用户名: 密码: 验证码:
含浮环式挤压油膜阻尼器的转子系统动力特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对传统挤压油膜阻尼器(Traditional Squeeze Film Damper,简称TSFD)挤压油膜高度非线性等带来的一系列问题,本文开展了新型浮环式挤压油膜阻尼器(Floating-ring Squeeze FilmDamper,简称FSFD)及其转子系统动力学特性的研究,本文主要的研究工作和成果如下:
     (1)分别从广义雷诺方程和挤压油膜阻尼器雷诺方程出发,建立了两种FSFD模型,进行了两种模型理论分析,结果表明两个模型所得到的系统响应误差小于4%;利用双向激励试验器,对FSFD特性进行了试验研究与验证,验证两了种模型的正确性。另外,借助于单自由度系统的幅频响应特性,研究了FSFD的减振机理。研究结果为FSFD动力特性分析与应用提供了理论基础。
     (2)不考虑和考虑非线性滚动轴承力,分别建立了含FSFD的转子系统动力学模型,仿真计算表明,与TSFD相比,FSFD能更好地抑制双稳态、非协调进动和突加不平衡响应;并详细地研究了FSFD、滚动轴承、转子参数对含FSFD转子系统双稳态响应、非协调进动响应和突加不平衡响应的影响。通过对转子系统幅频响应特性分析表明:浮环质量越大,滑油黏度越大,FSFD的减振性能越好,反之则越差。通过试验研究表明,与TSFD相比,FSFD能更好地抑制转子系统的双稳态响应。
     (3)研究了浮动环带弹性支承时两种FSFD的动力学特性:只有一层油膜时,该型阻尼器在抑制转子系统的非协调进动和突加不平衡响应的性能均优于TSFD;通过调节浮动环弹性支承刚度和浮动环外加阻尼的方式可抑制转子系统双稳态响应,但转子系统在临界转速时的位移响应增大;在抑制双稳态、非协调进动和突加不平衡响应的性能均比FSFD差。有两层油膜时,它在抑制双稳态、非协调进动和突加不平衡响应方面的性能均优于一层油膜的FSFD和TSFD;在抑制双稳态、非协调进动和突加不平衡响应的瞬态振幅性能都弱于FSFD。因此,FSFD具有良好的工程应用前景。
     (4)基于非线性FSFD、TSFD和滚动轴承模型,建立了含FSFD/TSFD-滚动轴承-双转子系统的动力学模型,研究表明:中介轴承和高压转子支承轴承间隙对双转子系统的响应频谱特性影响明显;FSFD在双转子系统中能更好地抑制非协调进动响应;同时双转子系统碰摩故障响应频谱更为丰富。这为含FSFD/TSFD-滚动轴承-双转子系统的动力特性分析和故障诊断提供了参考。
     本文的研究内容为FSFD的研究以及含FSFD单/双转子系统的研究,提供了理论模型和研究基础,为FSFD的工程应用提供了理论参考。
To prevent a series of problems caused by nonlinear stiffness and damper of traditional squeezefilm damper (TSFD), dynamic responses of a rotor supported on floating-ring squeeze film dampers(FSFD) are studied in this paper. The main work and results of this paper are briefly summarized asfollows:
     (1) Two dynamic models of FSFD are established. One model is based on the general Reynoldsequation, and the other model is based on the Reynolds equation of squeeze film damper. The mosterror value of system response with two different models is less than4%. To validate the two models,a non-rotating test rig excited by two orthogonally placed shakers is established. Good consistency isachieved between the experiment and simulation results with two different models. Two models arevalidated. In addition, the vibration attenuation mechanism of FSFD is studied by means ofamplitude-frequency response characteristic of single degree of freedom system. The results provideresearch foundation for further analyzing and applying FSFD.
     (2) Two dynamic models of a rotor supported on FSFD are established respectively with orwithout nonlinear force of ball bearings. Numerical results show that the performances of FSFD inpreventing bistable, non-synchronous and suddenly applied unbalance response are better than TSFDon the same computation conditions. The effects of parameters of FSFD, ball bearing and rotor havealso been numerically investigated in preventing bistable, non-synchronous and suddenly appliedunbalance response. According to the amplitude-frequency response of the rotor system, it shows thatthe greater mass of floating-ring and viscosity of lubrication oil, the greater is the damping property,vice versa. Comparing to TSFD, FSFD has a better performance in preventing bistable response in theexperiment.
     (3)Two different FSFD are studied, one has single layer film, which is named as FSFDS; and theother has double layers film, which is named as FSFDD, and each floating-ring has an elastic support.The performances of FSFDS in preventing non-synchronous and suddenly applied unbalance responseare better than TSFD; FSFDS is effective in preventing bistable response at the cost of increasedvibration at the first critical speed. The performances of FSFDS in preventing bistable,non-synchronous and suddenly applied unbalance response are worse than FSFD. The performancesof FSFDD in preventing bistable, non-synchronous and suddenly applied unbalance response arebetter than TSFD and FSFDS. But the performances of FSFDD in preventing bistable,non-synchronous and transient amplitude of suddenly applied unbalance response are worse thanFSFD. Therefore, the FSFD possesses a good prospect of engineering application.
     (4) Based on the models of nonlinear FSFD, TSFD and ball bearing, a dynamic model of a dualrotor supported on ball bearings with FSFD/TSFD is established, the main conclusions are brieflysummarized as follows: the clearance of intershaft bearing and support bearing have significantinfluence on the response frequency of dual rotor system. FSFD can more effectively in preventingnon-synchronous response of dual rotor system than TSFD. More frequency component will appear inthe response of dual rotor system including rubbing fault. It provided theory reference for dynamic characteristic analysis and Fault Diagnosis of FSFD/TSFD-ball bearing-dual rotor system.
     The research of this paper provided theoretical model and research foundation for furtherresearching FSFD and dynamic responses of a rotor supported on FSFD. It also provided theoryreference for engineering application of FSFD.
引文
[1]刘大响,陈光.航空发动机—飞机的心脏.北京:航空工业出版社,2003:1~5.
    [2]陈钊.弹支挤压油膜阻尼器动力特性分析方法研究,[硕士学位论文].南京:南京航空航天大学,2008.
    [3]苏春峰.弹性环式挤压油膜阻尼器动力特性研究,[硕士学位论文].沈阳:沈阳航空工业学院,2009.
    [4]闻邦椿,顾家柳,夏松波,等.高等转子动力学.北京:机械工业出版社,2000:124~125.
    [5]孟光.转子动力学研究的回顾与展望.振动工程学报,2002,15(1):5~13.
    [6]肖力.某型试验组合压气机转子结构设计及减振研究,[硕士学位论文].上海交通大学,2008.
    [7]周明,李其汉,晏砺堂.弹性环式挤压油膜阻尼器减振机理研究(1)—弹性环式挤压油膜阻尼器减振机理模型.燃气涡轮试验与研究,1998,(4):19~23.
    [8]周明,李其汉,晏砺堂.弹性环式挤压油膜阻尼器油膜力特性研究.燃气涡轮试验与研究,1998,(3):17~23.
    [9]马艳红,洪杰,赵福安.自适应挤压油膜阻尼器减振机理理论研究.北京航空航天大学学报,2004,(1):5~8.
    [10]曹磊,高德平,江和甫.弹性环式挤压油膜阻尼器设计因素研究.燃气涡轮试验与研究,2006,(4):30~34.
    [11] J. Y. Zhao, E. J. Hahn. Eccentric operation and balde-loss simulation of a rigid rotor supportedby an improved squeeze film damper. Journal of tribology,1995,117(3):490~497.
    [12]曹磊.组合弹性支承—阻尼系统动力特性理论及试验研究,[博士学位论文].南京:南京航空航天大学,2006.
    [13]陈光.航空发动机结构设计分析.北京:北京航空航天大学出版社,2006:316~321.
    [14]周明.弹性环式挤压油膜阻尼器理论与实验研究,[博士学位论文].北京:北京航空航天大学,1996.
    [15] L. Della Pietra, G. Adiletta. The squeeze film damper over four decades of investigations. PartI: Characteristics and operating features. The Shock and vibration digest,2002,34(1):3~26.
    [16] Holms R. The non-linear performance of squeeze film bearings. Journal of MechanicalEngineering Science,1972,14(1):74~77.
    [17]夏南,孟光.对挤压油膜阻尼器轴承和旋转机械转子—挤压油膜阻尼器轴承系统动力特性研究的回顾与展望.机械强度,2002,24(2):216~224.
    [18] John M. Vance, Alan J. Kirton. Experimental measurement of the dynamic force response of asqueeze-film bearing damper. Journal of Engineering for Industry,1975,97(4):1282~1290.
    [19] E. Feder, P. N. Bansal, A. Blanco. Investigation of squeeze film damper forces produced bycircular centered orbits. Journal of Engineering for Power,1978,100(1):15~21.
    [20] P. N. Bansal, D. H. Hibner. Experimental and analytical investigation of squeeze film bearingdamper forces induced by offset circular whirl orbits. Journal of Mechanical Design,1978,100(3):549~557.
    [21] E. J. Gunter, L. E. Barrett, P. E. Allaire. Design of nonlinear squeeze-film dampers for aircraftengines. Journal of Lubrication Technology,1977,99(1):57~64.
    [22] P. E. Allaire, L. E. Barrett, E. J. Gunter. Variational method for finite length squeeze filmdamper dynamics with applications. Wear,1977,42(1):9~22.
    [23]李舜酩,陈钊,李彦.一种挤压油膜阻尼器的动力特性分析.振动与冲击,2009,28(5):44~48.
    [24]杜立杰.挤压油膜阻尼器中的气穴.石家庄铁道学院学报,1996,9(1):38~42.
    [25] F. Zeidan, J. Vance. A density correlation for a two-phase lubricant and its effect on thepressure distribution. Tribology transactions,1990,33(4):641~647.
    [26]杜立杰.挤压油膜阻尼器压力分布的实验研究.石家庄铁道学院学报,1995,8(4):17~20.
    [27]杜立杰.挤压油膜阻尼器蒸汽气穴的边界条件.石家庄铁道学院学报,1996,9(2):93~95.
    [28] C. Xing, J. B. Minel, H. Li. A three-dimensional navier-stokes-based numerical model forsqueeze film dampers. part2—effects of gaseous cavitation on the behavior of the squeezefilm damper. Tribology Transactions,2009,52(5):695~705.
    [29] D. W. Parkins, R. May-Miller. Cavitation in an oscillatory oil squeeze film. Journal ofTribology,1984,106(3):360~365.
    [30] F. Y. Zeidan, J. M. Vance. Cavitation regimes in squeeze film dampers and their effect on thepressure distribution. Tribology transactions,1990,33(3):447~453.
    [31] C. Xing, M. J. Braun, H. Li. Damping and added mass coefficients for a squeeze film damperusing the full3-D Navier--Stokes equation. Tribology International,2010,43(3):654~666.
    [32] C. Xing. Analysis of the characteristics of a squeeze film damper by three-dimensionalnavier-stokes equations: a numerical approach and experimental validation, University ofAkron,2009.
    [33] S. E. Diaz, A. Luis, S. Andres. Measurements of pressure in a squeeze film damper with anair/oil bubbly mixture. Tribology transactions,1998,41(2):282~288.
    [34] S. E. Diaz, L. A. San Andres. Reduction of the dynamic load capacity in a squeeze filmdamper operating with a bubbly lubricant. Journal of engineering for gas turbines and power,1999,121(4):703~709.
    [35] L. Tao, S. Diaz, L. San Andres, et al. Analysis of squeeze film dampers operating with bubblylubricants. Journal of tribology,2000,122(1):205~210.
    [36] S. E. Diaz, L. A. San Andres. Air entrainment versus lubricant vaporization in squeeze filmdampers: an experimental assessment of their fundamental differences. Journal of engineeringfor gas turbines and power,2001,123(4):871~877.
    [37] L. San Andres, S. E. Diaz. Pressure measurements and flow visualization in a squeeze filmdamper operating with a bubbly mixture. Journal of tribology,2002,124(2):346~350.
    [38] L. San Andres, J. M. Vance. Effects of fluid inertia and turbulence on the force coefficients forsqueeze film dampers. Journal of Engineering for Gas Turbines and Power,1986,108(2):332~339.
    [39] J. Zhang, J. Ellis, J. B. Roberts. Observations on the nonlinear fluid forces in short cylindricalsqueeze film dampers. Journal of Tribology,1993,115(4):692~698.
    [40]郭银朝,孟光,戈立春.惯性力对挤压油膜阻尼器支承转子的响应的影响.西北工业大学学报,1997,15(2):136~141.
    [41]郭银朝,孟光.考虑油膜惯性力时Jeffcott转子—挤压油膜阻尼器系统的突加不平衡响应特性.机械强度,1997,(3):2~6.
    [42]夏南,孟光,冯心海.油膜惯性力对转子-挤压油膜阻尼器系统非线性响应特性的影响.机械科学与技术,1999,18(2):67~69.
    [43]夏南,孟光,冯心海.油膜惯性力对双盘转子—SFD系统突加不平衡和加速响应特性的影响.航空动力学报,2000,15(1):71~74.
    [44] K. H. Groves. Identification of squeeze-film damper bearings for aeroengine vibrationanalysis, University of Manchester,2011.
    [45]顾家柳,丁奎元,刘启训,等.转子动力学.北京:国防工业出版社,1985:138~180.
    [46]陈光,洪杰,马艳红.航空燃气涡轮发动机结构.北京:北京航空航天大学,2010:331~335.
    [47]陈照波,焦映厚,陈明,等.挤压油膜阻尼器-转子系统非线性动力特性分析.推进技术,2001,22(1):33~35.
    [48]陈照波,焦映厚,夏松波,等.非线性挤压油膜阻尼器转子系统的非协调运动分析.中国机械工程,2002,13(9):60~62.
    [49]焦映厚,陈照波,夏松波,等.非线性挤压油膜阻尼器-转子系统周期解的分叉及稳定性分析.机械科学与技术,2004,23(7):879~882.
    [50]胡海岩.应用非线性动力学.北京:航空工业出版社,2000.
    [51] Fulei Chu, Roy Holmes. Efficient computation on nonlinear responses of a rotating assemblyincorporating the squeeze-film damper. Computer Methods in Applied Mechanics andEngineering,1998,164(3):363~373.
    [52] J. Y. Zhao, E. J. Hahn. Sub-harmonic, quais-periodic and chaotic motions of a rigid rotorsupported by an eccentric squeeze film damper. J. ofMech. Engrs., PartC,1993: F207.
    [53] J. Y. Zhao, I. W. Linnett. An improved squeeze film damper as a flexible support for jetengine rotors,1993:1769~1772.
    [54] J. Y. Zhao, E. J. Hahn. Subharmonic, quasi-periodic and chaotic motions of a rigid rotorsupported by an eccentric squeeze film damper. Proceedings of the Institution of MechanicalEngineers, Part C: Journal of Mechanical Engineering Science,1993,207(6):383~392.
    [55] J. Y. Zhao, I. W. Linnett, E. J. Hahn. An improved squeeze film damper for rotor vibrationcontrol-Theoretical results. International Gas Turbine and Aeroengine Congress andExposition,1994,1~7.
    [56] J. Y. Zhao, I. W. Linnett, L. J. Mclean. Subharmonic and quasi-periodic motions of aneccentric squeeze film damper-mounted rigid rotor. ASME Transactions Journal of VibrationAcoustics,1994,116:357~363.
    [57] J. Y. Zhao, I. W. Linnett, L. J. Mclean. Stability and bifurcation of unbalanced response of asqueeze film damped flexible rotor. Journal of tribology,1994,116(2):361~368.
    [58] J. Y. Zhao. Parametric study of the unbalance response of an eccentric squeeze film damper:mounted rigid rotor. JSME international journal. Series B, fluids and thermal engineering,1995,38(4):606~617.
    [59] J. Y. Zhao, E. J. Hahn. Eccentric operation and blade-loss simulation of a rigid rotor supportedby an improved squeeze film damper. Journal of Tribology,1995,117:490~497.
    [60] J. Y. Zhao, I. W. Linnett, L. J. Mclean. Unbalance response of a flexible rotor supported by asqueeze film damper. Journal of vibration and acoustics,1998,120(1):32~38.
    [61] P. Bonello, M. J. Brennan, R. Holmes. Non-linear modelling of rotor dynamic systems withsqueeze film dampers—an efficient integrated approach. Journal of Sound and Vibration,2002,249(4):743~773.
    [62] G. Adiletta, L. Della Pietra. The squeeze film damper over four decades of investigations. PartII: Rotordynamic analyses with rigid and flexible rotors. The Shock and vibration digest,2002,34(2):97~126.
    [63] E. J. Hahn. Stability and unbalance response of centrally preloaded rotors mounted in journaland squeeze film bearings. ASME, Transactions, Journal of Lubrication Technology,1979,101:120~128.
    [64] J. Y. Zhao, I. W. Linnett, L. J. Mclean. Imbalance response and stability of eccentricsqueeze-film-damped nonlinear rotor bearing system. Japan society of mechanical engineers,1994,37(4):886~895.
    [65]孟光,薛中擎.带定心弹簧的柔性转子-挤压油膜减振轴承系统的双稳态现象的非线性特性分析.西北工业大学学报,1985,(3):371~384.
    [66]孟光,薜中擎.带挤压油膜阻尼器的柔性转子非线性响应的Duffing特性分析.航空动力学报,1989,4(2):173~178.
    [67]孟光.非线性柔性转子—同心型挤压油膜阻尼器系统稳态及双稳态响应的稳定性分析.航空学报,1990,11(7):333~340.
    [68]郭银朝,孟光.挤压油膜阻尼器支承的柔性转子的双稳态响应特性.振动工程学报,1997,10(1):67~72.
    [69]夏南,孟光.带同心SFD的双盘悬臂柔性转子的稳态圆响应和稳定性分析.西北工业大学学报,1999,17(2):44~49.
    [70]刘方杰.挤压油膜阻尼器失效问题分析.北京航空航天大学学报,1998,24(3):47~52.
    [71]刘方杰.挤压油膜阻尼器失效分析方法.北京航空航天大学学报,1998,24(5):39~43.
    [72]王屏,刘方杰.挤压油膜阻尼器失效边界探索.强度与环境,1998,(3):28~34.
    [73]刘方杰,陈照波.挤压油膜阻尼器失效问题的实验研究.强度与环境,1998,(4):17~23.
    [74]刘方杰.挤压油膜阻尼器失效的判据.北京航空航天大学学报,2000,26(2):167~170.
    [75] C. S. Zhu, D. A. Robb, D. J. Ewins. Analysis of the multiple-solution response of a flexiblerotor supported on non-linear squeeze film dampers. Journal of Sound and Vibration,2002,252(3):389~408.
    [76] C. Defaye, M. Arghir, O. Bonneau, et al. Experimental study of the radial and tangentialforces in a whirling squeeze film damper. Tribology transactions,2006,49(2):271~278.
    [77] J. I. Inayat-Hussain, H. Kanki, N. W. Mureithi. On the bifurcations of a rigid rotor response insqueeze-film dampers. Journal of fluids and structures,2003,17(3):433~459.
    [78] Y. K. Ahn, Y. H. Kim, B. S. Yang, et al. Optimal design of nonlinear squeeze film damperusing hybrid global optimization technique. Journal of mechanical science and technology,2006,20(8):1125~1138.
    [79] C. Xing. Analysis of the Characteristics of a Squeeze Film Damper by Three-DimensionalNavier-Stokes Equations: A Numerical Approach and Experimental Validation, University ofAkron,2009.
    [80] X. Li, D. Taylor. Nonsynchronous motion of squeeze film damper systems. ASME,Transactions, Journal of Tribology,1987,109:169~176.
    [81]祝长生,冯心海.柔性转子-挤压油膜阻尼器系统中非协调涡动轨道的实验研究.航空动力学报,1987,2(4):323~327.
    [82]祝长生.非线性挤压油膜阻尼器柔性转子系统中的周期分叉特性.振动工程学报,1997,10(3):97~103.
    [83]孟光,夏南.多自由度强非线性柔性转子—挤压油膜阻尼器系统的分叉与混沌响应.航空学报,2003,24(1):42~45.
    [84]夏南,孟光.双盘转子-非同心SFD系统的非协调响应和分叉特性.西北工业大学学报,2000,(2):216~220.
    [85]吕晓光,赵玉成,卢纪.挤压油膜阻尼器-滑动轴承-柔性转子系统的动力响应分析.应用力学学报,2007,24(3):460~463.
    [86] J. I. Inayat-Hussain, H. Kanki, N. W. Mureithi. Bifurcation analysis of a rigid rotor incavitated squeeze-film dampers,2000:333~338.
    [87] J. I. Inayat-Hussain, H. Kanki, N. W. Mureithi. Stability and bifurcation of a rigid rotor incavitated squeeze-film dampers without centering springs. Tribology international,2001,34(10):689~702.
    [88] J. I. Inayat-Hussain, H. Kanki, N. W. Mureithi. Chaos in the unbalance response of a rigidrotor in cavitated squeeze-film dampers without centering springs. Chaos, Solitons\&Fractals,2002,13(4):929~945.
    [89] J. I. Inayat-Hussain. Bifurcations of a flexible rotor response in squeeze-film dampers withoutcentering springs. Chaos, Solitons&Fractals,2005,24(2):583~596.
    [90] J. I. Inayat-Hussain. Bifurcations in the response of a flexible rotor in squeeze-film damperswith retainer springs. Chaos, Solitons&Fractals,2009,39(2):519~532.
    [91] Wang Ligang Chen Yushu Cao Dengqing. Bifurcation and chaos of the bladed overhang rotorsystem with squeeze film dampers. Science in China(Series E:Technological Sciences),2009(3):709~720.
    [92] Shiping Zhang, Litang Yan, Qihan Li. Development of porous squeeze film damper bearingsfor improving the blade loss dynamics of rotor-support systems. Journal of Vibration andAcoustics,1992,114(3):347~353.
    [93] J. Walton, M. Martin. A chambered porous damper for rotor vibration control: partii---imbalance response and blade-loss simulation. Journal of Engineering for Gas Turbinesand Power,1993,115(2):366~371.
    [94] J. Tecza, J. Walton. A Chambered Porous Damper for Rotor Vibration Control: PartI---Concept Development. Journal of Engineering for Gas Turbines and Power,1993,115(2):360~365.
    [95]孟光.柔性转子—挤压油膜阻尼器系统的突加不平衡响应.应用力学学报,1993,(1):10~16.
    [96]夏南,孟光,冯心海.双盘悬臂柔性转子—挤压油膜阻尼器系统的突加不平衡和加速响应特性.机械强度,2000,(1):29~32.
    [97]唐红文,陆永忠,廖道训.挤压油膜柔性转子系统突加质量的响应特性.华中科技大学学报(自然科学版),2002,30(11):95~97.
    [98]陈果.含碰摩故障的新型转子-滚动轴承-机匣耦合动力学模型.振动工程学报,2009,22(5):538~545.
    [99] G. Chen. A new rotor-ball bearing-stator coupling dynamics model for whole aero-enginevibration. Journal of Vibration and Acoustics-Transactions Of The ASME,2009,131:1~9.
    [100]陈果.航空发动机整机耦合动力学模型及振动分析.力学学报,2010,42(3):548~559.
    [101] D. P. Fleming. Double nonlinearity--unbalance response of rotor on ball bearings withsqueeze film dampers,2011:1~8.
    [102]何卫锋,程礼,李应红.带挤压油膜阻尼器双转子系统动力建模与仿真.空军工程大学学报:自然科学版,2005,6(1):14~16.
    [103] Guangyoung Sun, Alan Palazzolo, A. Provenza, et al. Long duration blade loss simulationsincluding thermal growths for dual-rotor gas turbine engine. Journal of Sound and Vibration,2008,316(1):147~163.
    [104] Pham Minh Hai, Philip Bonello. An impulsive receptance technique for the time domaincomputation of the vibration of a whole aero-engine model with nonlinear bearings. Journal ofSound and Vibration,2008,318(3):592~605.
    [105]陈果.双转子航空发动机整机振动建模与分析.振动工程学报,2011,24(6):619~632.
    [106]陈果.航空发动机整机振动耦合动力学模型及其验证.航空动力学报,2012,27(2):241~254.
    [107] H. Heshmat, J. F. Walton. Advanced multi-squeeze film dampers for rotor vibration control.Tribology transactions,1991,34(4):489~496.
    [108] J. F. Walton, H. Heshmat. Rotordynamic evaluation of an advanced multisqueeze filmdamper-imbalance response and blade-loss simulation. Journal of Engineering for GasTurbines and Power,1993,115(2):347~352.
    [109]张世平,晏砺堂.高效油膜阻尼器的研究与开发.航空动力学报,1991,6(2):180~184.
    [110]晏砺堂,张世平,李其汉.高效多孔环挤压油膜阻尼器的减振特性研究.航空动力学报,1993,8(3):225~233.
    [111]汪希萱,祝长生.新型动静压挤压油膜阻尼器减振特性的实验研究.振动工程学报,1995,8(3):281~285.
    [112]汪希萱,祝长生.新型动静压挤压油膜阻尼器对柔性转子系统振动的控制.机械工程学报,1996,32(3):76~83.
    [113]祝长生.新型动静压挤压油膜阻尼器对转子系统振动的控制能力.航空学报,1996,17(2):227~233.
    [114]祝长生.动静压挤压油膜阻尼器对非协调响应的抑制能力.航空动力学报,1997,12(2):28~31.
    [115] A. El Shafei. Experimental and analytical investigation of hybrid squeeze film dampers.Journal of Engineering for Gas Turbines and Power,1993,115(2)353~359.
    [116] A. El-Shafei, M. El-Hakim. Experimental investigation of adaptive control applied to HSFDsupported rotors. Journal of Engineering for Gas Turbines and Power,2000,122(4):685~692.
    [117] A. El-Shafei. Active control algorithms for the control of rotor vibrations using hybridsqueeze film dampers. Journal of engineering for gas turbines and power,2002,124(3):598~607.
    [118] M. A. Rezvani, E. J. Hahn. Floating ring squeeze film damper: theoretical analysis.Tribology International,2000,33(3–4):249~258.
    [119]郭宝亭,马艳红,赵福安,等.金属橡胶外环自适应式挤压油膜阻尼器实验研究.航空动力学报,2003,18(1):119~123.
    [120]马艳红,洪杰,赵福安.自适应挤压油膜阻尼器减振机理研究.北京航空航天大学学报,2003,29(2):173~177.
    [121]马艳红,王虹,洪杰.带金属橡胶油膜环的自适应挤压油膜阻尼器非协调响应研究.航空动力学报,2009,24(2):390~395.
    [122] Zhang Rui-Hua, Jiang Hong-Yuan, Zhao Ke-Ding. Damping characteristics analysis ofsqueeze film damper with metal rubber. Journal of Harbin Institute of Technology,2006(2):146~150.
    [123]张蕊华,汤军浪,熊智文,等.新型挤压油膜阻尼器油膜压力特性分析.中国机械工程,2010,21(15):1840~1843.
    [124] F. Y. Zeidan, L. San Andres, J. M. Vance. Design and application of squeeze film dampersin rotating machinery,1996:169~188.
    [125] O. de Santiago, L. San Andres, J. Oliveras. Imbalance response of a rotor supported onopen-ends integral squeeze film dampers. Journal of engineering for gas turbines and power,1999,121(4):718~724.
    [126]曹磊,高德平,江和甫.弹性环式挤压油膜阻尼器减振机理初探.振动工程学报,2007,20(6):584~588.
    [127]周明,李其汉,晏砺堂.弹性环式挤压油膜阻尼器减振机理研究.航空动力学报,1998,13(4):403~407.
    [128]周明,李其汉,晏砺堂.弹性环式挤压油膜阻尼器实验研究与应用.航空动力学报,1998,13(4):408~412.
    [129]周明,李其汉,晏砺堂.弹性环式挤压油膜阻尼器减振机理研究(2)—弹性环式挤压油膜阻尼器油膜力特性的求解.燃气涡轮试验与研究,1999,12(1):30~33.
    [130]曹磊,高德平,江和甫.弹性环挤压油膜阻尼器-转子系统临界转速特性.推进技术,2008,29(2):235~239.
    [131] L. Moraru, T. G. Keith Jr, F. Dimofte, et al. Dynamic modeling of a dual clearance squeezefilm damper—part i: test rig and dynamic model with one damper. Tribology transactions,2003,46(2):170~178.
    [132] L. Moraru, T. G. Keith, F. Dimofte, et al. Dynamic modeling of a dual clearance squeezefilm damper: partIII. Washington, USA,2005,1~2.
    [133] L. Moraru, T. G. Keith, F. Dimofte, et al. Dynamic modeling of a dual clearance squeezefilm damper. Part II. Tribology transactions,2006,49(4):611~620.
    [134] L. Moraru, T. G. Keith Jr, F. Dimofte, et al. A study of a dual clearance squeeze filmdamper. Tennessee, USA,2009:1~3.
    [135] L. Moraru, T. G. Keith Jr, F. Dimofte, et al. A dynamic analysis of a dual clearance squeezefilm damper. California, USA,2010:1~2.
    [136] L. E. Moraru. Numerical predictions and measurements in the lubrication of aeronauticalengine and transmission components. Ohio: The University of Toledo,2005.
    [137]徐芝纶.弹性力学简明教程.北京:高等教育出版社,2002:3~8.
    [138]杨喜关.气流激振力作用下转子系统稳定性分析,[硕士学位论文].南京:南京航空航天大学,2008.
    [139]戴嘉尊,邱建贤.微分方程数值解法.南京:东南大学出版社,2002:42~52.
    [140]李庆扬,莫孜中,祁力群.非线性方程组的数值解法.北京:科学出版社,1997:55~62.
    [141] J. F. Booker. A table of the journal bearing integral. Journal of Basic Engineering,1965,87(3):533~535.
    [142]黄太平,田淑芳.弹性阻尼支承动态特性分析与试验.南京航空航天大学学报,1983,(3):22~36.
    [143]强健.带浮环的挤压油膜阻尼器特性研究,[硕士学位论文].南京:南京航空航天大学,2011.
    [144]冯国全,周柏卓.鼠笼式弹性支承结构参数优化设计与试验.航空动力学报,2011,26(1):199~203.
    [145]罗贵火.反向旋转双转子振动特性分析与试验研究,[博士学位论文].南京:南京航空航天大学,1999.
    [146]姜继海,季天晶,李运,等.液压流体粘温关系研究.润滑与密封,1998,(5):35~37.
    [147] Luis San Andres, Adolfo Delgado. Identification of Force Coefficients in a Squeeze FilmDamper With a Mechanical End Seal: Centered Circular Orbit Tests. ASME Journal ofTribology,2007,129:660~668.
    [148] Luis San Andres, Adolfo Delgado. Identification of force coefficients in a squeeze filmdamper with a mechanical end seal---part i: unidirectional load tests. Journal of Engineeringfor Gas Turbines and Power,2007,129(3):858~864.
    [149]李飞敏.转子—滚动轴承耦合系统碰摩故障动力学分析与智能诊断,[硕士学位论文].南京航空航天大学,2008.
    [150]唐云冰.航空发动机高速滚动轴承力学特性研究,[博士学位论文].南京航空航天大学,2005.
    [151]万长森.滚动轴承的分析方法.北京:机械工业出版社,1987:45~60.
    [152] S. Fukata, E. H. Gad, T. Kondou. On the radial vibration of ball bearings (computersimulation). Bulletin JSME,1985,28:899~904.
    [153] B. Mevel, J. L. Guyader. Routs to chaos in ball bearing. Journal Of Sound And Vibration,1993,162:471~487.
    [154]陈果.带碰摩耦合故障的转子-滚动轴承-机匣耦合动力学模型.振动工程学报,2007,20(4):361~368.
    [155]陈果.转子-滚动轴承-机匣耦合系统中滚动轴承故障的动力学分析.振动工程学报,2008,21(6):577~587.
    [156]周海仑.含碰摩故障的航空发动机整机振动建模与分析,[硕士学位论文].南京航空航天大学,2009.
    [157]周海仑,罗贵火,冯国全,等.含浮环式挤压油膜阻尼器的转子系统响应分析.航空动力学报,2012,27(3):644~650.
    [158]成大先.机械设计手册—轴承分册.北京:化学工业出版社,2005:235~240.
    [159]周海仑,陈果,李飞敏.转子-滚动轴承耦合系统的转静碰摩故障分析与智能诊断.振动与冲击,2008,27(10):90~94,114.
    [160]韩军,高德平,胡绚,等.航空发动机双转子系统的拍振分析.航空学报,2007,28(6):1369~1373.
    [161]胡绚.反向旋转双转子系统动力学特性研究,[博士学位论文].南京航空航天大学,2007.
    [162]罗贵火,周海仑,王飞,等.含滚动轴承的同向和反向旋转双转子系统动力学响应.航空动力学报,2012,27(8):1887~1894.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700