Bucher C G, Bourgund U. A fast and efficient response surface approach for structural reliability problems. Structural Safety,1990,7:57-66.
    [29]Rajashekhar M R, Ellingwood B R. A new look at the response surface approach for reliability analysis. Structural Safety,1993,12:205-220.
    [30]Faravelli L. Response-surface approach for reliability analysis. ASCE-Journal of Engineering Mechanics,1989,115:2763-2781.
    [31]Liu Y W, Moses F. A sequential response surface method and its application in the reliability analysis of aircraft structural systems. Structural Safety,1994,16:39-46.
    [32]Kim S-H, Na S-W. Response surface method using vector projected sampling points. Structural Safety,1997,19(1):3-19.
    [33]Zheng Y, Das P K. Improved response surface method and its application to stiffened plate reliability analysis. Engingeering Structures,2000,20:544-551.
    [34]Guan X L, Melchers R E. Effect of response surface parameter variation on structural reliability estimates. Structural Safety,2001,23:429-444.
    [35]Kaymaz I, McMahon C A. A response surface method based on weighted regression for structural reliability analysis. Probabilistic Engineering Mechanics, 2005,20:11-17.
    [36]吕震宙,宋述芳,李洪双等.结构机构可靠性及可靠性灵敏度分析.北京:科学出版社,2009.
    [37]Cheng J, Li Q S, Xiao R C. A new artificial neural network-based response surface method for structural reliability analysis. Probabilistic Engineering Mechanics, 2008,23:51-63.
    [38]Basudhar A, Missoum S. Adaptive explicit decision functions for probabilistic design and optimization using support vector machines. Computers and Structures, 2008,86:1904-1917.
    [39]Tan X H, Bi W H, Hou X L, et al. Reliability analysis using radial basis function networks and support vector machines. Computers and Geotechnics,2011, 38:178-186.
    [40]Kaymaz I. Application of kriging method to structural reliability problems. Structural Safety,2005,27:133-151.
    [41]Kang S C, Koh H M, Choo J F. An efficient response surface method using moving least squares approximation for structural reliability analysis. Probabilistic Engineering Mechanics,2010,25:365-371.
    [42]秦权,林道锦,梅刚.结构可靠度随机有限元-理论及工程应用.北京:清华大学出版社,2006.
    [43]武清玺.结构可靠性分析及随机有限元法-理论、方法、工程应用及程序设计.北京:机械工业出版社,2005.
    [44]Haldar A, Mahadevan S. Reliability assessment using stochastic finite element analysis. New York: John Wiley and Sons,1984.
    [45]Yamazaki F, Shinozuka M. Neumann expansion for stochastic finite element analysis. ASCE-Journal of Engineering Mechanics,114(8):1335-1354.
    [46]Liu W K, Belytschko T, Mani A. Random field finite elements. International Journal for Numerical Methods in Engineering,1986,23:1831-1845.
    [47]Liu W K, Belytschko T, Mani A. Probabilistic finite elements for nonlinear structural dynamics. Computer Methods in Applied Mechanics and Engineering, 1986:61-81.
    [48]Ghanem R G, Spanos P D. Spectral stochastic finite element formulation for reliability analysis. Journal of Engineering Mechanics,1991,117(10),2351-2372.
    [49]Ghanem R G, Spanos P D. Stochastic finite elements-A spectral approach. New York:Springer,1991.
    [50]朱位秋,任永坚.基于随机场局部平均的随机有限元法.固体力学学报,1988,4:261-271.
    [51]Mahadevan S, Rebba R. Validation of reliability computational models using Bayes networks. Reliability Engineering and System Safety,2005,87(2):223-232.
    [52]Wang P, Youn B D, Xi Z, Kloess A. Bayesian reliability analysis with evolving, insufficient, and subjective data sets. ASME-Journal of Mechanical Design,2009, 131(11):11100811.
    [53]Park I, Amarchinta H K, Grandhi R V. A Bayesian approach for quantification of model uncertainty. Reliability Engineering and System Safety,2010,95:777-785.
    [54]Aughenbaugh J M, Paredis C J J. The value of using imprecise probabilities in engineering. ASME-Journal of Mechanical Design,2006,128:969-979.
    [55]Walley J. Statistical reasoning with imprecise probabilities. New York:Chapman and Hall,1991.
    [56]Oberguggenberger M, Fellin W. Reliability bounds through random sets: non-parametric methods and geotechnical applications. Computers and Structures, 2008,86:1093-1101.
    [57]Tonon F, Bernardini A, Mammino A. Reliability analysis of rock mass response by means of random set theory. Reliability Engineering and System Safety,2000,70: 241-261.
    [58]Ferson S, Tucker W T. Sensitivity analysis using probability bounding. Reliability Engineering and System Safety,2006,91(10-11):1435-1442.
    [59]Zhang H, Mullen R, Muhanna R. Safety structural analysis with probability-boxes. International Journal of Reliability and Safety,2012,6:110-129.
    [60]Mourelatos Z P, Zhou J. Reliability estimation with insufficient data based on possibility theory. AIAA Journal,2005,43(8):1696-1705.
    [61]Du L, Choi K K, Youn B D. Inverse possibility analysis method for possibility-based design optimization. AIAA Journal,2006,44(11):2682-2690.
    [62]Zadeh L A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems,1978,1(1):3-28.
    [63]黄洪钟.模糊设计.北京:机械工业出版社,1999.
    [64]Moore R E. Methods and application of interval analysis. Philadelphia: SAIM publisher,1979.
    [65]Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics. Amsterdam:Elsevier Science Publisher,1990.
    [66]Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistical Society, Series B,1977,39(1): 1-38.
    [67]Shafer G A. A mathematical theory of evidence. Princeton: Priceton University Press,1976.
    [68]Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells. ASME-Journal of Applied Mechanics,1993,60(3):683-688.
    [69]Ben-Haim Y. Fatigue lifetime with load uncertainty represented by convex model. Journal of Engineering Mechanics,1994,120(3):445-462.
    [70]Ben-Haim Y. A non-probabilistic measure of reliability of linear systems based on expansion of covex models. Structural Safety,1995,17(2):91-109.
    [71]Elishakoff I, Elisseef P, Gleng S A L. Nonprobabilistic, convex-theoretic modeling of scatter in material properties. AIAA Journal,1994,32(4):843-849.
    [72]Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when scare knowledge is present on acoustic excitation parameters. Computer Methods in Applied Mechanics and Engineering,1993,104(2):187-209.
    [73]Elishakoff I, Cai G Q. Non-linear buckling of a column with initial imperfection via stochastic and non-stochastic convex models. International Journal of Non-Linear Mechanics,1994,29(1):71-82.
    [74]邱志平,马丽红,王晓军.不确定非线性结构动力响应的区间分析方法.力学学报,2006,38(5):645-651.
    [75]邱志平,顾元宪.有界不确定参数结构位移范围的区间摄动法.应用力学学报,1999,16(1):1-9.
    [76]Ganzerli S, Pantelides C P. Load and resistance convex models for optimum design. Structural and Multidisciplinary Optimization,1999,17(4):259-268.
    [77]Ganzerli S, Pantelides C P. Optimun structural design via convex model superposition. Computers and Structures,2000,74(6):639-647.
    [78]Chen S H, Yang X W. Interval finite element method for beam structures. Finite Elements in Analysis and Design,2000,34:75-88.
    [79]Jiang C, Han X, Liu G R. Optimization of structures with uncertain constraints based on covex model and satisfaction degree of interval. Computer Methods in Applied Mechanics and Engineering,2007,196:4791-4800.
    [80]Jiang C, Han X, Liu G P. A sequential nonlinear interval number programming method for uncertain structures. Computer Methods in Applied Mechanics and Engineering,2008,197:4250-4265.
    [81]曹鸿钧,段宝岩.基于凸集模型的多学科耦合系统不确定性分析.西安电子科技大学学报(自然科学版),2005,32(3):335-338.
    [82]Ben-Haim Y. A non-probabilistic concept of reliability. Structural Safety,1994,14: 228-245.
    [83]郭书祥,吕震宙.结构体系的非概率可靠性分析方法.计算力学学报,2002,19(3):332-335.
    [84]曹鸿钧,段宝岩.基于凸集合模型的非概率可靠性研究.计算力学学报,2005,22(5):546-549.
    [85]Jiang T, Chen J J. A semi-analytic method for calculating non-probabilistic reliability index based on interval methods. Applied Mathematical Modelling, 2007,56:1362-1370.
    [86]Chen X Y, Tang C Y, Tsui C P, et al. Modified scheme based on semi-analytic approach for calculating non-probabilistic reliability index. Acta Mechanica Solida Sinica,2010,23(2):115-123.
    [87]Jiang C, Han X, Lu G Y, et al. Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Computer Methods in Applied Mechanics and Engineering,2011,200:2528-2546.
    [88]Wang X J, Wang L, Elishakoff I, et al. Probability and convexity concepts are not antagonistic. Acta Mechanica,2011,219:45-64.
    [89]Jiang C, Bi R G, Lu G Y, et al. Structural reliability analysis using non-probabilistic convex model. Computer Methods in Applied Mechanics and Engineering,2013,254:83-98.
    [90]郭书祥,吕震宙.结构可靠性分析的概率和非概率混合模型.机械强度,2002,24(4):524-526.
    [91]Du X P. Interval reliability analysis. In:ASME 2007 design engineering technical conference and computers and information in engineering conference (DETC2007), Las Vegas, Nevada, USA,2007.
    [92]Du X P, Sudjianto A, President S V, et al. Reliability-based design with the mixture of random and interval variable. Journal of Mechanical Design,2005,127: 1068-1076.
    [93]Guo J, Du X P. Reliability analysis for multidisciplinary systems with random and interval variables. AIAA Journal,2010,48(1):82-91.
    [94]Guo J, Du X P. Reliability sensitivity analysis with random and interval variables. International Journal for Numerical Methods in Engineering,2009,78:1585-1617.
    [95]Xiao N C, Huang H Z, Wang Z L, et al. Reliability sensitivity analysis for structural systems in interval probability form. Stuctural and Multidisciplinary Optimization,2011,44:691-705.
    [96]Gao W, Song C M. Tin-Loi F. Probabilistic interval analysis for structures with uncertainty. Structural Safety,2010,32:191-199.
    [97]Luo Y J, Kang Z, Li A. Structural reliability assessment based on probability and convex set mixed model. Computers and Structures,2009,87(21-22):1408-1415.
    [98]Kang Z, Luo Y J. Reliability-based structural optimization with probability and convex set hybrid models. Structural and Multidisciplinary Optimization,2010,42 89-102.
    [99]Elishakoff I, Colombi P. Combination of probabilistic and convex models of uncertainty when limited knowledge is present on acoustic excitation parameters. Computer Methods in Applied Mechanics and Engineering,1993,104:187-209.
    [100]Elishakoff I, Colombi P. Ideas of probability and convexity combined for analyzing parameters uncertainty. In:Schueller G I, Shinozuka M., Yao J, editors. Proceedings of the 6th international conference on structural safety and reliability. Rotterdam:Balkema Publishers,1994.
    [101]Wang J, Qiu Z P. The reliability analysis of probabilistic and interval hybrid structural system. Applied Mathematical Modelling,2010,34:3648-3658.
    [102]Jiang C, Li W X, Han X, et al. Structural reliability analysis based on random distributions with interval parameters. Computers and Structures,2011,89: 2292-2302.
    [103]段新生.证据理论与决策、人工智能.北京:中国人民大学出版社,1993.
    [104]Bae H R, Grandhi R V, Canfield R A. Sensitivity analysis of structural response uncertainty propagation using evidence theory. Structural and Multidisciplinary Optimization,2006,31:270-279.
    [105]Oberkampf W L, Helton J C. Investigation of evidence theory for engineering application, Non-deterinistic Approaches Forum, AIAA, Denver, Colorado,2002.
    [106]Bae H R, Grandhi R V, Canfield R A. An approximation approach for uncertainty quantification using evidence theory. Reliability Engineering and System Safety,2006,86:215-225.
    [107]Bae H R, Grandhi R V, Canfield R A. Epistemic uncertainty quantification techniques including evidence theory for large-scale structures. Computers and Structures,2004,82:1101-1112.
    [108]Bai Y C, Han X, Jiang C, et al. Comparative study of metamodeling techniques for reliability analysis using evidence theory. Advances in Engineering Software,2012,53:61-71.
    [109]Helton J C, Johnson J D, Oberkampf W L. An exploration of alternative approaches to the representation of uncertainty in model predictions. Reliability Engineering and System Safety,2004,85:39-71.
    [110]Soundappan P, Nikolaidis E, Haftka R T, et al. Comparison of evidence theory and Bayesian theory for uncertainty modeling. Reliability Engineering and System Safety,2004,85:295-311.
    [111]Helton J C, Johnson J D, Oberkampf W L, et al. Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty. Reliability Engineering and System Safety,2006,91:1414-1434.
    [112]Mourelatos Z P, Zhou J. A design optimization method using evidence theory. ASME-Journal of Mechanical Design,2006,128:901-908.
    [113]Du X P. Uncertainty analysis with probability and evidence theory, In: Proceedings of ASME 2006 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (DETC/CIE), Philadelphia, Pennsylvania, USA,2006.
    [114]He L P, Qu F Z. Possibility and evidence theory-based design optimization:an overview. Kybernetes,2008,37(9/10):1322-1330.
    [115]Ferson S, Nelsen R B, Hajagos J, et al. Dependence in probabilistic modeling, Dempster-Shafer theory, and probability bounds analysis. SAND Report, Sandia National Laboratories,2004.
    [116]Srivastava R K, Deb K. An EA-based approach to design optimization using evidence theory. In:GECCO 11 Proceedings of the 13th annual conference on Genetic and evolutionary computation, New York, USA,2011.
    [117]Salehghaffari S, Rais-Rohani M R, Marin E B. Optimization of structures under material parameter uncertainty using evidence theory. Engineering Optimization, DOI:10.1080/0305215X.2012.717073.
    [118]Agarwal H, Renaud J E, Preston E L, et al. Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliability Engineering and System Safety,2004,85:281-294.
    [119]Alyanak E, Grandhi R, Bae H R. Gradient projection for reliability-based design optimization using evidence theory. Engineering Optimization,2008, 40(10):923-935.
    [120]姜潮,张哲,韩旭等.一种基于证据理论的结构可靠性分析方法.力学学报,2013,45(1):103-115.
    [121]唐樟春,吕震宙,吕媛波.随机变量概率信息不充分时可靠性新模型.工程力学,2011,28(4):18-22.
    [122]郭惠昕,刘德顺,胡冠昱等.证据理论和区间分析相结合的可靠性优化设计方法.机械工程学报,2008,44(12):35-41.
    [123]杜子芳.抽样技术及其应用.北京:清华大学出版社.,2005.
    [124]Sharon L L. Sampling: Design and Analysis. Pacific Grove: Duxbury Press, 1999.
    [125]Von Neumann J. Various techniques used in connection with random digits. Applied Mathematics Series,1951,12:36-38.
    [126]熊光楞,肖田元,张燕云.连续系统仿真与离散事件系统仿真.北京:清华大学出版社,2003.
    [127]李良巧,顾唯明.机械可靠性分析与设计.北京:国防工业出版社,1998.
    [128]Hughes J R T. The Finite Element Method. Prentice-Hall International, Inc., 1987.
    [129]Qiu Z P, Wang X J. Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. International Journal of Solids and Structues,2005,42:4958-4970.
    [130]Qiu Z P. Comparison of Static response of structures using convex models and interval analysis method. International Journal of Numerical Methods in Engineering,2003,56:1735-1753.
    [131]Qiu Z P, Wang X J. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. International Journal of Solids and Structures,2003,40: 5423-5439.
    [132]Oberkampf W L, Helton J C, Hoslyn C A, et al. Challenge problems: uncertainty in system response given uncertain parameters. Reliability Engineering and System Safety,2004,85:11-19.
    [133]Chandrupatla T R, Belengundu A D. Introduction to Finite Elements in Engineering, Prentice-Hall,1991.
    [134]Verhaeghe W, Desmet W, Vandepitte D, et al. Random field expansion with interval correlation length using interval fields. In:Proceedings of the 8th International Conference on Structural Dynamics, Leuven, Belgium,2011.
    [135]Verhaeghe W, Desmet W, Vandepitte D, et al. Expansion of a random field with interval correlation length using interval fields. In:Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, Colorado,2011.
    [136]秦权.随机有限元及其进展I:随机场的离散和反应矩的计算.工程力学,1994,11(4):1-10.
    [137]Stefanou G. The stochastic finite element method:Past, present and future. Computer Methods in Applied Mechanics and Engineering,2009,198:1031-1051.
    [138]der Kiureghian A, Ke J B. The stochastic finite element method in structural reliability. Probabilistic Engineering Mechanics,1988,3:83-91.
    [139]Sudret B, der Kiureghian A. Stochastic finite element methods and reliability: a state-of-the-art report. Report No. UCB/SEMM-2000/08, University of California at Berkeley, USA,2000.
    [140]Xiu D, Lucor D, Su C H, et al. Stochastic modeling of flow-structure interactions using generalized polynomial chaos. ASME-Journal of Fluids Engineering,2002,124:51-69.
    [141]Zhang H. Non-deterministic linear static finite element analysis:an iterative approach:Ph.D. Thesis. School of Civil and Enviormental Engineering, Georgia Institute of Technology, Savannah, GA,2005.
    [142]Zhu L P, Elishakoff I, Starnes J H. Derivation of multi-dimensional epplisoidal convex model for experimental data. Mathematical and Computer Modelling,1996, 24(2):103-114.
    [143]Zhang Y, der Kiureghian A. Two improved algorithms for reliability analysis. Reliability and optimization of structural systems. In:Proceedings of the Sixth IFIP WG7.5 Working Conference on Reliability and Optimization of Structural Systems, Assisi, Italy,1995.
    [144]Tylko S, German A, Dalmotas D, et al. An improving side impact protection: response of the es-2re and worldsid in a proposed harmonized pole test. IRCOBI Coference Paper,2006.
    [145]Buhmann M D. Radial basis functions. Cambridge:Cambridge University Press,2006.
    [146]Fang H, Rais-Rohani M, Liu Z, et al. A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Computers and Structures,2005,83:2121-2136.
    [147]Jin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modeling criteria. Structural and Multidisciplinary Optimization,2001,23:1-13.
    [148]http://www.ncac.gwu.edu/vml/models.html.
    [149]Chowdhury R, Rao B N. Hybrid high dimensional model representation for reliability analysis. Computer Methods in Applied Mechanics and Engineering, 2009,198:753-765.
    [150]Shan S Q, Wang G G. Metamodeling for high dimensional simulation-based design problems. Journal of Mechanical Design,2010,132:051009.
    [151]Sentz K, Ferson S. Combination of evidence in Dempster-Shafer theory. Sandia National Laboratories SAND2002-0835,2002.
    [152]Chowdhury R, Rao B N, Prasad A M. High-dimensional model representation for structural reliability analysis. Communications in Numerical Methods in Engineering,2009,25:301-337.
    [153]Chowdhury R, Rao B N. Assessment of high dimensional model representation techniques for reliability analysis. Probabilistic Engineering Mechanics,2009,24: 100-115.
    [154]Wang S W, Georgopoulos P G, Li G, et al. Random sampling-high dimensional model representation (Rs-HDMR) with nonuniformly distributed variables: application to an integrated multimedia/multipathway exposure and dose model for trichloroethylene. Journal of Physical Chemistry A,2003,107: 4707-4716.
    [155]Li G, Hu J, Wang S W, et al. Random sampling-high dimensional model representation (Rs-HDMR) and orthogonality of its different order component functions. Journal of Physical Chemistry A,2006,110:2474-2485.
    [156]张雄,刘岩.无网格法.北京:清华大学出版社,2004.
    [157]姜潮.基于区间的不确定性优化理论与算法研究:[湖南大学博士学位论文].长沙:湖南大学,2009.
    [158]张明.结构可靠性分析一方法与程序.北京:科学出版社,2009.
    [159]董聪.现代结构系统可靠性理论及应用.北京:科学出版社,2001.
    [160]Du X P. System reliability analysis with saddle approximation. Structural and Multidisciplinary Optimization,2010,42:193-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700