用户名: 密码: 验证码:
超声—光Fenton组合工艺处理垃圾渗滤液的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液特性取决于处置的固体废物的类型、稳定性、含水率及填埋场的水文、气象、温度、填埋时间和固体废物的分解阶段,具有显著地地域性和特异性;《生活垃圾填埋场污染控制标准》(GB16889-2008)严格规定了填埋场水污染物的排放浓度,这些因素都给生化处理技术处理垃圾渗滤液提出了挑战。而Fenton工艺可在温和条件下无选择性地将污染物降解或矿化成无害物质,被认为是一种可供选择的替代技术。
     为研究超声、光与Fenton组合工艺对垃圾渗滤液的处理效果,以超声处理和Fenton法处理的一般规律出发,采用光和超声作为辅助技术来提升渗滤液的处理效果,并对各种组合工艺进行优化和比较,寻找最佳组合工艺,为垃圾渗滤液处理提供了一种新的处理方法,并建立了符合该水质特性的Fenton法处理垃圾渗滤液的反应动力学模型。
     采用超声处理垃圾渗滤液,发现80KHz超声获得最高的COD去除率;COS和AOS的变化表明有机物矿化主要集中于超声前60min。低初始pH值、低初始浓度、较高反应温度和辅助曝气可提高渗滤液COD去除率。50KHz超声的NH3-N去除率最高;高初始pH值和辅助曝气可提高渗滤液NH3-N去除率;NH3-N初始浓度对去除效果影响不明显。对超声处理后的UV-vis光谱和EEM分析发现光谱强度增强,认为渗滤液中的大分子有机物裂解成小分子有机物;对特征参数和EEM的峰位移及Pi,n。的变化分析结果一致;且受渗滤液浓度、初始pH值、超声频率和时间等因素影响。
     Fenton、US-Fenton、光Fenton和US-光Fenton法均能很好地处理垃圾渗滤液,且具有很多相似点:COD去除率均大于TOC去除率;有机物去除主要集中在前30min内,其中前10min变化最明显;AOS和COS值也是在前10min剧烈变化,30min后变化范围较小,说明有机物矿化和剧烈化学反应形成氧化反应中间体主要集中在反应前30min;初始pH值为3时,渗滤液获得最好的去除率;对所有处理工艺而言,均存在一个最佳H202用量,超过这个用量后,再增加H202用量对TOC去除率增加效果不明显;对光Fenton而言,发现[H2O2]/[Fe2+]摩尔比为4时,其氧化去除率最佳;而对其余工艺最佳试剂比为5;多次投加H202均可提高渗滤液TOC去除率,还发现Fe2+的投加方式和次数也影响TOC的去除率,不过在不同的工艺中呈现不同的效果;渗滤液初始浓度的提高,渗滤液TOC去除率也升高的趋势;反应温度的提高对各种处理工艺处理垃圾渗滤液的处理效果有一定的正面影响,不过对去除率的提升影响较小;研究发现各种工艺对UV254的去除效果均好于TOC。
     US/Fe2+预处理渗滤液相当于一个投加微量H202的Fenton反应,其处理效果受初始pH值,Fe2+和反应温度影响;对光Fenton而言,TOC去除率随着S/V值的增加呈增加趋势。对同一浓度水样采用相同的操作参数,比较Fenton相关多种工艺对渗滤液的处理效果,发现渗滤液TOC去除率大小顺序为:US-光Fenton>US/光Fenton>US-Fenton>光Fenton>Fenton>US/Fe2+>US> UV。
     在H2O23655-10965mg·L-1, FeSO4600-2800mgFe·L-1,温度12-30℃,初始pH值为3.0的条件下,Fenton;法处理垃圾渗滤液在5-30mmin内的反应动力学模型为:
The characteries of landfill leachate, with a significant specificity, depend on type of disposal, stability and moisture of solid waste, hydrology, meteorology and temperature of landfill site, landfill age and decomposition stages of solid waste;"Standard for pollution control on the landfill site of municipal solid waste"(GB16889-2008) regulate strict controlling over effluent concentration of leachate pollutants, those factors pose a challenge for landfill leachate to be treated by biological technology. The Fenton process, non-selectively reacted with organic compounds, can be used to degrade pollutants into harmless substances under mild conditions and considered to be an alternative technology for landfill leachate treatment.
     To study effect of combined technology of sonication, photo and Fenton, the optimization of sonication and Fenton were firstly studied, then the technologies assisted by sonication and photo were used to improve removal of leachate, the aim of this research was found to a new approach to get best removal by comparison of various combinations process and the kinetic model of treatment leachate effluents by Fenton process was built finally.
     The highest COD removal was achieved by80KHz sonication in this study and the mineralization of organic matter mainly achieved at the first60min according to the variation of COS and AOS. Low initial pH, low initial concentration, higher temperature and assisted aeration were beneficial for improving COD removal efficiency. The highest NH3-N removal was achieved by50KHz sonication in this research. Higher pH and assisted aeration can improve the NH3-N removal, the initial concentration have little influence on NH3-N removal. The higher intensities of UV-vis and EEM spectra were induced from breaking down high molecular weight organics into lower ones by sonication. That the variation of special parameters of UV-vis were in accord with the shift of peaks in EEM spectra or Pi,n by FRI were affected by initial pH, initial concentration, ultrasound frequency and reaction time.
     The Fenton, US-Fenton, photo-Fenton and US-photo-Fenton processes were proved to be highly effective for treatment of landfill leachate. And they are similar in the following points:The degradation of leachate were got in the first30min, especially dramatically changed in the first10min and slowly after30min; the same phenomenon were appeared for AOS and COS, which meant that the dramatic chemical reaction were reacted and reaction intermediates were generated in the first30min. The best TOC removal was got at pH3. The economic TOC removal was existed for all researched Fenton-related processes. That the TOC removal were affected slightly when the dosage of H2O2excess2Dth for Fenton process and1Dth for the other. The best oxidation removal of leachate were got at [H2O2]/[Fe2+] molar ratio of4for photo-Fenton and5for the other. The TOC removal were increased with dosing times of H2O2while there are slight different in different process of dosing times of Fe2+. The TOC removal were increased with the initial concentration of leachate. The temperature had a slight effect on TOC removal for all process. The UV254removal were higher than TOC removal for all processes.
     The leachate pretreated by US/Fe2+was equal to be treated by Fenton process containing little amount of H2O2. The TOC removal were affected by initial pH, initial concentration of Fe2+and temperature. The TOC removal was increased with S/V value increase in photo-Fenton. The order of TOC removal for the same leachate under unified parameters were US-photo-Fenton> US/photo-Fenton> US-Fenton> photo-Fenton>Fenton>US/Fe2+>US>UV.
     Under the following conditions:H2O23655-10965mg·L-1, FeSO41200-28800mgFe·L-1,12-30℃and pH3.0, the kinetic reaction equation of leachate treatment by Fenton process between5min and30min of reaction was fitted as follows:
引文
[1]国家统计局.http://data.stats.gov.cn/workspace/index?m=hgnd
    [2]刘汉湖,高良敏.固体废物处理与处置.[M].中国矿业大学出版社,2009:105
    [3]张红梅,速宝玉.垃圾填埋场渗滤液及对地下水污染研究进展[J].水文地质工程地质,2004,30(6):110-115.
    [4]Kurniawan T A, Lo W, Chan G. Physico-chemical treatments for removal of recalcitrant contaminants from landfill leachate [J]. Journal of hazardous materials,2006,129(1):80-100.
    [5]Renou S, Givaudan J G, Poulain S, et al. Landfill leachate treatment:Review and opportunity [J]. Journal of hazardous materials,2008,150(3):468-493.
    [6]曹源.多相催化氧化处理后期垃圾渗滤液的研究[D].重庆大学,2010:72.
    [7]Kylefors K, Andreas L, Lagerkvist A. A comparison of small-scale, pilot-scale and large-scale tests for predicting leaching behaviour of landfilled wastes [J]. Waste Management,2003,23(1): 45-59.
    [8]Wang F, Smith D W, El-Din M G. Application of advanced oxidation methods for landfill leachate treatment-A review [J]. Journal of Environmental Engineering and Science,2003,2(6): 413-427.
    [9]Tchobanoglous G, Kreith F. Handbook of solid waste management [M]. New York: McGraw-Hill,2002.
    [10]Lange D A, Cellier B F, Dunchak T. A case study of the HELP model:Actual versus predicted leachate production rates at a municipal landfill in northeastern Ohio [J]. Water Quality International, 1997,1997(11-12):40-42.
    [11]Christensen T H, Kjeldsen P, Albrechtsen H J, et al. Attenuation of landfill leachate pollutants in aquifers [J]. Critical Reviews in Environmental Science and Technology,1994,24(2):119-202.
    [12]Kang K H, Shin H S, Park H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications [J]. Water research,2002,36(16):4023-4032.
    [13]Nanny M A, Ratasuk N. Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates [J]. Water Research,2002,36(6):1572-1584.
    [14]Jensen D L E, Ledin A, Christensen T H. Speciation of heavy metals in landfill-leachate polluted groundwater [J]. Water Research,1999,33(11):2642-2650.
    [15]Oman C, Hynning P A. Identification of organic compounds in municipal landfill leachates [J]. Environmental Pollution,1993,80(3):265-271.
    [16]郑曼英,李丽桃.垃圾渗滤液中有机污染物初探[J].重庆环境科学,1996,18(4):41-43
    [17]Wiszniowski J, Robert D, Surmacz-Gorska J, et al. Landfill leachate treatment methods:A review [J]. Environmental Chemistry Letters,2006,4(1):51-61.
    [18]Ziyang L, Youcai Z, Tao Y, et al. Natural attenuation and characterization of contaminants composition in landfill leachate under different disposing ages [J]. Science of the total environment, 2009,407(10):3385-3391.
    [19]Chu L M, Cheung K C, Wong M H. Variations in the chemical properties of landfill leachate [J]. Environmental Management,1994,18(1):105-117.
    [20]Wu J J, Wu C C, Ma H W, et al. Treatment of landfill leachate by ozone-based advanced oxidation processes [J]. Chemosphere,2004,54(7):997-1003.
    [21]De Morais J L, Zamora P P. Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates [J]. Journal of Hazardous Materials,2005,123(1): 181-186.
    [22]Alvarez-Vazquez H, Jefferson B, Judd S J. Membrane bioreactors vs conventional biological treatment of landfill leachate:a brief review [J]. Journal of chemical technology and biotechnology, 2004,79(10):1043-1049.
    [23]HUO S, XI B, YU H, et al. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages [J]. Journal of Environmental Sciences,2008,20(4):492-498.
    [24]Pivato A, Gaspari L. Acute toxicity test of leachates from traditional and sustainable landfills using luminescent bacteria [J]. Waste management,2006,26(10):1148-1155.
    [25]尚爱安,赵庆样,徐美燕,等.混凝在垃圾渗滤液处理中的作用研究[J].中国给水排水,2004,20(1):50-52.
    [26]Thomas D J L, Tyrrel S F, Smith R, et al. Bioassays for the evaluation of landfill leachate toxicity [J]. Journal of Toxicology and Environmental Health, Part B,2009,12(1):83-105.
    [27]Duggan J. The potential for landfill leachate treatment using willows in the UK-a critical review [J]. Resources, conservation and recycling,2005,45(2):97-113.
    [28]Alejandro Sanchez-Chardi, Cristina Penarroja-Matutano, Ciro Alberto Oliveira Ribeiro, et al. Bioaccumulation of metals and effects of a landfill in small mammals. Part Ⅱ. The wood mouse, Apodemus sylvaticus [J]. Chemosphere,2007,70(1):101-109.
    [29]Li H, Han M, Hou L, et al. Landfill leachate ingestion induces protein oxidation and DNA-protein crosslinks in mouse viscera [J]. Journal of hazardous materials,2010,174(1):54-58..
    [30]Sang Nan, Li Guangke. Genotoxicity of municipal landfill leachate on root tips of Vicia faba [J]. Mutation research/genetic toxicology and environmental mutagenesis,2004,560(2):159-165.
    [31]Cabrera G L, Rodriguez D M G, Maruri A B. Genotoxicity of the extracts from the compost of the organic and the total municipal garbage using three plant bioassays [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,1999,426(2):201-206.
    [32]Rocha E M R, Vilar V J P, Fonseca A, et al. Landfill leachate treatment by solar-driven AOPs [J]. Solar Energy,2011,85(1):46-56.
    [33]Kjeldsen P, Grundtvig A, Winther P, et al. Characterization of an old municipal landfill (Grindsted, Denmark) as a groundwater pollution source:landfill history and leachate composition [J]. Waste management & research,1998,16(1):3-13.
    [34]Welander U, Henrysson T, Welander T. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process [J]. Water Research,1998,32(5): 1564-1570.
    [35]Koch G, Egli K, Van der Meer J, et al. Mathematical modeling of autotrophic denitrification in a nitrifyingbiofilm of a rotating biological contactor [J]. Water science and technology,2000, 41(4-5):191-198.
    [36]袁志宇,陈昌伟,陈忠正.城市垃圾填埋场垃圾渗滤液处理工艺的改进探讨[J].武汉城市建设学院学报,1998,15(4):20-25.
    [37]Zouboulis A I, Loukidou M X, Christodoulou K. Enzymatic treatment of sanitary landfill leachate [J]. Chemosphere,2001,44(5):1103-1108.
    [38]Yaimaz G. and Ozturk I. Biololgical ammonia removal from anaerobically pro-treated landfill leachate in sequencing batch reactors [J]. Water Science and Technology,2001,43(3):307-314.
    [39]沈耀良.城市垃圾填埋场渗滤液处理技术的研究[D].哈尔滨建筑大学,1998:53-54.
    [40]沈耀良,王宝贞,杨栓大,等.厌氧折流板反应器处理垃圾渗滤液混合废水[J].中国给水排水,1999,15(5):10-12.
    [41]Henderson J P, Atwater J W. High ammonia landfill leachate treatment using anaerobic filter and rotating biological contactor [J]. Canadian Journal of Civil Engineering,1995,22(5):992-1000.
    [42]Timur H, Ozturk I, Altinbas M, et al. Anaerobic treatability of leachate:a comparative evaluation for threedifferent reactor systems [J]. Water Science & Technology,2000,42(1-2): 287-292.
    [43]Im J, Woo H, Choi M, et al. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system [J]. Water Research,2001,35(10):2403-2410.
    [44]卢贤飞.城市垃圾卫生填埋场渗滤液的控制与处理.给水排水[J],1999,25(6):4-6.
    [45]李东.垃圾渗滤液生物处理实验研究与理论[D].重庆大学,2003:17.
    [46]夏越青,李建国.城市垃圾填埋场渗滤液循环回灌处理技术[J].环境卫生工程,1999,7(4):141-144.
    [47]王琪,董路,李妲,等.垃圾填埋场渗滤液回流技术研究[J].环境科学研究.2000,13(3):1-5.
    [48]Connolly R, Zhao Y, Sun G, et al. Removal of ammoniacal-nitrogen from an artificial landfill leachate in downflow reed beds [J]. Process Biochemistry,2004,39(12):1971-1976.
    [49]李青松,金春姬,乔志香,等.垃圾填埋场渗滤液的产生及处理现状[J].青岛大学学报,2003,18(4):80-83.
    [50]Amokrane A, Comel C, Veron J. Landfill leachates pretreatment by coagulation-flocculation [J]. Water Research,1997,31(11):2775-2782.
    [51]Diamadopoulos E. Characterization and treatment of recirculation-stabilized leachate [J]. Water Research,1994,28(12):2439-2445.
    [52]Tatsi A A, Zouboulis A I, Matis K A, et al. Coagulation-flocculation pretreatment of sanitary landfill leachates [J]. Chemosphere,2003,53(7):737-744.
    [53]Kargi F, Pamukoglu M Y. Powdered activated carbon added biological treatment of pre-treated landfill leachate in a fed-batch reactor[J]. Biotechnology Letters,2003,25(9):695-699.
    [54]Calli B, Mertoglu B, Inane B. Landfill leachate management in Istanbul:applications and alternatives [J]. Chemosphere,2005,59(6):819-829.
    [55]Ozturk I, Altinbas M, Koyuncu I, et al. Advanced physico-chemical treatment experiences on young municipal landfill leachates [J]. Waste Management,2003,23(5):441-446.
    [56]Marttinen S K, Kettunen R H, Sormunen K M, et al. Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates [J]. Chemosphere,2002,46(6):851-858.
    [57]Jenkins B M, Mannapperuma J D, Bakker R R. Biomass leachate treatment by reverse osmosis [J]. Fuel Processing Technology,2003,81(3):223-246.
    [58]Ushikoshi K, Kobayashi T, Uematsu K, et al. Leachate treatment by the reverse osmosis system [J]. Desalination,2002,150(2):121-129.
    [59]Aziz H A, Adlan M N, Zahari M S M, et al. Removal of ammoniacal nitrogen (N-NH3) from municipal solid waste leachate by using activated carbon and limestone [J]. Waste management & research,2004,22(5):371-375.
    [60]Babel S, Kurniawan T A. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan [J]. Chemosphere,2004,54(7):951-967.
    [61]Rodriguez J, Castrillon L, Maranon E, et al. Removal of non-biodegradable organic matter from landfill leachates by adsorption [J]. Water research,2004,38(14):3297-3303.
    [62]Ali M A, Rakib M, Laborie S, et al. Coupling of bipolar membrane electrodialysis and ammonia stripping for direct treatment of wastewaters containing ammonium nitrate [J]. Journal of membrane science,2004,244(1):89-96.
    [63]Moraes P B, Bertazzoli R. Electrodegradation of landfill leachate in a flow electrochemical reactor [J]. Chemosphere,2005,58(1):41-46.
    [64]朱灵峰.水与废水处理新技术[M].西安地图出版社,2007:138
    [65]Oliveira I S, Viana L, Verona C, et al. Alkydic resin wastewaters treatment by Fenton and photo-Fenton processes [J]. Journal of hazardous materials,2007,146(3):564-568.
    [66]Shanableh A. Production of useful organic matter from sludge using hydrothermal treatment [J]. Water Research,2000,34(3):945-951.
    [67]李春喜,王劲钢,王子锆,等.超声波技术在污水处理中的应用与研究进展[J].环境污染治理技术与设备,2001,2(2):64-68.
    [68]李海生,刘亮,李鱼,等.温度对WAO/CWAO处理垃圾渗滤液的影响[J].环境科学,2004,25(4):134-138.
    [69]Anglada A, Urtiaga A, Ortiz I, et al. Treatment of municipal landfill leachate by catalytic wet air oxidation:Assessment of the role of operating parameters by factorial design [J]. Waste management,2011,31(8):1833-1840.
    [70]Xu X Y, Zeng G M, Peng Y R, et al. Potassium persulfate promoted catalytic wet oxidation of fulvic acid as a model organic compound in landfill leachate with activated carbon [J]. Chemical Engineering Journal,2012,200:25-31.
    [71]Umar M, Aziz H A, Yusoff M S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate [J]. Waste Management,2010,30(11):2113-2121.
    [72]GB 16889-2008.生活垃圾填埋场污染控制标准.
    [73]GB 18918-2002.城镇污水处理厂污染物排放标准.
    [74]GB3838-2002.地表水环境质量标准.
    [75]Wang S,Wu X,Wang Y,et al. Removal of organic matter and ammonia nitrogen from landfill leachate by ultrasound [J]. Ultrasonics sonochemistry,2008,15(6):933-937.
    [76]沈壮志,程建政,吴胜举.五氯苯酚降解的超声诱导[J].化学学报.2003,61(12):2016~2019.
    [77]Psillakis E, Goula G, Kalogerakis N, et al. Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation [J]. Journal of hazardous materials,2004,108(1):95-102.
    [78]张占梅.基于超声辐射的高级氧化技术处理偶氮染料酸性绿B的试验研究[D].重庆大学:11-13.
    [79]叶建忠,陈长琦,方应翠,等.有机废水超声降解动力学的分析及应用[J].合肥工业大学学报(自然科学版).2003,26(1):71-77
    [80]冯若,李化茂.声化学及其应用[M].合肥:安徽科技出版社,1992.89-169
    [81]冯若.声化学基础研究中的声学问题[J].物理学进展,1996,16(3,4):403-407
    [82]马军,赵雷.超声波降解水中有机物的影响因素[J].黑龙江自然科学学报,2005,22(2):141~149.
    [83]陈伟,范瑾初.超声降解水体中有机污染物的效果及影响因素[J].给水排水2000,26(5):19-21
    [84]卞华松,张大年,赵一先.水污染物的超声波降解研究进展[J].环境污染治理技术与设备,2000,1(1):56-64.
    [85]张占梅.基于超声辐射的高级氧化技术处理偶氮染料酸性绿B的试验研究[D].重庆大学:15.
    [86]Li Y, Hsieh W P, Mahmudov R, et al. Combined ultrasound and Fenton (US-Fenton) process for the treatment of ammunition wastewater [J]. Journal of hazardous materials,2013,244:403-411.
    [87]Lin JihGaw,Chang Cheng Nan,Wu Jer Ren,et al. Enhancement of decomposition of 2-chlorophenol with ultrasound/H2O2 process [J]. Water Science and Technology,1996,34(9):41-48
    [88]赵彬斌,王丽.超声波技术对水中有机污染物的降解[J].化学工程师,2002,93(6):21-22.
    [89]曹志斌,王玲,薛建军,等.超声协同三维电极处理染料废水[J].水处理技术,2008,34(11):57~60.
    [90]Wang X, Yao Z, Wang J, et al. Degradation of reactive brilliant red in aqueous solution by ultrasonic cavitation[J]. Ultrasonics Sonochemistry,2008,15(1):43-48.
    [91]Bhatnagar A.and Cheung,H.M.,.Sonochemical destruction of chlorinated C1 and C2 volatile organic compounds in dilute aquerous solution [J]. Environmental Science and technology,1994,28(8),1481-1486.
    [92]Wu J M, Huang H S, Livengood C D. Ultrasonic destruction of chlorinated compounds in aqueous solution [J]. Environmental progress,1992,11(3):195-201.
    [93]Sivasankar T, Paunikar A W, Moholkar V S. Mechanistic approach to enhancement of the yield of a sonochemical reaction [J]. AIChE journal,2007,53(5):1132-1143.
    [94]Goel M, Hongqiang H, Mujumdar A S, et al. Sonochemical decomposition of volatile and non-volatile organic compounds-a comparative study [J]. Water Research,2004,38(19): 4247-4261.
    [95]徐宁.超声及其组合技术处理酚类溶液的研究[D].南京工业大学,2004:19-23.
    [96]Fenton H J H. LⅩⅩⅢ.---Oxidation of tartaric acid in presence of iron [J]. Journal of the Chemical Society, Transactions,1894,65:899-910.
    [97]Pignatello J. Dark and photoassisted Fe3+ catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide [J]. Environmental Science and Technology,1992,5(26):944-951
    [98]郑怀礼,彭德军,李宏,等.光助Fenton催化氧化反应降解孔雀石绿试验研究[J].光谱学与光谱分析,2007,27(5):1006-1009.
    [99]王红琴,刘勇健.非均相Fenton和非均相US-Fenton体系中甲基橙降解动力学[J].环境工程学报,2012,6(10):3673-3678.
    [100]刘芳,杨艳明,王昶.JV/Fenton及Fenton体系降解愈创木酚的机理探讨[J].中国造纸学报,2011,26(3):39-43.
    [101]Malato S, Fernandez-Ibanez P, Maldonado M I, et al. Decontamination and disinfection of water by solar photocatalysis:recent overview and trends [J]. Catalysis Today,2009,147(1):1-59.
    [102]Grcic I, Sipic A, Koprivanac N, et al. Global parameter of ultrasound exploitation (GPUE) in the reactors for wastewater treatment by sono-Fenton oxidation [J]. Ultrasonics sonochemistry,2012, 19(2):270-279.
    [103]Grcid I, Obradovic M, Vujevi6 D, et al. Sono-Fenton oxidation of formic acid/formate ions in an aqueous solution:from an experimental design to the mechanistic modeling [J]. Chemical engineering journal,2010,164(1):196-207.
    [104]Babuponnusami A, Muthukumar K. Degradation of Phenol in Aqueous Solution by Fenton, Sono-Fenton and Sono-photo-Fenton Methods [J]. Clean-Soil, Air, Water,2011,39(2): 142-147.
    [105]苑宝玲.水处理新技术原理与应用[M].北京:化学出版社,2006:14-15.
    [106]徐美娟.光-Fenton法处理废纸制浆废水的研究[D].南开大学,2006:5-11.
    [107]雷乐成.光助Fenton氧化处理PVA退浆废水的研究[J].环境科学学报,2000,20(2):139-144.
    [108]Pignatello J J, Liu D, Huston P. Evidence for an additional oxidant in the photoassisted Fenton reaction [J]. Environmental science & technology,1999,33(11):1832-1839.
    [109]De la Cruz N, Gimenez J, Esplugas S, et al. Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge [J]. Water research,2012,46(6):1947-1957.
    [110]Chakinala A G, Gogate P R, Burgess A E, et al. Industrial wastewater treatment using hydrodynamic cavitation and heterogeneous advanced Fenton processing [J]. Chemical Engineering Journal,2009,152(2):498-502.
    [111]Bremner D H, Molina R, Martinez F, et al. Degradation of phenolic aqueous solutions by high frequency sono-Fenton systems (US-Fe2O3/SBA-15-H2O2) [J]. Applied Catalysis B:Environmental, 2009,90(3):380-388.
    [112]Joseph C G, Li Puma G, Bono A, et al. Sonophotocatalysis in advanced oxidation process:a short review [J]. Ultrasonics Sonochemistry,2009,16(5):583-589.
    [113]F. Chen, Li Y., Cai W., et al. Preparation and sono-Fenton performance of 4A-zeolite supported a-Fe2O3 [J], Journal of Hazardous materials,2010,177 (1-3):743-749.
    [114]Kang N, Lee D S, Yoon J. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols [J]. Chemosphere,2002,47(9):915-924.
    [115]Hermosilla D, Cortijo M, Huang C P. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes [J]. Science of the Total Environment,2009, 407(11):3473-3481.
    [116]Arslan I, Balcioglu I A, Tuhkanen T. Treatability of simulated reactive dye-bath wastewater by photochemical and non-photochemical advanced oxidation processes [J]. Journal of Environmental Science & Health Part A,2000,35(5):775-793.
    [117]Balcioglu I A, Arslan I, Sacan M T. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes [J]. Environmental technology,2001,22(7):813-822.
    [118]Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique [J]. Journal of Hazardous materials,2003,98(1):33-50.
    [119]Torrades F, Perez M, Mansilla H D, et al. Experimental design of Fenton and photo-Fenton reactions for the treatment of cellulose bleaching effluents [J]. Chemosphere,2003,53(10): 1211-1220.
    [120]Zhang H, Choi H J, Huang C P. Optimization of Fenton process for the treatment of landfill leachate [J]. Journal of Hazardous Materials,2005,125(1):166-174.
    [121]Perez M, Torrades F, Domenech X, et al. Fenton and photo-Fenton oxidation of textile effluents[J]. Water Research,2002,36(11):2703-2710.
    [122]Sun J H, Sun S P, Wang G L, et al. Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process [J]. Dyes and Pigments,2007,74(3):647-652.
    [123]Benitez F J, Acero J L, Real F J, et al. The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions [J]. Water Research,2001,35(5):1338-1343.
    [124]Meric S, Kaptan D, Olmez T. Color and COD removal from wastewater containing Reactive Black 5 using Fenton's oxidation process [J]. Chemosphere,2004,54(3):435-441.
    [125]Huang C P, Myoda S P. Sonochemical Treatment of Wastewater Effluent for the Removal of Pathogenic Protozoa Exemplified by Cryptosporidium [J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management,2007,11(2):114-122.
    [126]Pupo Nogueira R F, Guimaraes J R. Photodegradation of dichloroacetic acid and 2, 4-dichlorophenol by ferrioxalate/H2O2 system [J]. Water Research,2000,34(3):895-901.
    [127]Brand N, Mailhot G, Bolte M. Degradation photoinduced by Fe (Ⅲ):method of alkylphenol ethoxylates removal in water [J]. Environmental science & technology,1998,32(18):2715-2720.
    [128]Li Z M, Shea P J, Comfort S D. Nitrotoluene destruction by UV-catalyzed Fenton oxidation n[J]. Chemosphere,1998,36(8):1849-1865.
    [129]Engwall M A, Pignatello J J, Grasso D. Degradation and detoxification of the wood preservatives creosote and pentachlorophenol in water by the photo-Fenton reaction [J]. Water Research,1999,33(5):1151-1158.
    [130]Spacek W, Bauer R, Heisler G. Heterogeneous and homogeneous wastewater treatment-Comparison between photodegradation with TiO2 and the photo-fenton reaction [J]. Chemosphere,1995,30(3):477-484.
    [131]Michael I, Hapeshi E, Michael C, et al. Solar Fenton and solar TiO2 catalytic treatment of ofloxacin in secondary treated effluents:Evaluation of operational and kinetic parameters [J]. Water research,2010,44(18):5450-5462.
    [132]潘云霞,郑怀礼,李丹丹,等.超声/Fenton联用技术处理垃圾渗滤液中的有机物[J].环境工程学报,2008,2(4):445-449.
    [133]Smith B A, Teel A L, Watts R J. Identification of the reactive oxygen species responsible for carbon tetrachloride degradation in modified Fenton's systems [J]. Environmental science & technology,2004,38(20):5465-5469.
    [134]Bigda R J. Consider Fenton chemistry for wastewater treatment [J]. Chem. Eng. Prog.,1995, 91:62-66
    [135]梅毅,吴丰昌,王立英,等.运用3DEEMs及荧光偏振方法研究pH,离子强度及浓度效应对腐殖酸荧光光谱特性的影响[J].地球化学,2008,37(2):165-173.
    [136]Xue S, Zhao Q, Wei L, et al. Fluorescence spectroscopic studies of the effect of granular activated carbon adsorption on structural properties of dissolved organic matter fractions [J]. Frontiers of Environmental Science & Engineering,2012,6(6):784-796.
    [137]Bro R, Vidal M. EEMizer:Automated modeling of fluorescence EEM data [J]. Chemometrics and Intelligent Laboratory Systems,2011,106(1):86-92.
    [138]Xu H, He P, Wang G, et al. Three-dimensional excitation emission matrix fluorescence spectroscopy and gel-permeating chromatography to characterize extracellular polymeric substances in aerobic granulation [J]. Water science and technology:a journal of the International Association on Water Pollution Research,2009,61(11):2931-2942.
    [139]Goel M, Hongqiang H, Mujumdar A S, et al. Sonochemical decomposition of volatile and non-volatile organic compounds-a comparative study [J]. Water Research,2004,38(19): 4247-4261.
    [140]Mahamuni N N, Pandit A B. Effect of additives on ultrasonic degradation of phenol [J]. Ultrasonics sonochemistry,2006,13(2):165-174.
    [141]王松林,廖利,王岩松,等.超声去除垃圾渗滤液中的氨氮[J].环境污染治理技术与设备,2006,7(6):110-112.
    [142]Arques A, Amat A M, Garcia-Ripoll A, et al. Detoxification and/or increase of the biodegradability of aqueous solutions of dimethoate by means of solar photocatalysis [J]. Journal of hazardous materials,2007,146(3):447-452.
    [143]王金刚,郭培全,王西奎,等.空化效应在有机废水处理中的应用研究[J].化学进展,2005,17(3):549-553..
    [144]陶美君,吴晓辉,陆晓华,等.垃圾渗滤液中氨氮的超声处理研究[J].华中科技大学学报(城市科学版),2005,22(1):70-72.[150]
    [145]方芳,刘国强,郭劲松,等.渗滤液中DOM的表征及特性研究[J].环境科学,2009,30(3):834-839。
    [146]蒋绍阶,刘宗源.UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报,2002,24(2):61-65.
    [147]Pinhedo L, Pelegrini R, Bertazzoli R, et al. Photoelectro chemical degradation of humic acid on a (TiO2)0.7 (RuO2)0.3 dimensionally stable anode [J]. Appl Catal B:Environ,2005,57(2):75-81
    [148]肖书虎,宋永会,万东锦,等.紫外光强化电化学连续流处理垃圾渗滤液[J].环境工程技术学报,2011,1(2):95-100.
    [149]赵庆良,卜琳,杨俊晨,等.腐蚀电池-Fenton处理渗滤液溶解性有机物光谱特征[J].环境科学,2011,32(8):2378-2384
    [150]Guo W, Xu J, Wang J, et al. Characterization of dissolved organic matter in urban sewage using excitation emission matrix fluorescence spectroscopy and parallel factor analysis [J]. Journal of Environmental Sciences,2010,22(11):1728-1734.
    [151]Sierra M M D, Giovanela M, Parlanti E, et al. Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques [J]. Chemosphere,2005,58(6):715-733.
    [152]Chen W, Westerhoff P, Leenheer J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental science & technology, 2003,37(24):5701-5710.
    [153]Holbrook R D, Breidenich J, DeRose P C. Impact of reclaimed water on select organic matter properties of a receiving stream fluorescence and perylene sorption behavior [J]. Environmental science & technology,2005,39(17):6453-6460.
    [154]Chen J, LeBoeuf E J, Dai S, et al. Fluorescence spectroscopic studies of natural organic matter fractions[J]. Chemosphere,2003,50(5):639-647.
    [155 McKnight D M, Boyer E W, Westerhoff P K, et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity [J]. Limnology and Oceanography,2001,46(1):38-48.
    [156]Uyguner C S, Bekbolet M. Evaluation of humic acid photocatalytic degradation by UV-vis and fluorescence spectroscopy [J]. Catalysis Today,2005,101(3):267-274.
    [157]Swietlik J,Dabrowska A,Raczyk-Stanislawiak U,et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone [J]. Water research,2004,38(3):547-558.
    [158]Wu F C,Mills R B,Cai Y R,et al. Photodegradation-induced changes in dissolved organic matter in acidic waters [J]. Canadian Journal of Fisheries and Aquatic Sciences,2005,62(5): 1019-1027.
    [159]He P, Xue J, Shao L, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill [J]. Water research,2006,40(7):1465-1473.
    [160]Kang K H, Shin H S, Park H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications [J]. Water research,2002,36(16): 4023-4032.
    [161]Patel-Sorrentino N, Mounier S, Benaim J Y. Excitation-emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers [J]. Water Research,2002, 36(10):2571-2581.
    [162]Ting W P, Lu M C, Huang Y H. The reactor design and comparison of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA) [J]. Journal of hazardous materials,2008,156(1):421-427.
    [163]Zgajnar Gotvajn A, Zagorc-Koncan J, Cotman M. Fenton's oxidative treatment of municipal landfill leachate as an alternative to biological process [J]. Desalination,2011,275(1):269-275.
    [164]Wu Y, Zhou S, Qin F, et al. Modeling the oxidation kinetics of Fenton's process on the degradation of humic acid [J]. Journal of hazardous materials,2010,179(1):533-539.
    [165]徐美娟.光-Fenton法处理废纸制浆废水的研究[D].南开大学,2006:39.
    [166]陈芳艳,倪建玲,唐玉斌.光助Fenton氧化法降解水中六氯苯的研究[J].环境工程学报,2008,2(7):938-941.
    [167]Rivas F J, Beltran F, Gimeno O, et al. Fenton-like oxidation of landfill leachate [J]. Journal of Environmental Science and Health, Part A,2003,38(2):371-379.
    [168]Deng Y. Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate [J]. Journal of Hazardous Materials,2007,146(1):334-340.
    [169]徐美娟.光-Fenton法处理废纸制浆废水的研究[D].南开大学,2006:46.
    [170]Papadaki M, Emery R J, Abu-Hassan M A, et al. Sonocatalytic oxidation processes for the removal of contaminants containing aromatic rings from aqueous effluents [J]. Separation and purification technology,2004,34(1):35-42.
    [171]Grcic I, Obradovic M, Vujevic D, et al. Sono-Fenton oxidation of formic acid/formate ions in an aqueous solution:from an experimental design to the mechanistic modeling [J]. Chemical engineering journal,2010,164(1):196-207.
    [172]Adewuyi Y G. Sonochemistry:environmental science and engineering applications [J]. Industrial & Engineering Chemistry Research,2001,40(22):4681-4715.
    [173]Fu F, Wang Q, Tang B. Effective degradation of CI Acid Red 73 by advanced Fenton process [J]. Journal of hazardous materials,2010,174(1):17-22.
    [174]Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1934, 147(861):332-351.
    [175]Poblete R, Otal E, Vilches L F, et al. Photocatalytic degradation of humic acids and landfill leachate using a solid industrial by-product containing TiO2 and Fe [J]. Applied Catalysis B: Environmental,2011,102(1):172-179.
    [176]Vilar V J P, Capelo S, Silva T F C V,et al. Solar photo-Fenton as.a pre-oxidation step for biological treatment of landfill leachate in a pilot plant with CPCs [J]. Catalysis Today,2011,161(1): 228-234.
    [177]Cortez S, Teixeira P, Oliveira R, et al. Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments [J]. Journal of Environmental Management,2011,92(3):749-755.
    [178]Nunez L, Garcia-Hortal J A, Torrades F. Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes [J]. Dyes and pigments,2007,75(3):647-652.
    [179]Zapata A, Velegraki T, Sanchez-Perez J A, et al. Solar photo-Fenton treatment of pesticides in water:Effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability [J]. Applied Catalysis B:Environmental,2009,88(3):448-454.
    [180]徐美娟.光-Fenton法处理废纸制浆废水的研究[D].南开大学,2006:58
    [181]J.J. Pignatello, E. Oliveros, A. MacKay, Crit. Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry [J]. Critical Reviews in Environmental Science and Technology,2006,36(1):1-84.
    [182]Daud N.K., Akpan U.G., Hameed B.H.. Decolorization of Sunzol Black DN conc. in aqueous solution by Fenton oxidation process:effect of system parameters and kinetic study [J]. Desalination and Water Treatment,2012,37 (1-3):1-7.
    [183]Chen Qiuqiang, Wu Pingxiao, Li Yuanyuan, et al. Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation [J].Journal of Hazardous Materials,2009,168 (2-3):901-908
    [184]Feng Jiyun, Hu Xijun, Yue Po Lock,et al. Photo Fenton degradation of high concentration Orange Ⅱ (2 mM) using catalysts containing Fe:A comparative study [J]. Separation and Purification Technology,2009,67(2):213-217.
    [185]徐美娟.光-Fenton法处理废纸制浆废水的研究[D].南开大学,2006:64
    [186]Primo, O., Rivero, M.J., Ortiz, I.. Photo-Fenton process as an efficient alternative to the treatment of landfill leachate [J]. Journal of Hazardous Materials,2008,153(1-2):834-842.
    [187]Wang, X., Chen, S., Gu, X., et al. Pilot study on the advanced treatment of landfill leachate using a combined coagulation, Fenton oxidation and biological aerated filter process [J]. Waste Manage.2009,29(4):1354-1358.
    [188]Goi, A., Veressinina, Y., Trapido, M.. Fenton process for landfill leachate treatment: evaluation of biodegradability and toxicity [J]. Journal of Environmental Engineering, 2010,136(1):46-53.
    [189]Y. Segura, R. Molina, F. Martinez, et al.Integrated heterogeneous sono-photo Fenton processes for the degradation of phenolic aqueous solutions [J].Ultrasonics Sonochemistry,2009,16 (3):417-424.
    [190]L.J. Xu, W. Chu, Nigel Graham. A systematic study of the degradation of dimethyl phthalate using a high-frequency ultrasonic process [J]. Ultrasonics Sonochemistry,2013,20 (3):892-899.
    [191]Hideyuki Katsumata, Takuya Kobayashi, Satoshi Kaneco, et al. Degradation of linuron by ultrasound combined with photo-Fenton treatment [J]. Chemical Engineering Journal,2011,166 (2):468-473.
    [192]Meral Dukkanci, Mircea Vinatoru, Timothy J. Mason.The sonochemical decolourisation of textile azo dye Orange II:Effects of Fenton type reagents and UV light [J]. Ultrasonics Sonochemistry,2014,21(2):846-853.
    [193]Ivana Grcic, Marija Maljkovic, Sanja Papid, et al. Low frequency US and UV-A assisted Fenton oxidation of simulated dyehouse wastewater [J]. Journal of Hazardous Materials,2011,197: 272-284
    [194]Liu Ting, You Hong, Chen Qiwei. Heterogeneous photo-Fenton degradation of polyacrylamide in aqueous solution over Fe(Ⅲ)-SiO2 catalyst [J]. Journal of Hazardous Materials, 2009,162(2-3):860-865.
    [195]L.J. Xu, W. Chu, Nigel Graham. Sonophotolytic degradation of dimethyl phthalate ithout catalyst:Analysis of the synergistic effect and modeling [J]. water research,2013,47(6):1996-2004.
    [196]L.J. Xu, W. Chu, N. Graham, Degradation of di-n-butyl phthalate by a homogeneous sonophoto-Fenton process with in-situ generated hydrogen peroxide [J]. Chemical Engineering Journal,2014,240:541-547
    [197]A. Babuponnusami, K. Muthukumar. Advanced oxidation of phenol:A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes [J]. Chemical Engineering Journal,2012,183:1-9.
    [198]A.A. Burbano, D.D. Dionysiou, M.T. Suidan, et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent [J]. Water Research,2005,39(1):107-118.
    [199]E. Brillas, I. Sires, M.A. Oturan. Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton's Reaction Chemistry [J]. Chemical Reviews,2009, 109(12):6570-6631.
    [200]Merle Molkenthin, Tugba Olmez-Hanci, Martin R. Jekel, et al. Photo-Fenton-like treatment of BPA:Effect of UV light source and water matrix on toxicity and transformation products [J]. water research 2013,47 (14):5052-5064
    [201]E. Guinea, C. Arias, C.P.L. Cabot, et al. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide [J]. Water Research,2008,42 (1-2): 499-511.
    [202]徐美娟,王启山,孙晓明.光催化技术降解废纸制浆废水的模型建立[J].南开大学学报(自然科学版),2008,41(6):26-32.
    [203]Ricardo F.F. Pontes, Jose E.F.Moraes, Amilcar Machulek Jr., et al. A mechanistic kinetic model for phenol degradation by the Fenton process [J]. Journal of Hazardous Materials,2010,176 (1-3):402-413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700