用户名: 密码: 验证码:
面向方案设计阶段的产品生命周期设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资源耗竭与生态环境破坏问题要求我们否定“高生产、高消费、高污染”的传统发展模式和“先污染、后治理”的处理方式,转而走“可持续”的发展道路,进行环境问题的“源头控制”。产品生命周期设计是解决环境问题的最有效方法之一,是在产品设计阶段就考虑产品全生命周期各个阶段各种因素的一种设计方法,其目标是在满足产品必要的功能、性能和经济性要求的基础上,实现生命周期资源利用效率的最大化,环境影响的最小化。
     方案设计是产品设计过程中的最为重要的阶段之一,在很大程度上决定着产品最终性能,因此在该阶段开展生命周期设计对提高产品生命周期性能具体关键作用。本研究在国家自然科学基金《基于仿真技术和遗传算法的环境调和性产品的设计研究》(50775141)资助下,重点针对方案设计阶段进行了以下产品生命周期设计方法研究:
     1.面向方案设计阶段的产品生命周期设计框架
     基于公理化设计原理对产品生命周期设计进行了描述。通过对传统产品设计“域”的扩展,提出了产品生命周期设计的“需求域”、“功能域”和“方案域”,给出了各个“域”所包含的设计元素,分析和重构了“域”间映射关系,为产品生命周期设计方法研究提供了理论基础。
     通过理论分析提出了产品生命周期设计是将“产品”和“产品生命周期过程”有机地组合在一起进行设计,并从“产品”和“过程”两个方面分析了方案设计阶段产品生命周期设计的核心内容,即产品绿色方案设计和产品生命周期过程闭环化方案设计。在此基础上,提出了基于“目标定义”-“产品初步方案设计”-“产品生命周期过程方案设计”-“产品方案绿色改进设计”-“产品生命周期方案评价”的设计过程模型,分析了设计实现方法和关键技术,提出了支持生命周期设计的产品信息模型。
     2.面向方案设计阶段的产品生命周期设计方法
     基于“可持续性”内涵,提出了产品生命周期设计目标体系和目标描述方法。给出了基于需求分析的产品生命周期环境目标定义方法,通过对生命周期环境需求信息的收集、整理、筛选和规范化描述,将其转化为明确、可量化产品生命周期环境设计目标和约束,从而能更有效地指导设计开展。提出了基于产品层次的过程设计策略分析和结构单元层次的过程设计选项适用性分析的两层次产品生命周期过程方案设计方法,实现了环境目标到生命周期过程方案的转化。提出了基于设计准则和QFD的产品方案绿色改进设计方法,指出了产品绿色设计准则具体应用方法,通过生命周期环境目标与产品绿色设计措施选项、产品绿色设计措施选项与结构单元相关性量化分析,实现环境性能目标到产品方案绿色设计改进要求的转化。
     3.基于仿真的产品生命周期设计评价方法针对产品生命周期设计复杂性特点和方案设计阶段创新性特点,提出了基于生命周期仿真的产品生命周期设计评价框架,包括仿真输入建模、仿真执行和基于仿真结果的设计评价。在评价框架基础上,首先对产品周期设计方案的特性提炼,提出了基于“产品模型”、“生命周期过程模型”和“用户模型”的仿真输入模型,将设计方案信息有效转化为仿真输入参数;然后,提出了离散制造型产品的一般化生命周期仿真模型。基于离散事件系统仿真原理分析并定义了产品生命周期仿真系统的“实体”、“事件”和“活动”要素,分析了要素间的内在逻辑关系,在此基础上提出了产品生命周期仿真控制逻辑、仿真输出指标、构成生命周期过程的主要“活动”模型(包括产品制造、分配、使用、维修/维护/升级和回收处理)、生命周期成本计算模型和清单分析模型。
     4.应用软件开发和案例研究
     在以上研究成果的基础上,进行了产品生命周期设计原型系统的开发,开展了家用冰箱产品生命周期设计案例研究。
Due to the rapid deterioration of ecosystems and depletion of natural resources, it is amust to shift from the "mass production, mass consumption, high pollution and end-of-pipetreatment" development mode to a more sustainable development mode which is focused on"source control" of environmental problems.
     Product life cycle design is one of the most effective source control methods ofenvironmental problems. It is a design methodology that considers various factors throughoutthe whole product life cycle during the design process. It aims to maximize the resourceutilization efficiency and minimize the environmental impacts through the product life cyclewhile fulfilling product functional and economic requirements.
     Scheme design is one of the most important phases of the whole product design process,as it greatly affects the product performance throughout its life cycle. Therefore, product lifecycle design in scheme design phase has crucial contributions to improve product lifeperformance. This research, which is part of the "Research Project on EnvironmentallyFriendly Product Design Based on Simulation and Genetic Algorithm (No.50775141)" fundedby National Science Foundation Grant of China, is focused on product life cycle designmethods in scheme design phase and its major efforts and contributions include:
     1. Framework of product life cycle design in scheme design phaseBy expansion of contexts of the Axiomatic Design Domain,"requirementdomain","function domain" and "concept domain" of product life cycle design isdefined. The realization of product life cycle design is described by reconstruction ofprojection between the three design domains. On the basis of theoretic analysis, it isproposed that life cycle design is to generate combined solutions of both product andlife cycle process which fulfills not only functional and economic requirements butalso environmental ones. Thus, core contents of life cycle design in scheme design phase are analyzed from perspectives of "product" and "life cycle process". Designprocess model consisting of "life cycle requirements analysis and design goaldefinition","product concept generation","life cycle process planning","productconcept green revision" and "product life cycle design evaluation", key designtechnologies and design information model to support life cycle design are thenproposed.
     2. Product life cycle design methods and technologies in scheme design phase
     A comprehensive product life cycle design goal system is developed fromperspectives of sustainability. Life cycle design goal definition method based onrequirement analysis is then proposed. Close-looped product life cycle processscheming method based on product level life cycle strategy analysis and structuralelement level life cycle process option applicability analysis is presented to realizethe projections from life cycle environmental goals to life cycle process designsolutions. Product concept revision method based on green design principals andQFD is proposed to realize projections from environmental goals to product designsolutions.
     3. Evaluation of product life cycle scheme based on product life cycle simulation
     Life cycle simulation (LCS) as a powerful tool of describing and analyzingproduct life cycles can effectively handle the complexity and innovation of productlife cycle design. A product life cycle scheme evaluation method based on LCS isproposed in this research. First, a LCS input model which consists of sub-modes ofproduct, life cycle process and users is proposed based on identifying life cycledesign properties. It translates life cycle design information into LCS inputparameters. Second, a general life cycle simulation model of discretely manufacturedproducts is established based on discrete-event simulation theory. Elements ofproduct life cycle system are defined. Simulation strategies and output indicators areproposed. Simulation models of life cycle process including "manufacturing","use","maintenance","upgrade" and " recovery" are constructed and calculation modelof life cycle costs and inventory are formulated.
     4. Development of software prototype of product life cycle design and case study.
     In order to encourage applications of life cycle design methods, a softwareprototype of product life cycle design is developed. A case study of household refrigerator life cycle scheme design is conducted to verify the proposed methods.
引文
[1] http://data.worldbank.org/indicator/EG.GDP.PUSE.KO.PP.KD/countries
    [2]夏志东,史耀武,郭福.电子电气产品的循环经济战略及工程.北京:科学出版社,2007
    [3] Ferrendier S, et al. Eco-Design Guide: Environmentally Improved Product DesignCase Studies of the European Electrical and Electronics Industry. Eco-life ThematicNetwork,2002
    [4] Alting L, et al. The Life Cycle Concept as a Basis for Sustainable Production.Annals of CIRP,1993,1:163-167
    [5] Ishii K.. Design for Environment and Recycling: Overview of Research in theUnited States. Proeeedings of the CIRP5th International Seminar on Life-cycleEngineering,1998
    [6] Keoleian G. A and Menerey D. Life Cycle Design Guidance Manual:Environmental Requirements and the Product system (EPA/600/R–92/226).Cincinnati, OH: US EPA, Office of Research and Development, Risk ReductionEngineering Laboratory,1993
    [7] Kato S, Hata T, Kimura F. Decision Factors of Product Life Cycle Strategies.Proceedings of7th ClRP International Seminar on Life Cycle Engineering,2000,60-67
    [8] Umeda Y. Toward a Life Cycle Design Guideline for Inverse Manufacturing.Proceedings of Eecodesign-2nd International Symposium on EnvironmentallyConscious Design and Inverse Manufacturing (EcoDesign'01),2001,143-148
    [9] Ohashi T and Matsumoto Y. Subjects in and Approaches of Life Cycle Design.Proceedings of EcoDesing2001-Second International Symposium onEnvironmentally Conscious Design and Inverse Manufacturing,2001
    [10] Kato S and Kimura F. The Product Life Cycle Design Method using a StrategicAnalysis. Proceedings of11th international CIRP Life Cycle Seminar on ProductLife Cycle Quality Management Issues,2004,
    [11] Bralla J G. Design for Manufacturability Handbook. New York:McGraw-Hill,1999
    [12] O’Driscoll M. Design for Manufacture. Journal of Materials ProcessingTechnology,2002,122:318-321.
    [13] Boothroyd G., Dewhurst P, Knight W. Product Design for Manufacture andAssembly Second Edition–Revised and Expanded. New York: Marcel Dekker,2002
    [14] Boothroyd G. and Knight W. Design for Assembly. Spectrum, IEEE,1993,30(9):53-55
    [15] He D W and Kusiak A. Design of Assembly Systems for Modular Products. IEEETransactions on Robotics and Automation,1997,13(5):646-655
    [16] De Lit P, Delchambre A. And Henrioud JM. An Integrated Approach for ProductFamily and Assembly System Design. IEEE Transactions on Robotics andAutomation,2003,19(2):324-334
    [17]王芳林.并行工程环境下DfX相关理论与方法的研究(博士学位论文).西安:西安电子科技大学,2003
    [18] Ray DL and Guazzo L. Environmental Overkill: Whatever Happened toCommon Sense?. New York: Harper Collins,1993
    [19] Bogue R. Design for Disassembly: a Critical Twenty-first Century Displine.Assembly Automation,2007,4(27):285-289.
    [20] Noller RM. Disassembly for Disassembly Tactioes. AssemblyAutomation,1992,33(1):24-26.
    [21] Kahmeyer M. Flexible Disassembly with Industrial Robots. Stuttgart:IPA,1991
    [22] Zussman E and Zhou M. A Methodology for Modeling and Adaptive Planning ofDisassembly Process. IEEE Transaction on Robotics and Automation,1999,15(1):190-194
    [23] Zhang HC. A Graph-based Disassembly Sequence Planning for EOL ProductRecycling.1997IEEE/CPMT Int’l Electronics Manufacturing TechnologySymposium, Austin, TX, USA,1997,140-151
    [24] Suzuki T, et al. Learning Control of Disassembly Petri–net and Approach withDiscrete Event System Theory. IEEE International Conference on Robotics andAutomation, Minneapolis, Minnesota, USA,1996,184-191
    [25] Takeuchi S and Saitou K. Design for Product Embedded Disassembly. Studies inComputational Intelligence,2008,88:9-39
    [26]马祖军,刘飞.可拆卸性产品设计方法研究.机械工艺师,1999,10:7-8
    [27]史佩京,徐滨士,刘世参等.面向装备再制造工程的可拆卸性设计.装甲兵工程学院学报2007(05):16-19+44
    [28]于随然,陶璟,陈鸿等.基于拆卸时间的产品拆卸性评价及改进设计.上海交通大学学报,2007,9:1475-1478,1483
    [29]刘志峰,杨明,张雷.基于TRIZ的可拆卸连接结构设计研究.中国机械工程2010(07):100-107
    [30] Gupta SM and Mcgovern SM. Multi-objective Optimization in DisassemblySequencing Problems. Proceedings of the2004POMS-Cancun Meeting, Cancun,Mexico,2004
    [31] Adenso-Diaz B, Moure F, Rendueles M. Automatic Disassembly Plans:Applications to the Continuous Process Industries Case. J Manu Systems,2002,21(4):276-286.
    [32] Adenso-Diaz B, Gareia-Carbajal S, Lozano S. An Efficient GRASP Algorithm forDisassembly Sequence Planning. OR Spectrum,2007,29(3):535-549.
    [33] Kroll E and Thomas AH. Quantitative Evaluation of Product Disassembly forRecycling. Research in engineering design,1998,(10):1-14
    [34] Suga T. Disassembility Assessment for IM. Proceedings of First InternationalSymposium on Environmentally Conscious Design and Inverse Manufacturing,Tokyo, Japan,1999,580-581
    [35] Fujimoto H, Ahmed A, Sugi K. Product’s Disassemblability Evaluation UsingInformation Entropy.2001IEEE:353-358.
    [36] Desai A and Mital A. Evaluation of Disassemblability to Enable Design forDisassembly in Mass Production. International Journal of industrial Ergonomics,2003,32:265-281
    [37] Sodhi R, Sonnenberg M, Das S. Evaluating the Unfastening Effort in Design forDisassembly and Serviceability. Journal of Engineering Design,2004,15(l):69-90.
    [38] Kriwet A, Zussman E, Seliger G.. Systematic Integration of Design-for-Recyclinginto Product Design. Int. J. Production Economies,1995,38:15-22
    [39] Chen RW, Nvain-Chnadar D, Kuerfss T, et al. A Systematic Methodology ofMaterial Selection with Environmental Consideration. Proceedings of1994IEEEInternational Symposium on Electronics and the Environment,1994,252-257
    [40] Ishii K and Lee B. Reverse Fishbone Diagram: A Tool in Aid of Design forProduct Retirement. Proceedings of ASME Design Technical Conference, Irvine,CA., USA,1996
    [41] Ishii K.. Material Selection Issues in Design for Recyclability. Proceedings of2ndInternational EcoBalance Conference, Tsukuba, Japan,1996
    [42] Rose CM, Beiter KA, Ishii K., et al. Characterization of Product End-of-lifeStrategies to Enhance Recyclability. Proceedings of DETC’98,1998ASMEDesign for Manufacturing Symposium, Atlanta, Georgia,1998
    [43] Kara S, Mazhar M, Kaebernick H, et al. Determining the Reuse Potential ofComponents Based on Life Cycle Data. CIRP Annals-Manufacturing Technology,2005,54(1):1-4
    [44] Seliger G., Weinert N, Zettl M. Module Configuration for the Development ofProducts for Ease of Remanufacturing. Advances in Life Cycle Engineering forSustainable Manufacturing business,2007,2(a2):47-52
    [45] Masanet E and Horvath A. Assessing the benefits of design for recycling forplastics in electronics: a case study of computer enclosures. Material and Design,2007,28:1801-1811
    [46]唐涛,刘志峰,刘光复等.绿色模块化设计方法研究.机械工程学报,2003,39(11):153-158
    [47]刘志峰,林巨广,朱华炳等.家电产品的回收设计.机械设计与研究,2002,18(4):43-45,6
    [48]潘君齐,刘志峰,刘光复等. WEEE高效回收体系研究.―安徽制造业发展‖博士科技论坛论文集,2004
    [49]刘志峰,张保振,张洪潮.基于超临界CO2流体的废旧线路板回收工艺的试验研究.中国机械工程,2008,19(7):841-845
    [50]李飒,李方义,段广洪等.机电产品退役策略综合管理模型.第一届国际机械工程学会议论文集,2000,328
    [51]孟鹏,段广洪,汪劲松等.一个基于图论的产品拆卸回收决策评估系统.第五届海内外青年设计与制造科学会议论文集(第二卷),2002,387-392
    [52] Ashby M. Materias selection in Mechanical Design-Materials and ProcessSelection Charts. PegrmaonPerss,1993
    [53] Weaver P M, Ashby MF, Bugress S, etal. Selection of Materials to ReduceEnvironmental Impact:A Case Study on Refrigerator Insulation. Materials andDesign,1996,17(l):11-17
    [54] Bnader G.S, Huasehild M, McAloone T. Implementing Life Cycle Assessment inProduct Development. Environmental Progress,2003,22(4):255-267
    [55] Chen R, Navin-Chandra D, Nair I, etal. ImSelection-An Approach of MaterialSelection that Integrates Mechanical Design and Life Cycle Environmental Burdens.Proceedings of the1995IEEE International Symposium,1995,68-74
    [56] Ermolaeva N, Castro M, Kandachar P. Materials Selection of an AutomotiveStructure by Integrating Structure Optimization With Environmental ImpactAssessment. Materials and Design,2004,25:689-698
    [57]黄海鸿,刘光复,刘志峰,等.绿色设计中的材料选择多目标决策.机械工程学报,2006(08):131-136
    [58]李福海,徐小明,容康权,等.绿色设计材料选择的可拓无缘模型与评价.机电工程技术,2009,38(12):39-41,83
    [59] Akao Y. Quality Function Deployment: Integrating Customer Requirements intoProduct Design. Productivity Press, Cambridge, MA,1990
    [60] Zhang Y, Wang HP, Zhang C. Green QFDII: a Life Cycle Approach forEnvironmentally Conscious Manufacturing by Integrating LCA and LCC into QFDMatrices. International Journal of Production Research,1999,37:1075-1091
    [61] Madu CN, Kuei C, Made IE. A Hierarchic Metric Approach for Integration ofGreen Issues in Manufacturing: a Paper Recycling Application. Journal ofEnvironmental Management,2002,6:261-272
    [62] Kuo TC and W HH. Green Product Development by Applying Grey RelationalAnalysis and Green Quality Function Deployment. International Journal of FuzzySystems,2003,5:229-238
    [63] Masui K., Sakao T, Inaba A. Quality Function Deployment for Environment:QFDE (1st report)-A Methodology in Early Stage of DfE. Proceedings ofEco-Design2001-Second International Symposium on Environmentally ConsciousDesign and Inverse Manufacturing,2001,852-857
    [64] Sakao T, Masui K., Kobayashi M., et al. Quality Function Deployment forEnvironment: QFDE (2nd report)-Verifying the Applicability by Two Case Studies.Proceedings of Eco-Design2001-Second International Symposium onEnvironmentally Conscious Design and Inverse Manufacturing,2001,858-863
    [65] Sakao T. A QFD-centered Design Methodology for Environmentally ConsciousProduct design. International Journal of Production Research,2007,45:4143-4162
    [66]张雷,黄海鸿,刘光复,等.面向绿色设计的产品族规划.计算机辅助设计与图形学学报,2008(02):220-227
    [67]刘彦宾,莫新波,李永广.基于QFDE和TRIZ的绿色优化设计.电子质量,2009(3):12-14
    [68] Consoli F, et al. Guidelines for Life-Cycle Assessment:―Code of Practice‖.SETAC,1993,11
    [69] International Organization for Standardization. ISO14040EnvironmentManagement: Life Cycle Assessment-Principles and Framework,1997,0-4
    [70] Christiansen K. Simplified LCA: Just a Cut, Final Report from the SETAC-EuropeLCA Screening and Streamlining Working Group. SETAC-Europe, Brussels,Belgium,1997
    [71] Fieischer G., Kunst H, Rebitzer G. Life Cycle Assessment of ComplexProducts-Introducing an Efficient and Reliable Method. SAE Technical Paper982208,Society of Automotive Engineers,1998
    [72] Graedel T E and Allenby B R. Design for Environment. Prentice Hall,1996
    [73] Sousa I, Eisenhard JL, Wallace DR. Approximate Life Cycle Assessment ofProduct Concepts Design Using Learning Systems. Journal of Industrial Ecology,2001,61-81
    [74] Gonza′lez B, et al. A fuzzy logic approach for the impact assessment in LCA,Resources. Conservation and Recycling,2002,37:61-79
    [75] Suh S, Huppes G.. Missing Inventory Estimation Tool Using ExtendedInput-Output Analysis. International Journal Life Cycle Assessment,2002,7(3):134-140.
    [76] Suh S. Functions, Commodities and Environmental Impacts in anEcological-economic Model. Ecological Economics,2004,48:451–467.
    [77]方芳,于随然,王成焘.中国玉米燃料乙醇项目经济性评估.农业工程学报,2004,20(3):239~242
    [78]冷如波.产品生命周期3E+S评价与决策分析方法研究(博士学位论文).上海:上海交通大学,2007
    [79]王晓伟,李方义,李剑峰.基于多情境特征的LCA方法.日用电器,2010(12):53-55
    [80] Yu S and Tao J. Energy efficiency assessment by life cycle simulation ofcassava-based fuel ethanol for automotive use in Chinese Guangxi context.Energy,2009,34(1):22-31
    [81]刘胜强,毛显强,邢有凯.中国新能源发电生命周期温室气体减排潜力比较和分析.气候变化研究进展,2012(01):52-57
    [82]何良菊,李培杰,王晓强.塑料与镁合金移动电话外壳材料的生命周期评价.机械工程学报,2003(39):44-48
    [83] Yu S, Zhang J, Tao J, etal. Environmental Impact Assessment of RefrigeratorProduction in Small and Medium Enterprises (SMEs): Case study in China.Proceedings of the6th International Symposium on Environmentally ConsciousDesign and Inverse Manufacturing (EcoDesign2009), Sapporo, Japan,2009,929-934
    [84]毛果平,朱有为,吴超.发动机制造与再制造过程的环境污染影响比较研究.汽车工程,2009(06):86-89
    [85]王冲,陈永弟.生命周期评价理论在汽车用镁合金材料中的应用.长春师范学院学报,2011(10):29-32
    [86]李碧英.基于生命周期评价的船舶环境影响行为研究.环境保护与循环经济,2009(7):17-20
    [87] Yu S, Yang M, Zhang J, etal. Development of Home Appliance LCA Software forSMEs. Proceedings of17th CIRP International Conference on Life CycleEngineering, Wuhan, China,2010,40-45,19-21
    [88] Ou X, Zhang X, Chang S, et al. Energy Consumption and GHG Emissions of SixBiofuel Pathways by LCA in (the) People’s Republic of China. Applied Energy,2009,86:s197-s208
    [89] Tao J and Yu S. Simulation Methods Used in LCA: Important Concepts andPractice. Proceeding of17th CIRP conference on Life Cycle Engineering, Wuhan,China,2009
    [90] Takata S and Kimura T. Life Cycle Simulation System for Life Cycle ProcessPlanning. CIRP Annals-manufacturing technology,2003,52(1):37-40
    [91] Sakita K and Mori T. Product Life Cycle Simulation System for Ecodesigners,Proceeding of Environmentally Conscious Design and Inverse Manufacturing.Ecodesign2005,527-528
    [92] Murayama T, Hatakenata S, Namito M, et al. Modeling and Simulation ofProduct’s Life Cycles Using Petri Nets. International Journal of the Japan Societyfor Precision Engineering,1999,33(4):373-375
    [93] Murayama T, Hatakenaka S, Narutaki N,et al. Life Cycle Profitability Analysisand LCA by Simulating Material and Money Flows. Proceedings of the2001IEEEInternational Symposium on Electronics and the Environment,2001,139-144
    [94] Fujimoto J, Umeda Y, Tamura T, et al. Development of Service-oriented Productsbased on the Inverse Manufacturing Concept. Environmental Science andTechnology,2003,37(23):5398-5406.
    [95] Koga T and Aoyama K. Modular Design Method for Sustainable Life-cycle ofProduct Family Considering Future Market Changes. Proceedings of the ASME2008International Design Engineering Technical Conference&Computers andInformation in Engineering Conference, New York, USA,2008
    [96] Hata T and Kimura F. A Simulation-based Approach for Detecting UndesiredProduct Lifecycle Features in Maintenance System Design. Proceedings ofEcoDesign2003-Third International Symposium on Environmentally ConsciousDesign and Inverse Manufacturing, Tokyo, Japan,2003,611-617
    [97] Kumazawa T and Kobayashi H. A Simulation System to Support theEstablishment of Circulated Business. Advanced Engineering Informatics,2006,20:127–136
    [98] Komoto H, Tomiyama T, Silvester S, et al. Analyzing Supply Chain Robustnessfor OEMs from a Life Cycle Perspective Using Life Cycle Simulation. InternationalJournal of Production Research (2009),447-457
    [99] Yu S, Yang Q, Tao J, et al. Product Modular Design Incorporating Life CycleIssues-Group Genetic Algorithm (GGA) based Method. Journal of CleanerProduction,2011,19(9–10):1016-1032
    [100]曹华军,刘飞等.制造过程环境影响评价方法及其应用.机械工程学报,2005,41(6)
    [101]王贤琳,张华,宋佳佳.基于BP神经网络的制造过程环境影响评价模型.中国机械工程,2009(16):57-60
    [102]刘红旗,陈世兴.机电产品绿色包装的综合分析.机电产品开发与创新,2002,4:36-37
    [103]张琴.包装设计中绿色效能的应用研究.包装工程,2011(24):103-105+109
    [104]张均富,梁丽.基于Vague集的绿色包装设计评价方法.包装工程,2007(02):118-120
    [105]刘志峰,林巨广,刘光复等.基于环境意识的电冰箱回收性能评价系统研究.合肥工业大学学报(自然科学版),2001,24(5):10-15
    [106] Suh NP. The Principles of Design. New York:Oxford University Press,1990
    [107] Umda Y, et al. Proposal of Life Cycle Design Support Method Using DisposalCause Analysis Matrix. Proceeding of International Conference on EngineeringDesign, ICED03,2003,387-388
    [108] Banks J, Carson J, et al. Discrete-Event System Simulation. Fourth Edition,New York: Prentice Hall,2005
    [109] Yu S, Tao J, Yang Q, et al. Case Study of Chinese SMEs OrientedEnvironmental Impact Assessment on Refrigerator Production. Proceedings ofASME IDETC&CIE2011, Washington DC, USA,2011,1003-1010
    [110] Wikes G., et al., Aging of Polyurethane Foam Insulation in SimulatedRefrigerator Panels-One Year Results with Third Generation Blowing Agents. TheEarth Technologies Forum, Washington DC,1999
    [111] Johnson RW. The Effect of Blowing Agent on Refrigerator/Freezer. TEWI.Polyurethanes Conference2000, Boston, Massachusetts,2000
    [112] Liu X, Tanaka M, Matsui Y. Economic evaluation of optional recyclingprocesses for electronic home appliances. Journal of Cleaner Production,2009,17:53-60
    [113]吴雅丽.废旧冰箱处理企业设施规划与设计(硕士学位论文).天津:天津工业大学,2009
    [114]钟俊.压缩机拆卸工艺及其开盖设备的研制(硕士学位论文).合肥:合肥工业大学,2009
    [115] Saaty TL. The Analytic Hierarchy Process. New York: McGraw Hill,1980

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700