用户名: 密码: 验证码:
土壤中多种雌激素干扰吸附、增强生物降解模型及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雌激素(Endocrine disrupting chemicals, EDCs)是一类进入生物体后,通过影响内分泌系统功能,破坏其维持机体稳定性和调控作用的物质。雌酮(E1)、雌二醇(E2)和雌三醇(E3)为自然雌激素,主要来自于动物体内,可对生物产生雌激素效应。乙炔基雌二醇(EE2)和双酚A(BPA)均为人工合成雌激素,并在工业、畜牧业和医药业中有广泛的应用。EE2是养殖业饲料、口服避孕药及激素补充用药的主要成分,ng/L水平就可减弱动物的繁殖能力。BPA作为化工原料被广泛用于食品包装和塑料器具的生产,在微量水平下亦可表现雌激素效应,影响人类和动物的生殖及内分泌系统。雌激素化合物进入环境中后,在自然水体、土壤、地下水以及土壤中均有不同程度残留。以往研究多关注于雌激素在水环境中的环境行为及控制,而在土壤环境中对雌激素的控制仍是较为薄弱的环节。土壤是雌激素进入环境后的迁移载体和蓄积场所,因此,对土壤-水环境中雌激素控制和去除是本文研究的重点。
     本文以E1、E2、EE2、E3及BPA为雌激素特征污染物,以土壤为环境介质,分别建立分散液液微萃取-上浮溶剂固化-高效液相色谱法(DLLME-SFO-HPLC)和超声辅助-表面活性剂增强乳化微萃取-柱前衍生-高效液相色谱法(UAE-SEEME-PD-HPLC)并进行评价。结果表明,UAE-SEEME-PD-HPLC法在萃取过程中不添加分散剂,从而减少了有毒溶剂用量,是一种环境友好的雌激素测定方法。与此同时,UAE-SEEME-PD-HPLC方法具有较高的灵敏度:E3、BPA、EE2和E2线性范围均为0.02~2.0mg/L,壬基酚(NP)的线性范围为0.02-1.0mg/L,相关系数为0.9950~0.9999,方法的检出限分别为1.06μg/L (E3)、2.22ug/L (BPA)、3.55μg/L(EE2)、3.41μg/L(E2)和5.04μg/L (NP);所建方法加标回收率介于88.08~117.33%范围,相对标准偏差(RSD)为0.75~9.73%。因此,选取UAE-SEEME-PD-HPLC方法作为水-土壤体系中多种雌激素的测定方法。
     在揭示土壤中多种雌激素吸附行为的基础上,利用定量结构属性关系(Quantitative structure-property relationship, QSPR),从物理化学角度分析了雌激素在土壤一元、二元吸附体系的干扰吸附机理;通过夹角计算方法和计算土壤对雌激素的分配系数,考察了多元吸附体系中雌激素吸附能力差异的原因以及土壤对雌激素的选择性。研究结果表明,雌激素康德利分子体积(CSEV)、极化率及相关拓扑结构参数均为导致吸附存在差异的重要因素。土壤对多元雌激素吸附的选择性表明,三元吸附体系E2-EE2-BPA中土壤分配系数为43.48-87.86,表明在E2-EE2-BPA吸附体系中土壤对雌激素的选择性较高。在二元吸附体系中,土壤对雌激素选择性的顺序为:E1>EE2>E2>E3>BPA,与吸附能力顺序相一致,表明二元吸附体系中雌激素的吸附方式以分配作用为主。对比分析土壤中多种雌激素吸附能力及土壤对雌激素的选择性,雌激素在土壤中因吸附而去除的特征不仅仅依赖于雌激素自身的理化性质,土壤对雌激素化合物的选择性也是影响雌激素吸附去除的主导因素之一。
     在土壤中多种雌激素增强吸附研究中,利用析因实验设计优化了掺杂MnO2土壤对多种雌激素化合物(El、E2、EE2、E3和BPA)的吸附条件,并利用液相-质谱(LC-MS)对MnO2土壤吸附多种雌激素的机理和降解产物进行了分析;土壤中多种雌激素增强生物降解研究中,利用BP神经网络与析因实验设计结合的方法,探讨了碳源、氮源、超声波辅助作用下恶臭假单胞菌对雌激素生物降解的影响,并在最优生物降解条件下,分析生物降解的增强效应及差异性机理。上述研究结果表明,掺杂MnO2土壤吸附5种雌激素的最优条件为:土壤质量为0.1g,离子强度为0,不调节pH(对于E2, pH=8.0;对于E3,pH=3.8),雌激素浓度为5.0mg/L及MnO2掺杂量为15%;在最优吸附条件下,E1、E2、EE2、E3和BPA的去除率均可达到90%以上,掺杂MnO2土壤对雌激素的吸附是物理吸附和化学降解共同作用的过程;此外,所建BP神经网络雌激素降解模型的相关系数(R2)和模拟效率系数(NSC)均在0.90~1.0范围内,降解模型具有较准确的预测功能:E1、E2、EE2、 E3和BPA最大生物降解率分别可达到53.95%、65.43%、87.13%、20.47和69.27%,对应的降解条件为:10%的碳源添加量、10%的氮源添加量、20mL的接种量、1min的超声时间和168h的降解时间。基于雌激素有机碳标化系数(logKoc)及半衰期的降解差异性分析表明,雌激素的降解效率与其移动性成正比,与持久性成反比。
     本论文还通过向土壤中添加海藻酸钠、海藻酸钙和鼠李糖脂,在超声辅助作用下增强土壤中多种雌激素的生物降解,降解条件的优化主要通过中心复合设计的方法实现,同时从外因角度分析多种雌激素增强降解的机理,并借助生物降解性能关系(Quantitative structure-biodegrad relationship, QSBR)从内因角度分析土壤中多种雌激素生物降解的机理。研究结果表明,在鼠李糖脂辅助的土壤环境中雌激素可达到显著的降解效果,E1、E3.BPA.EE2和E2的生物降解率分别为100%、94.56%、94.56%、94.90%和94.86%。适宜的超声辅助时间可促进微生物在土壤中的生物降解;反之,超声时间过长或过短均会抑制微生物的降解效率。雌激素降解机理分析表明,海藻酸钠、海藻酸钙可将游离的恶臭假单胞菌固定在限定的空间区域内并提高微生物的稳定性,从而提高雌激素的生物降解率;处于临界胶束浓度以上的鼠李糖脂溶液对雌激素有显著地降解效果。极性表面积(Polar surface area, PSA)是影响土壤中多种雌激素生物降解的主导参数,而鼠李糖脂增强生物降解体系中,雌激素的表面张力与其降解效果成正比,雌激素分子的PSA和表面张力在降解体系中表现为拮抗作用。
Endocrine disrupting compounds (EDCs) were a kind of compound, which disrupted wildlife's reproductive system by imitating and blocking the activity of natural hormones. Estrone (E1), estradiol (E2), and estriol (E3) were mainly from the secretion of animals, and it reversed the sex of animals even at low concentrations (μg/L). Both of17a-ethinylestradiol (EE2) and bisphenol A (BPA) were the synthetic EDCs, which were applied in industry, livestock, medicine and pharmacy industry. EE2was commonly used in livestock's feed, oral contraceptive and hormone drugs, which reduced animal's reproductive capacity and progeny even at ng/L level. Bisphenol A (BPA) was used in chemical industry for the production of synthetic plasticiser and food package, and expressed estrogen effect on human and animal's endocrinium at trace level. The residual EDCs will be found in water, soil, and sediment in different degree after enter environment. The previous studies mainly focused on the behaviour and transport of EDCs in water, but little in soil. The soil was an important place of EDCs'migration and accumulation. Therefore, the control and removal of EDCs in soil was the research point in the study.
     The E1, E2, EE2, E3and BPA were selected as target pollution, and soil was the research environment. The dispersive liquid-liquid microextraction-solidification of floating organic drop-high performance liquid chromatography (DLLME-SFO-HPLC) and ultrasonic assisted-surfactant enhanced emulsification microextraction-precolmn derivation-high performance liquid chromatography (UAE-SEEME-PD-HPLC) were estalished, respectively. The result indicated that UAE-SEEME-PD-HPLC was an environmental friendly method without dispersive agent (toxic solvent). Meanwhile, UAE-SEEME-PD-HPLC was more sensitive for determination of trace EDCs. The linear range of E3, BPA, EE2and E2were0.02~2.0mg/L, while NP was0.02-1.0mg/L, and the correlation coefficients were ranged of0.9950~0.9999. The limits of detection were1.06μg/L (E3),2.22μg/L (BPA),3.55μg/L (EE2),3.41μg/L (E2) and5.04μg/L (NP), respectively. The spiked recoveries of estrogens under different spiked levels (0.02,0.20and1.00mg/L) for estrogens were88.08~117.33%, with the relative standard deviation (RSD) were0.75~9.73%. Therefore, UAE-SEEME-PD-HPLC was chosen for analyzing the EDCs in water-soil system.
     Based on the adsorption behaviour of EDCs in soil, the quantitative structure-property relationship (QSPR) was employed for analyzing the mechanism of EDCs' unitary and binary interference adsorption in soil. The differences of EDCs adsorption capacity and the selectivity of soil in multiple systems were investigated by angle calculation method and partition coefficient of soil, respectively. The results showed that the adsorption differences of EDCs were dominanted by Connolly solvent excluded volume (CSEV), polarisability, and some other topological structure parameters of EDCs molecular. The developed QSPR models were helpful to reveal the mechanism of multiple EDCs. EDCs in E2-EE2-BPA system presented a superior selectivity of sediment with the (3of43.48~87.86, which suggested the high selectivity of soil for EDCs. The order of sediment selectivity (E1>EE2>E2>E3>BPA) in binary system was agreed with EDCs'adsorption capacity, which suggested the adsorption was dominated by partition adsorption. The result sugguested the adsorption of EDCs in soil was not only depended on the physicochemical property of EDCs, but also the selectivity of soil.
     In the study of enhanced adsorption of multiple EDCs onto soil, a factorial design was employed for opitmizing the conditions of EDCs adsorption onto MnO2. soil. The liquid phase-mass spectrometry (LC-MS) were ultilized for the analyzing the adsorption mechanism and degradation products of EDCs onto MnO2; in the study of enchanced biodegradation of EDCs in soil, a BP neural network and factorial design were combined for condition optimization (amount of carbon source, amount of nitrogen source and ultrasonic time), and the mechanism of biodegradation differences were explained. The results showed that the optimized conditions of EDCs adsorption onto the soil doped with MnO2were:0.1g of soil quality,0of ionic strength, without control pH (pH=8.0for E2, pH=3.8for E3),5.0mg/L of EDCs concentration, and15%of MnO2doping ratio; the removal rate of E1, E2, EE2, E3and BPA were all above on90%, the adsorption progress of EDCs onto was the soil doped with MnO2was the dominated by physical absorption and chemical degradation, simultaneously. The correlation coefficient and Nash-Suttclife coefficient values (NSC) of BP neural network model were in the range of0.90-1, which indicated the accuracy prediction of models. The maximum degradation rates of E1, E2, EE2, E3and BPA were53.95%,65.43%,87.13%,20.47and69.27%, respectively. The optimum conditions for degradation were as follow:10%of carbon source,10%of nitrogen source,20mL of inoculum dose,1min of ultrasonic time, and168h of degradation time. The biodegradation differences analysis showed the degradation rate of E1, E2, EE2, E3and BPA were proportional to mobility of EDCs, while inversely proportional to the persistence of EDCs.
     Finally, the sodium alginate, calcium alginate and rhamnolipid were spiked into the soil to enhance the biodegradation with ultrasoni-assistant. Central composite design was ultilized for the optimizaiton of biodegradation conditions of EDCs in soil. The biodegradation differences mechanism of EDCs in soil was analyzed by experimental results and quantitative structure-biodegradability relationship (QSBR), which was from the perspective of external and internal reason. The results suggested that the addition of rhamnolipid with ultrasoni-assistant achieved the best removal of EDCs, and the biodegradation rate of E1, E3, BPA, EE2and E2was100%,94.56%,94.56%,94.90%and94.86%, respectively. The suitable ultrasonic time would promote the biodegadation rate of EDCs in soil; on the contrary, both of long or short ultrasonic time would inhibit the degradation efficiency of pseudomonas putida. The sodium alginate and calcium alginate could fix the free pseudomonas putida in an area, and which was benefit for the growth and stability of pseudomonas putida. Meanwhile, the degradation of EDCs dominanted by polar surface area (PSA). For the enhaced biodegradation by rhamnolipid with ultrasoni-assistant, the surface tension above on the critical micelle concentration (CMC) was obviously enhanced the degradation of EDCs, and the interaction of PSA*surface tension performed an antagonism effect on the degradation of EDCs.
引文
[1]United States Environmental Protection Agency (USEPA).1997. Special report on endocrine disruption:an effects assessment and analysis. Washington, DC:Office of Research and Development. EPA/630/R-96/012.
    [2]Cook J. W., Dodds E. C., Hewet C. L. A synthetic oestrus-exciting compound [J]. Nature,1933, 131 (3298):56-57.
    [3]http://www.szcdc.net/bornwcms/Html/jkzt_eey/index.html
    [4]朱建如,宋毅。环境激素及对人体的危害[J]。公共卫生与预防医学,2006,17(6):37-40。
    [5]Chang H. S., Choo K. H., Lee B., Choi S. J.. The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water [J]. Journal of Hazardous Materials,2009, 172(1):1-12.
    [6]Bernard A., Hermans C., Broeckaet F., de Pooter G., de Cock A., Houins G.. Food contamination by PCBs and dioxins [J]. Nature,1999,401(6750):231-232.
    [7]Puma G. L., Puddu V., Tsang H. K., Gora A., Toepfer B.. Photocatalytic oxidation of estrogens (estrone(E1),17β-estradiol (E2),17α-ethynylestradiol (EE2) and estriol (E3)) under UVA and UVC radiation:photon absorption, quantum yields and rate constants independent of photon absorption [J]. Applied Catalysis B:Environmental,2010,99(3-4):388-397.
    [8]Meina E. G., Lister A., Bosker T., Servos M., Munkittrick K., MacLatchy D.. Effects of 17a-ethinylestradiol (EE2) on reproductive endocrine status in mummichog (Fundulus heteroclitus) under differing salinity and temperature conditions [J]. Aquatic Toxicology,2013, 134-135:92-103.
    [9]Vicki L. M., Josh L., Kate C., Chris J. M., Jennifer W., Linda J., Susanna A., Jules M. B., Jim S., Thomas W. M., Vance L. T.. Sex-and tissue-specific effects of waterborne estrogen on estrogen receptor subtypes and E2-mediated gene expression in the reproductive axis of goldfish [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2010, 156(1):92-101.
    [10]Saaristoa M., Craftb J. A., Lehtonenc K. K., Lindstromd K.. An endocrine disrupting chemical changes courtship and parental care in the sand goby [J]. Aquatic Toxicology,2010,97(4): 285-292.
    [11]Manickum T., John W.. Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa) [J]. Science of the Total Environment,2014,468-469:584-597.
    [12]Kloas, W., Lutz, I., Einspanier, R.. Amphibians as a model to study endocrine disruptors:Ⅱ. estrogenic activity of environmental chemicals in vitro and in vivo [J]. Science Total Environment,1999,225(1-2):59-68.
    [13]Ursula A. B., Juan M. P., Leonardo E. B., Baranao J. L.. Aryl hydrocarbon receptor activation leads to impairment of estrogen-driven chicken vitellogenin promoter activity in LMH cells [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2013,157(2): 111-118.
    [14]Anna M., Jan A. O., Bjorn B.. Activation of estrogen receptor alpha disrupts differentiation of the reproductive organs in chicken embryos [J]. General and Comparative Endocrinology,2011, 172(2):251-259.
    [15]Katherine J. H., Yukitomo A., Kenneth S. K.. Estrogen hormone physiology:Reproductive findings from estrogen receptor mutant mice [J]. Reproductive Biology,2014,14(1):3-8.
    [16]John D. M.. Exposure to environmental endocrine disrupting compounds and men's health [J]. Maturitas,2010,66(3):236-241.
    [17]Jin Y., Chen R., Liu W., Fu Z.. Effect of endocrine disrupting chemicals on the transcription of genes related to the innate immune system in the early developmental stage of zabrafish(Danio rerio) [J]. Fish & Shellfish Immunology,2010,28(5-6):854-861.
    [18]Erik W., Richard J. W.. The effect of estrogen on the sexual interest of castrated males: Implications to prostate cancer patients on androgen-deprivation therapy [J]. Critical Reviews in Oncology/Hematology,2013,87(3):224-238.
    [19]Thaddeus T. S., Amanda J., Bruce B., Jerrold J. H.. Endocrine disrupting chemicals and disease susceptibility [J]. Journal of Steroid Biochemistry & Molecular Biology,2011,127(3-5): 204-215.
    [20]Jacobsen P. R., Axelstad M., Boberg J., Isling L. K., Christiansen S., Mandrup K. R., Berthelsen L. O., Vinggaard A. M., Hass U.. Diethylhexyl phthalate exposure impairs follicular development and affects oocyte maturation in the mouse [J]. Environmental and Molecular Mutagenesis,2013, 54(5):354-361.
    [21]Hu W. Y., Shi G. B., Hu D. P., Nelles J. L., Prins G. S.. Actions of estrogens and endocrine disrupting chemicals on human prostate stem/progenitor cells and prostate cancer risk [J]. Molecular and Cellular Endocrinology,2012,354(1-2):63-73.
    [22]Muncke J.. Exposure to endocrine disrupting compounds via the food chain:Is packaging a relevant source? [J]. Science of the Total Environment,2009,407(16):4549-4559.
    [23]Rhind S. M., Kyle C. E., Kerr C., Osprey M., Zhang Z. L.. Effect of duration of exposure to sewage sludge-treated pastures on liver tissue accumulation of persistent endocrine disrupting compounds (EDCs) in sheep [J]. Science of the Total Environment,2011,409(19):3850-3856.
    [24]王毓秀,张利民,邹敏。化学农药与环境激素[J]。农村生态环境,1999,15(4):37-41。
    [25]Zhang L., Dong L., Ding S., Qiao P., Wang C., Zhang M., Zhang L., Du Q., Li Y., Tang N., Chang B.. Effects of n-butylparaben on steroidogenesis and spermatogenesis through changed E2 levels in male rat offspring [J]. Environmental Toxicology and Pharmacology,2014,37(2): 705-717.
    [26]Raman D. R., Williams E. L., Layton A. C., Burns R. T., Easter J. P., Daugherty A. S., Mullen M. D., Sayler G. S.. Estrogen content of dairy and swine wastes. Environmental Science & Technology,2004,38(13):3567-3573.
    [27]徐修容,周杰,温家胜,陶正琴,康爱丽,黄加鑫,杨惠华,周佩琴。非甾体雌激素的化学结构与雌活性和辐射防护作用的关系[J]。1980,15(11):648-655。
    [28]陈彤,云霞,那广水,张月梅,姚子伟。高效液相色谱-串联质谱法测定海水中雌酮、雌二醇、雌三醇[J]。分析试验室,2009,28(11):41-44。
    [29]魏慧斌,林金明。环境雌激素检测方法研究进展[J]。生命科学仪器,2005,3(5):3-10。
    [30]Edelman A. B., Cherala G., Munar M. Y., DuBois B., McInnis M., Stanczyk F. Z., Jensen J. T. Prolonged monitoring of ethinyl estradiol and levonorgestrel levels confirms an altered pharmacokinetic profile in obese oral contraceptives users [J]. Contraception,2013,87(2): 220-226.
    [31]Pan B., Li D. H., Mshayekhi H., Xing B. S.. Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials [J]. Environmental Science and Technology,2008, 42(15):5480-5485.
    [32]Zheng W., Yates S. R., Bradford S. A.. Analysis of steroid hormones in a typical dairy waste disposal system [J]. Environmental Science & Technology,2008,42 (2):530-535.
    [33]Hanselman T. A., Graetz D. A., Wilkie A. C., Szabo N. J., Diaz C. S.. Determination of steroidal estrogens in flushed dairy manure wastewater by gas chromatography mass spectrometry [J]. Journal of Environment Quality,2006,35(3):695-700.
    [34]Bartelt-Hunt S., Snow D. D., Damon-Powell T., Miesbach D.. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities [J]. Journal of Contaminant Hydrology,2011,123(3-4):94-103.
    [35]Kjaer J., Olsen P., Abach K., Barlebo H. C., Ingerslev F., Hansen M., Sorensen B. H.. Leaching of estrogenic hormones from manure-treated structured soils [J]. Environmental Science & Technology,2007,41 (11):3911-3917.
    [36]Furuichi T., Kanan K., Suzuki K., Tanaka S., Giesy J. P., Masunaga S.. Occurrence of estrogenic compounds in and removal by a swine Farm Waste treatment plant [J]. Environmental Science & Technology,2006,40(24):7896-7902.
    [37]Hutchins S. R., White M. V., Hudson F. M., Fine D. D.. Analysis of lagoon samples from different concentrated animal feeding operations for estrogens and estrogen conjugates [J]. Environmental Science & Technology,2007,41 (3):738-744.
    [38]Sarmah A. K., Northcott T. G. L., Leusch F. D. L., Tremblay L. A.. A survey of endocrine disrupting chemicals (EDCs) in municipal sewage and animal waste effluents in the Waikato region of New Zealand [J]. Science of the Total Environment,2006,335(1-3):98-105.
    [39]Doyle M. A., Bosker T., Martyniuk C. J., MacLatchy D. L., Munkittnck K. R.. The effects of 17-a-ethinylestradiol (EE2) on molecular signaling cascades in mummichog (Fundulus heteroclitus) [J]. Aquatic Toxicology,2013,134-135:34-46.
    [40]Parrott J. L., Blunt B. R.. Life-cycle exposure of fathead minnows (Pimephales promelas) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes males [J]. Environmental Toxicology,2005,20 (2):131-141.
    [41]Salierno B. C., Kane A. S..17a-Ethinylestradiol alters reproductive behaviors, circulating hormones, and sexual morphology in male fathead minnows(Pimephales promelas) [J]. Environmental Toxicology and Chemistry,2009,28 (5):953-961.
    [42]Martyniuk C. J., Xiong H., Crump K., Chiu K., Sardana R., Nadler A., Gerrie E. R., Xia X., Trudeau V. L.. Gene expression profiling in the neuroendocrine brain of male goldfish (Carassius auratus) exposed to 17a-ethinylestradiol [J]. Physiological Genomics,2006,27:328-336.
    [43]Huang Y. Q., Wong C. K. C., Zheng J. S., Bouwman H., Barra R., Wahlstrom B.. Bisphenol A (BPA) in China:A review of sources, environmental levels, and potential human health impacts [J]. Enviromental International,2012,42:91-99.
    [44]Yu U., Wu L.. Analysis of endocrine disrupting compounds, pharmaceuticals and personal care products in sewage sludge by gas chromatography-mass spectrometry [J]. Talanta,2012,89: 258-263.
    [45]Zarzycki P. K., Wlodarczyk E., Baran M. J.. Determination of endocrine disrupting compounds using temperature-dependent inclusion chromatography:II. Fast screening of free steroids and related low-molecular-mass compounds fraction in the environmental samples derived from surface waters, treated and untreated sewage waters as well as activated sludge material [J]. Journal of Chromatography A,2009,1216(44):7612-7622.
    [46]张宏,毛炯,孙成均,吴德生,毛丽莎。气相色谱-质谱法测定尿及河流底泥中的环境雌激素[J]。色谱,2003,21(5):451-455。
    [47]周吉庆。气相色谱-质谱法定量测定河水中的环境激素[J]。分析仪器,2008,(1):36-39
    [48]周海东,王晓琳,高密军,黄霞。北京污水厂进、出水中内分泌干扰物的分布[J]。中国给水排水,2009,25(23):75-78。
    [49]胡晓芳,王欣泽,鲁佳铭,赵铖铖,孔海南。活性污泥中典型内分泌干扰物的分析方法[J]。环境科学与技术,2010,33(2):126-130。
    [50]Anna B., Christina R., Annika H., Helen H.. Health risk assessment procedures for endocrine disrupting compounds within different regulatory frameworks in the European Union [J]. Regulatory Toxicology and Pharmacology,2009,55(2):111-122.
    [51]巨荣菊,张育辉。雌激素受体在环境雌激素评估中的研究进展[J]。生态毒理学报,2010,5(3):314-319。
    [52]吕东阳,李文兰。环境激素作用机制的研究[J]。哈尔滨商业大学学报(自然科学版),2003,19(1):20-23。
    [53]Lai K. M., Johnson K. L., Scrimshaw M. D., Lester J. N.. Binding of waterbome steroid estrogens to solid phases in river and estuarine systems [J]. Environmental Science & Technology,2000,34(18):3890-3894.
    [54]Yoon Y., Westerhoff P., Snyder S. A., Esparza M.. Rapid communication HPLC-fluorescence detection and adsorption of bisphenol A,17[3-estradiol. and 17a-ethynyl estradiol on powdered activated carbon [J]. Water Research,2003,37(14):3530-3537.
    [55]Travis A. H., Donald A. G., Ann C. W.. Manure-borne estrogens as potential environmental contaminants:a review. Environmental Science & Technology,2003,37(24):5471-5478.
    [56]李正炎,Li D. H.。西瓦湖中壬基酚和双酚A的污染特征[J]。青岛海洋大学学报,2003,33(6):847-853。
    [57]赵兵,徐章法,徐伯兴,刘征涛,黄民生,盛光遥。天然及人工合成雌激素的环境学研究[J]。上海化工,2005,30(1):7-11。
    [58]Chris G. C., Sharon E. B., F. Bailey G., Allen G., Eleanor W., William T. S.. Biologically directed environmental monitoring, fate, and transport of estrogenic endocrine disrupting compounds in water:A review [J]. Chemosphere,2006,65(8):1265-1280.
    [59]Travis A. H., Donald A. G., Ann C. W.. Manure-borne estrogens as potential environmental contaminants:a review [J]. Environmental Science & Technology,2003,37 (24):5471-5478.
    [60]Yeomin Y., Paul W., Shane A. S., Mario E.. HPLC-fluorescence detection and adsorption of bisphenol A.17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon [J]. Water Research,2003,37(14):3530-3537.
    [61]Liska I.. Fifty years of solid-phase extraction in water analysis historical development and overview [J]. Journal of Chromatography A,2000,885(1-2):3-16.
    [62]吴春来,张秋芬。固相萃取技术在汞离子分析中的应用[J]。广州化工,2009,37(4):39-42。
    [63]Hennion M. C. Solid-phase extraction:method development, sorbents, and coupling with liquid chromatography [J]. Journal of Chromatography A,1999,856(1-2):9-50.
    [64]Diez S., Bayona J. M.. Determination of Hg and organomercury species following SPME:A review [J]. Talanta,2008,77(1):21-27.
    [65]Ouyang G., Pawliszyn J.. Recent developments in SPME for on-site analysis and monitoring [J]. Trends in Analytical Chemistry,2006,25(7):692-703.
    [66]Sporkert F., Pragst F.. Use of headspace solid-phase microextraction (HS-SPME) in hair analysis for organic compounds [J]. Forensic Science International,2000,107(1-3):129-148.
    [67]Baltussen E., Sandra P., David F., Cramers C.. Stir bar sorptive extraction (SBSE), a novel extraction technique aqueous samples:theory and principles [J]. Journal of Microcolumn Separations,1999,11(10):737-747.
    [68]Jeannot M. A., Cantwell F. F. Solvent microextraction into a single drop [J]. Analytical Chemistry,1996,68(13):2236-2240.
    [69]Berijani S., Assadi Y., Anbia M., Hosseini M. M., Aghaee E.. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection:very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water [J]. Journal of Chromatography A,2006,1123(1):1-9.
    [70]Rezaee M., Assadi Y., Hosseini M. M., Aghaee E., Ahmadi F. Berijani S.. Determination of organic compounds in water using dispersive liquid-liquid microextraction [J]. Journal of Chromatography A,2006,1116(1-2):1-9.
    [71]Leong M., Huang S.. Dispersive liquid-liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection [J]. Journal of Chromatography A,2008,1211(1-2):8-12.
    [72]Chang C., Huang S.. Determination of the steroid hormone levels in water samples by dispersive liquid-liquid microextraction with solidification of a floating organic drop followed by high-performance liquid chromatography [J]. Analytica Chimica Acta,2010,662(1):39-43.
    [73]Senar O., Ali T., Mehmet E. A.. Determination of polycyclic aromatic hydrocarbons in waters by ultrasound-assisted emulsification-microextraction and gas chromatography-mass spectrometry [J]. Analytica Chimica Acta,2010,665(2):193-199.
    [74]Cheng J., Xia Y., Zhou Y, Guo F., Chen G.. Application of an ultrasound-assisted surfactant-enhanced emulsification microextraction method for the analysis of diethofencarb and pyrimethanil fungicides in water and fruit juice samples [J]. Analytica Chimica Acta,2011, 701(1-2):86-91.
    [75]You X., Wang S., Liu F., Shi K.. Ultrasound-assisted surfactant-enhanced emulsification microextraction based on the solidification of a floating organic droplet used for the simultaneous determination of six fungicide residues in juices and red wine [J]. Journal of Chromatography A,2013,1300(26):64-69.
    [76]Vinas P., Pastor-Belda M., Campillo N., Bravo-Bravo M., Hernandez-Cordoba M.. Capillary liquid chromatography combined with pressurized liquid extraction and dispersive liquid-liquid microextraction for the determination of vitamin E in cosmetic products [J]. Journal of Pharmaceutical and Biomedical Analysis,2014,94:173-179.
    [77]Ruiz-Aceituno L., Rodriguez-Sanchez S., Sanz J., Sanz M. L., Ramos L.. Optimization of pressurized liquid extraction of inositols from pine nuts (Pinus pinea L.) [J]. Food Chemistry, 2014,153:450-456.
    [78]Veggi P. C., Prado J. M., Bataglion G. A., Eberlin M. N., Meireles M. A. A.. Obtaining phenolic compounds from jatoba (Hymenaea courbaril L.) bark by supercritical fluid extraction [J]. The Journal of Supercritical Fluids,2014,89:68-77.
    [79]Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs [J]. Ultrasonic Sonochemistry,2001,8(3):301-313.
    [80]刘美华,邱彬,陈国南,陈曦。超声辅助离子液体分散液相微萃取-高效液相色谱法测定废水中雌激素的研究[J]。分析测试技术与仪器,2009,15(3):151-157。
    [81]江锦花,陈涛。超声萃取-气相色谱-质谱联用测定海洋沉积物中39种多溴联苯醚残留[J]。分析化学研究报告,2009,37(11):1627-1632。
    [82]Oukebdane K., Portet-Koltalo F., Machour N., Dionnet F., Desbene. Comparison of hot soxhlet and accelerated solvent extractions with microwave and supercritical fluid extractions for the determination of polycyclic aromatic hydrocarbons and nitrated derivatives strongly absorbed on soot collected inside a diesel particulate filter [J]. Talanta,2010,82(1):227-236.
    [83]Du X., Liu J., Li Y., Lang Y., Li X.. Ultrasonic-extraction and separation of petroleum hydrocarbons (PHs) and polycyclic aromatic hydrocarbons (PAHs) from heavy oil-polluted soil based on gas chromatography/mass spectrometry (GC/MS) analysis [J]. Bioinformatics and biomedical engineering,20104th International conference, Chengdu.
    [84]Nie Y., Qiang Z., Zhang H., Adams C.. Determination of endocrine-disrupting chemicals in the liquid and solid phases of activated sludge by solid phase extraction and gas chromatography-mass spectrometry [J]. Journal of chromatography A,2009,1216(42): 7071-7080.
    [85]Yu Y, Wu L.. Analysis of endocrine disrupting compounds, pharmaceuticals and personal care products in sewage sludge by gas chromatography-mass spectrometry [J]. Talanta,2012,89: 258-263.
    [86]Villar-Navarro M., Ramos-Payan M., Fernandez-Torres R., Callejon-Mochon M., Angel Bello-Lopez M.. A novel application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the HPLC determination of two endocrine disrupting compounds (EDCs), n-octylphenol and n-nonylphenol, in environmental waters [JJ. Science of the Total Environment,2013,443:1-6.
    [87]Cressa R. P. F., Maria P. B. E.. Decabromodiphenyl ether in indoor dust from different microenvironments in a university in the Philippines [J]. Chemosphere,2013,90(1):42-48.
    [88]Wu Q., Li Y., Wang C., Liu Z., Zang X., Zhou X., Wang Z.. Dispersive liquid-liquid microextraction combined with high performance liquid chromatography-fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples [J]. Analytica Chimica acta,2009,638(2):139-145.
    [89]Selvaraj K. K., Shanmugam G., Sampath S., Larsson D. G. J., Ramaswamy B. R.. GC-MS determination of bisphenol A and alkylphenol ethoxylates in river water from India and their ecotoxicological risk assessment [J]. Ecotoxicology and Environmental Safety,2014,99:13-20.
    [90]Lisa F, Barbara Z., Gunda K., Jessica K., Susanne B., Andrea K., Cornel V., Stephan H.. Flow injection combined with ICP-MS for accurate high throughput analysis of elemental impurities in pharmaceutical products according to USP<232>/<233> [J]. Journal of Pharmaceutical and Biomedical Analysis,2014,95:121-129.
    [91]Martin-Camean A., Jos A., Calleja A., Gil F., Iglesias-Linares A., Solano E., Camean A. M.. Development and validation of an inductively coupled plasma mass spectrometry (ICP-MS) method for the determination of cobalt, chromium, copper and nickel in oral mucosa cells [J]. Microchemical Journal,2014,114:73-79.
    [92]Todoli J. L., Mermet J. M.. Sample introduction systems for the analysis of liquid microsamples by ICP-AES and ICP-MS [J]. Spectrochimica Acta Part B,2006,61(3):239-283.
    [93]F. Regan, A. Moran, B. Fogarty, E. Dempsey. Development of comparative methods using gas chromatography-mass spectrometry and capillary electrophoresis for determination of endocrine disrupting chemicals in bio-solids [J]. Journal of Chromatography B,2002,770 (1-2):243-253.
    [94]李金花,庄惠生。环境荷尔蒙概述[J]。云南环境科学,2003,22(4):28-30。
    [95]Salapasidou M., Samara C., Voutsa D.. Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece [J]. Atmospheric Environment,2011,45(22):3720-3729.
    [96]黎娜。双酚A在表层沉积物主要组分上的吸附及其生物降解规律研究[D]。长春:吉林大学,2008。
    [97]王岙。共存污染物对沉积物及其主要组分吸附阿特拉津的影响研究[D]。长春:吉林大学,2009。
    [98]Muchaonyerwa P., Chevallier T., Pantani O. L., Nyamugafata P., Mpepereki S., Chenu C.. Adsorption of the pesticidal toxin from Bacillus thuringiensis subsp. tenebrionis on tropical soils and their particle-size fractions [J]. Geoderma,2006,133(3-4):244-257.
    [99]Hamamoto S., Seki K., Miyazaki T..Influences of charcoal amendment on adsorption-desorption of isoproturon in soils [J]. Agricultural Science in China,2010,9(2):257-265.
    [100]曾庆玲,李咏梅,赵俊明,顾国维。天然和人工合成雌激素及其去除途径[J]。环境科学与技术,2007,30(10):108-111。
    [101]赵晓飞。污水处理过程中雌激素的测定与去除特性研究[D]。北京:北京工业大学,2012。
    [102]张照韩。城市水体中雌激素的去除机制及复合污染效应研究[D]。哈尔滨:哈尔滨工业大学,2010。
    [103]阳春,胡碧波,张智。类固醇雌激素在生活污水处理中的去除过程[J]。中国给水排水,2008,24(10):11-15。
    [104]Ternes T. A., Meisenheimer M., McDowell D., Sacher F., Brauch H., Haist-Gulde B., Preus G., Wilme U., Zulei-Seibert N.. Removal of pharmaceuticals during drinking water treatment [J]. Environmental Science & Technology,2002,36(17):3855-3863.
    [105]Choi K. J., Kim S. G., Kim S. H.. Removal of antibiotics by coagulation and granular activated carbon filtration [J]. Journal of Hazardous Materials,2008,151(1):38-43.
    [106]Bundy M. M., Doucette W. J., McNeill L., Ericson J. F.. Removal of pharmaceuticals and related compounds by a bench-scale drinking water treatment system [J]. Journal of Water Supply:Research and Technology-AQUA,2007,56(2):105-115.
    [107]Alexander J. T., Hai F., Al-aboud T. M.. Chemical coagulation-based processes for trace organic contaminant removal:Current state and future potential [J]. Journal of Environmental Management,2012,111(30):195-207.
    [108]纪树兰,杨媛媛,秦振平,李建亭,孙彤。好氧颗粒污泥等温吸附甾体雌激素[J]。北京工业大学学报,2009,35(11):1538-1542.
    [109]Ren Y. X., Nakano K., Nomura M., Chiba N., Nishimura O.. A thermodynamic analysis on adsorption of estrogens in activated sludge process [J]. Water Research,2007,41(11):2341-2348.
    [110]张丰松,李艳霞,黄泽春,杨明。雌二醇在土壤/沉积物中的吸附特征及猪粪DOM对吸 附的影响[J]。环境科学,2012,33(10):3543-3546。
    [111]Alikali Mohammed,杨悦锁,杜新强,杨明星,Abdullahi Musa。内分泌干扰物的环境危害:雌激素及其硫酸盐在土壤中的吸附规律[J]。吉林大学学报(地球科学版),2013,43(2):574-581。
    [112]Shore L. S., Shemesh M.. Naturally produced steroid hormones and their release into the environment [J]. Pure and Applied Chemistry,2003,75(11-12):1859-1871.
    [113]Stumpe B., Marschner B. Long-term sewage sludge application and wastewater irrigation on the mineralization and sorption of 17β-estradiol and testosterone in soils [J]. Science of the Total Environment,2007,374(2-3):282-291.
    [114]Caron E., Farenhorst A., Zvomuya F., Gaultier J., Rank N., Goddard T., Sheedy C.. Sorption of four estrogens by surface soils from 41 cultivated fields in Alberta, Canada [J]. Geoderma,2010, 155(1-2):19-30.
    [115]Li J. Z., Jiang L., Liu X., Lv J. C.. Adsorption and aerobic biodegradation of four selected endocrine disrupting chemicals in soil-water system [J]. International Biodeterioration and Biodegradation,2013,76:3-7.
    [116]Joseph L., Heo J., Park Y. G., Flora J. R. V., Yoon Y.. Adsorption of bisphenol A and 17a-ethinyl estradiol on single walled carbon nanotubes from seawater and brackish water [J]. Desalination, 2011,281(17):68-74.
    [117]Joseph L., Zaib Q., Khan I. A., Berge N. D., Park Y. G., Saleh N. B., Yoon Y. Removal of bisphenol A and 17a-ethinyl estradiol from landfill leachate using single-walled carbon nanotubes [J]. Water Research,2011,45(13):4056-4068.
    [118]Saha B., Karounou E., Streat M.. Removal of 17β-oestradiol and 17a-ethinyl oestradiol from water by activated carbons and hypercrosslinked polymeric phases [J]. Reactive and Functional Polymers,2010,70(8):531-544.
    [119]Joseph L., Boateng L. K., Flora J. R.V., Park Y. G., Son A., Badawy M., Yoon Y. Removal of bisphenol A and 17a-ethinyl estradiol by combined coagulation and adsorption using carbon nanomaterials and powdered activated carbon [J]. Separation and Purification Technology,2013, 107(2):37-47.
    [120]刘建林,张琛,王夏娇,王婷,李鱼。基于碳纳米管的固相萃取-分散液液微萃取测定水中多种痕量环境雌激素[J]。高等学校化学学报,2012,33(1):37-43。
    [121]Li Y., Li S., Gao Q., Wang A.. Effect of interaction of non-residual fractions on adsorption of atrazine onto surficial sediments and natural surface coating samples [J]. Chemical Research in Chinese Universities,2011,27(2):212-216.
    [122]胡佶,王江涛。四环素在海洋沉积物上的吸附[J]。高等学校化学学报,2010,31(2):320-324。
    [123]Khan Z., Anjaneyulu Y. Influence of soil components on adsorption-desorption of hazardous organics-development of low cost technology for reclamation of hazardous waste dumpsites [J]. Journal of Hazardous Materials,2005,118(1-3):161-169.
    [124]余向阳,应光国,刘贤进,Rai K.,张兴。土壤中黑碳对农药敌草隆的吸附-解吸迟滞行为研究[J]。土壤学报,2007,44(4):650-655。
    [125]Kwon S., Vidic R., Borguet E.. The effect of surface chemical functional groups on the adsorption and desorption of a polar molecule, acetone, from a model carbonaceous surface, graphite [J]. Surface Science,2003,522(1-3):17-26.
    [126]祝惠,阎百兴,张丰松,路永正,王莉霞。松花江沉积物主要组分对汞吸附的贡献[J]。环境科学,2010.31(10):2315-2320。
    [127]齐亚超,张承东,王贺,陈威。黑碳对土壤和沉积物中菲的吸附解吸行为及生物可利用性的影响[J]。环境化学,2010,29(5):848-855。
    [128]胡日查,孙立波,付芝。泥炭对甲苯的吸附-解吸行为研究[J]。环境工程学报,2012,6(2):550-554。
    [129]Hamdaoui O., Naffrechoux E., Tifouti L., Petrier C.. Effects of ultrasound on adsorption-desorption of p-chlorophenol on granular activated carbon [J]. Ultrasonics Sonochemistry,2003,10(2):109-114.
    [130]Mustafa G., Singh B., Kookana R. S.. Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations:effects of pH and index cations [J]. Chemosphere, 2004,57(10):1325-1333.
    [131]赵玲,彭平安,黄伟林。二氧化锰氧化降解五氯酚[J]。环境科学,2006,27(7):1388-1392。
    [132]赵颖,王任国,曾武,赵茂俊。纳米二氧化锰的制备及其对亚甲基蓝的吸附研究[J]。水处理技术,2012,38(1):55-58。
    [133]Lu Z., Lin K., Gan J.. Oxidation of bisphenol F (BPF) by manganese dioxide [J]. Environmental Pollution,2011,159(10):2546-2551.
    [134]Chen G., Zhao L., Dong Y. Oxidative degradation kinetics and products of chlortetracycline by manganese dioxide [J]. Journal of Hazardous Materials,2011,193:128-138.
    [135]刘红,余薇,刘娟,徐文婷。氧化-絮凝耦合处理酸性大红废水的机理研究[J]。环境工程学报,2008,2(8):1040-1043。
    [136]张锦,李圭白,余敏,欧阳红,杨海燕,马军,陈忠林。新生态水合二氧化锰对水中酚类化合物的吸附和氧化[J]。水处理技术,2002,28(5):263-265。
    [137]季虹,姜理英,张璐,陈建孟,黄成。二氧化锰氧化降解乙炔基雌二醇的动力学研究[J]。环境科学与技术,2011,34(12):39-44。
    [138]张璐,姜理英,陈建孟,何智敏。生物氧化锰对水体中17β-雌二醇的氧化降解[J]。水处理技术,2012,38(10):57-61。
    [139]Stumpe B., Marschner B.. Factors controlling the biodegradation of 17β-estradiol, estrone and 17a-ethinylestradiol in different natural soils [J]. Chemosphere,2009,74(4):556-562.
    [140]Robinson B. J., Hellou J.. Biodegradation of endocrine disrupting compounds in harbour seawater and sediments [J]. Science of the Total Environment,2009,407(21):5713-5718.
    [141]Lee H. B., Liu D.. Degradation of 17β-estradiol and its metabolities by sewage bacteria [J]. Water, Air, Soil Pollution,2002,134(1-4):351-366.
    [142]Li F., Desmiarti R., Yuasa A., Horio A.. Behavior of natural estrogens in semicontinuous activated sludge biodegradation reactors[J]. Bioresource Technology,2008,99(8):2964-2971.
    [143]Chen X., Hu J.. Degradation of 17β-estradiol and its conjugates:effects of initial concentration and MLSS concentration [J]. Process Biochemistry.2009(44):1330-1334.
    [144]李依韦,银玲,薛兰兰。土壤中异黄酮植物雌激素降解体系的研究[J]。环境污染与防治,2012,34(3):55-58。
    [145]R62alska S., Szewczyk R., Dlugonski J.. Biodegradation of 4-n-nonylphenol by the non-ligninolytic filamentous fungus Gliocephalotrichum simplex:a proposal of a metabolic pathway [J]. Journal of Hazardous Materials,2010,180(1-3):323-331.
    [146]张方方,秦丹,高良敏,于昌平。环境中雌激素的微生物降解[J]。微生物学通报,2012,39(5):711-721。
    [147]Guha S., Jaffe P. R.. Biodegradation kinetics of phenanthrene partitioned into the micellar phase of nonionic surfactants [J]. Environmental Science & Technology,1996,30(2):605-611.
    [148]蒋磊,杨慧群,陶语若。生物表面活性剂及其在生物降解中的应用[J]。湖北农业科学,2011,50(17):3457-3461。
    [149]张潇予,胡勇有,林晖,郭艳平。鼠李糖脂对底泥中17a-炔雌醇生物降解性的作用[J]。环境科学学报,2012,32(2):317-325。
    [150]Whang L. M., Liu P. W. G., Ma C. C.. Application of rhamnolipid and surfactin for enhanced diesel biodegradation-effects of pH and ammonium addition [J]. Joural of Hazard Material,2009, 164(2-3):1045-1050.
    [151]Whang L. M., Liu P. W. G., Ma C. C.. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil [J]. Journal of Hazardous Materials,2008,151(4):155-163.
    [152]周定,王建龙,侯文华。固定化细胞在废水处理中的应用及前景[J]。环境科学,1993,14(5):51-55。
    [153]刘姗姗,刘永军,黎兵。固定化活细胞苯酚生物降解特性研究[J]。水处理技术,2012,38(9):30-37。
    [154]Wang Z., Xu Y., Wang H., Zhao J., Gao D., Li F., Xing B.. Biodegradation of crude oil in contaminated soils by free and immobilized microorganisms [J]. Pedosphere,2012,22(5): 717-725.
    [155]Rehman H. U., Aman A., Silipo A., Qader S. A., Molinaro A.. Ansari A.. Degradation of complex carbohydrate:Immobilization of pectinase from Bacillus licheniformis KIBGE-IB21 using calcium alginate as a support [J]. Food Chemistry,2013,139(4):1081-1086.
    [156J Dong D. M., Nelson Y. M., Lion L. W., Shuler M. L., Ghiorse W. C..Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions:new evidence for the importance of Mn and Fe oxides [J]. Water Research,2000, 34(2):427-436.
    [157]Dong D. M., Derry L. A., Lion L. W.. Pb scavenging from a freshwater lake by Mn oxides in heterogeneous surface coating materials [J]. Water Research,2003,37(7):1662-1666.
    [158]Wang X. L. and Li Y. Measurement of Cu and Zn adsorption onto surficial sediment components:New evidence for less importance of clay minerals [J]. Journal of HazardousMaterials,2011,189(3):719-723.
    [159]李鱼,工倩,高茜,工岙。基于BP神经网络的复合污染体系中沉积物吸附阿特拉津的规律[J]。吉林大学学报(地球科学版),2011,Sl:315-321。
    [160]李鱼,王檬,高茜,李珊珊。引入Cu2+的沉积物吸附阿特拉津多元回归模型[J]。深圳大学学报(理工版),2012,29(1):7-11。
    [161]Al-Ghouti M. A., Li J, Salamh Y., Al-Laqtah N., Walker G., Ahmad M. N. M.. Adsorption mechanisms of removing heavy metals and dyes from aqueous solution using date pits solid adsorbent [J]. Journal of Hazardous Materials,2010,176(2-3):510-520.
    [162]Pan B., Mashayekhi, H., Xing, B., Adsorption and hysteresis of bisphenol A and 17a-ethinyl estradiol on carbon nanomaterials [J]. Environmental Science & Technology,2008,42(15): 5480-5485.
    [163]Colombo A., Benfenati E., Karenlson M., Maran U.. The proposal of architecture for chemical splitting to optimize QSAR models for aquatic toxicity [J]. Chemosphere,2008,72(5):772-780.
    [164]Su L., Yuan X., Mu C., Yan J., and Zhao Y. Evaluation and QSAR study of joint toxicity of substituted phenols and cadmium of Photobacterium phosphoreum [J]. Chemical Research in Chinese Universities,2008,24(3):281-284.
    [165]Chen C., Wang J.. Correlation metal ionic characteristics with biosoption capacity using QSAR model [J]. Chemosphere,2007,69(10):1610-1616.
    [166]Blum D. J. W., Suffet I. H., Duguet J. P.. Quantitative structrue-activity relationship using molecular connectivity for the activated carbon adsorption of organic chemicals in water [J]. Water Research,1994,28(3):687-699.
    [167]Adam M. R., Fred S. C., Shane A. S., Brett J. V.. A QSAR-like analysis of the adsorption of endocrine disrupting compounds, pharmaceuticals, and personal care products on modified activated carbons [J]. Water Research,2009,43(15):3849-3861.
    [168]Okey R. W., Stensel H. D.. A QSAR-based biodegradability model-A QSBR [J].1996,30(9): 2206-2214.
    [169]He J., Qin W., Zhang X., Wen Y., Su L., Zhao Y. Linear and nonlinear relationships between biodegradation potential and molecular descriptors/fragments for organic pollutants and a theoretical interpretation [J]. Science of the Total Environment,2013,444(1):392-400.
    [170]Duchowicz P. R., Castaneta, Castro E. A., Fernandez F. M., Vincente J. L.. QSPR prediction of the Dubinin-Radushkevinch's k parameter for the adsorption of organic vapors on BPL carbon [J]. Atmospheric Environment,2006,40(16):2929-2934.
    [171]Liu H. X., Yao X. J., Liu M.C., Hu Z. D., Fan B. T. Study on adsorption behavior of volatile and semivolatile organic vapors to air-dry soils based on QSPR methods [J]. Environmental Pollution,2007,147(1):41-49.
    [172]Metivier-Pignon H., Faur C., Le Cloirec P.. Adsorption of dyes onto activated carbon cloth: Using QSPRs as tools to approach adsorption mechanisms [J]. Chemosphere,2007,66(5): 887-893.
    [173]Lei H., Snyder S. A..3D QSPR models for the removal of trace organic contaminants by ozone and free chlorine [J]. Water Research,2007,41(18):4051-4060.
    [174]Zhou Q. X., Gao Y. Y. and Xie G. H.. Determination of bisphenol A,4-n-nonylphenol, and 4-tert-octylphenol by temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detector. Talanta,2011,85(13): 1598-1602.
    [175]Li Y, Liu J. L., Jian Y. H.. Carbon nanotubes assisted solid-phase extraction combined with dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for the determination of trace level environmental estrogens in aqueous solutions [J]. Chemical Journal of Chinese Universities,2012,33(1):37-43.
    [176]陈红平,刘新,王庆华,蒋迎。气相色谱-质谱法同时测定茶叶中72种农药残留量[J]。食品科学,2011,32(6):159-164。
    [177]方红卫,孙世群,朱雨龙,肖中新,施帆君。主成分分析法在水质评价中的应用分析[J]。环境科学与管理,2009,34(12):152-154。
    [178]Zhang Y. Z., Song X. F., Kondoh A., Xia J., Tang C. T. Behavior mass inventories and modelling evaluation of xenobiotic endocrine-disrupting chemicals along an urban receiving wastewater river in Henan Province, China [J]. Water Research,2011,45(1):292-302.
    [179]James M. B., Judith C. P., Victor A. M., Charolett H.. The effects of sediment contact time on K∞ of nonpolar organic contaminants [J]. Chemosphere,1995,31(6):3465-3473.
    [180]Wang L. R., Wang Y., Chen J. W., Guo L. H.. A structure-based Investigation on the Binding interaction of hydroxylated polycyclic aromatic hydrocarbons with DNA [J]. Toxicology,2009,262(3): 250-257.
    [181]Hill R. J., Saville D. A., Russel W. B.. Polarizability and complex conductivity of dilute suspensions of spherical colloidal particles with uncharged (neutral) polymer coatings [J]. Journal of Colloid and Interface Science,2003,268(1):230-245.
    [182]Mei H., Zhou Y., Sun L. L., Li Z. L.. A new descriptor of amino acids and its application in peptide QSAR [J]. Acta Physico-Chimica Sinica,2004,20 (8):821-825.
    [183]Torrens F.. Molecular polarizability of semiconductor cluster and nanostructures [J]. Physica E: Low-dimiensional Systems and Nanostructures,2002,13(1):67-71.
    [184]Minot C., Markovits A.. Introduction to theoretical approaches to chemisorption [J]. Journal of Molecular Structure (Theochem),1998,424(1-2):119-134.
    [185]Ding Y. B., Song W. H., Wang L. S., Zhang Z.. The sorption study of substituted aromatic ketone in soil by batch equilibrium method [J]. Environmental Chemistry (China),2000,19(4):331-334.
    [186]Masaru K., Kersuke I., Atsushi S., Tatsuya O.. Effect of organic groups on hydrogen adsorption properties of periodic mesoporous organosilicas [J]. Microporous and Mesoporous Materials,2012, 147(1):194-199.
    [187]Giraudet S.. Pre P., Tezel H., Cloirec H.. Estimation of adsorption energies using the physical characteristics of activated carbons and the molecular properties of volatile organic compounds [J]. Carbon,2006,44(12):2413-2421.
    [188]Li Q., Snoeyink V. L., Mariaas B. J., Campos C. Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds [J]. Water Research,2003,37(4):773-784.
    [189]Aghav R. M., Sunil Kumar, Mukherjee S. N.. Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents [J]. Journal of Hazardous Materials,2011,188(1-3):67-77.
    [190]Guo L.. A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic aluminum phosphide clusters [J]. Computational and Theoretical Chemistry,2012,984(15): 102-107.
    [191]Lei B., Ma Y., Li J., Liu H., Yao X., Gramatica P.. Prediction of the adsorption capability onto activated carbon of a large data set of chemicals by local lazy regression method [J]. Atmospheric Environment,2010,44(25):2954-2960.
    [192]Wang X. L., Li Y. Measurement of Cu and Zn adsorption onto surficial sediment components:new evidence for less importance of clay minerals [J]. Journal of Hazardous Materials,2011,189(3): 719-723.
    [193]李鱼,王倩,高茜,王岙。基于BP神经网络的复合污染体系中沉积物吸附阿特拉津的规律[J]。吉林大学学报(地球科学版),2011,41(S1):316-321。
    [194]Liu Z., Kanjo Y., Mizutani S.. Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment-physical means, biodegradation, and chemical advanced oxidation:A review [J]. Science of the Total Environment,2009,407:731-748.
    [195]戴国华,刘新会。影响沉积物-水界面持久性有机污染物迁移行为的因素研究[J]。环境化学,2011,30(1):224-230。
    [196]Voice T. C., Rice C. P., Weber Jr W. J.. Effect of solids concentration on the sorptive partitioning of hydrophobic pollutants in aquatic systems [J]. Environmental Science Technology,1983, 17(9):513-518.
    [197]Toor R., Mohseni M.. UV-H2O2 based AOP and its integration with biological activated carbon treatment for DBP reduction in drinking water [J]. Chemosphere,2007,66(2):340-346.
    [198]Ashour A. A., Oliver K., Saadullah G. A., Rifaat H. H., Peter L.. How soil organic matter composition controls hexachlorobenzene-soil-interactions:Adsorption isotherms and quantum chemical modeling [J]. Science of the Total Environment,2014,476-477:98-106.
    [199]蔡冬鸣,李圭白。水合二氧化锰的制备及其混凝特性[J]。中国给水排水,2007,23(7):62-65。
    [200]李四横,刘庆鹤,齐力,逯乐慧,王宏宇。电化学电容器中二氧化锰电极材料研究进展[J]。分析化学,2012,40(3):339-346。
    [201]雷英杰。MATLAB遗传算法工具箱及应用[M]。西安:西安电子科技大学出版社,2005。
    [202]刘建林。雌激素化合物在土壤中的吸附行为及生物降解的研究[D]。北京:华北电力大学,2012。
    [203]Lee L. S., Strock T. J., Sarmah A. K., Rao P. S. C.. Sorption and dissipation of testosterone, estrogens, and their primary transformation products in soils and sediment [J]. Environmental Science Technology,2003,37(18):4098-4105.
    [204]Lim S. J., Fox P.. Estimating the persistence of organic contaminants in indirect potable reuse systems using quantitative structure activity relationship (QSAR) [J]. Science of Total Environment,2012,433:1-7.
    [205]Ying G. G., Kookana R., Waite T. D.. Australian water conservation and reuse research program: endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in reclaimed water in Australia. Sydney:CSIRO & AWA,2004.
    [206]Li J., Jiang L., Liu X., Lv J.. Adsorption and aerobic biodegradation of four selected endocrine disrupting chemicals in soil-water system [J]. International Biodeterioration & Biodegradation, 2013,76:3-7.
    [207]Casey F. X., Larson G. L., Hakk H., Simunek J. Fate and transport of 17beta-estradiol onto selected soil minerals [J]. Journal of Colloid and Interface Science,2003,266(1):33-39.
    [208]Jeong J. J., Kim J. H., Kim C., Hwang I. and. Lee K.3-and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28:genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase [J]. Microbiology,2003, 149(11):3265-3277.
    [209]王静,王竞,周集体。固定化混合菌好养生物降解硝基苯的特性及动力学研究[J]。上海环境科学,2008,27(5):196。
    [210]孙友友,陈元彩,陈洪雷。固定化优势降解菌群处理制浆纸废水[J]。废水处理,2011,30(8):39-42。
    [211]Wiesel I., Wiibker S. M., Rehm H. J.. Degradation ofpolycyclic aromatic hydrocarbons by an immobilized mixed bacterial culture [J]. Applied Microbiology Biotechnology,1993,39: 110-116.
    [212]唐玉斌,粱林林,陈芳艳,毛莉,何军。蒽的高效降解菌的固定化小球的制备及其降解特性[J],环境工程学报,2007,5(1):31-35。
    [213]孙永利,李鑫钢,李洪,夏柳荫,郑艳梅,李燕。五氯酚降解菌体固定化及降解动力学[J]。化工进展,2010,29(2):370-374。
    [214]苏妍彦。蒽醌燃料中间体强化偶氮燃料生物脱色[D]。大连:大连理工大学,2008。
    [215]孙凤婷。有机污染物土壤吸附系数的构效关系研究[D]。长春:东北师范大学,2011。
    [216]李鹤宾。海洋嗜热菌的筛选、热稳定脂肪酶性质及其热适应机理研究[D]。厦门:厦门大学,2007。
    [217]郭建博,周集体,王栋,田存萍,王平,Salah Uddin,李丽华。固定化蒽醌对偶染料生物降解促进作用研究[J]。环境科学,2006,10(10):2071-2075。
    [218]孙文良,唐俊,陈云鹏,沈新迁,刘鹏。海藻酸钙固定木霉分生孢子高效降解敌敌畏研究[J]。安徽农业大学学报,2010,37(4):757-760。
    [219]Chen D., Chen J., Zhong W.. Degradation of methyl tert-butyl ether by gel immobilized MethyliBiumpetroleiphilum PM, [J]. Bioresource Technology,2008,99:4702-4708.
    [220]Shim H., Yang S. T.. Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by a coculture of Pseudomonas putida and Pseudomonas fluorescens immobilized in a fibrous-bed bioreactor [J]. Biotechnology,1999,67:99-112.
    [221]张秋红,宋华,刘江红。固定化微生物细胞降解苯酚的研究进展[J]。精细石油化工进展,2010,11(6):39-42。
    [222]张鸿。用固定化微生物的反应器处理含重金属离子的废水[D]。厦门:东南大学,2003。
    [223]孙永利,李鑫钢,李洪,夏柳荫,郑艳梅,李燕。五氯酚降解菌体固定化及降解动力学[J]。化工进展,2010,29(2):370-374。
    [224]孙鸿,宋华,刘江红,张广洲,芦艳。微生物固定化讲解含聚废水[J]。环境化学,2013,32(3):420424。
    [225]Garon D., Krivobuk S., Wouessidjewe D., Seigle Murandi F.. Influence of surfactants on solubilization and fungal degradation of fluorine [J]. Chemosphere,2002,47 (3):256-260.
    [226]周清,杨乐巍,黄国强,李鑫钢,郑燕梅。鼠李糖脂对土壤中原油降解的促进[J]。环境化学,2009,28(2):181-184。
    [227]张潇予,胡勇有,林晖,郭艳平。鼠李糖脂对底泥中17a-炔雌醇生物降解性的作用[J]。环境科学学报,32(2):317-325。
    [228]Aronstein B. N., Alexander M.. Effect of a nonionic surfactant added to the soil surface on the biodegradation of aromatic hydrocarbons within the soil [J]. Applied Microbiology and Biotechnology,1993,39:386-397.
    [229]姜萍萍,郭楚玲,党志,卢桂宁,易筱筠,杨琛。鼠李糖脂与疏水底物及其降解菌的相互作用[J]。环境科学,2011,32(7):2144-2151。
    [230]Al-Tahhan R. A., Sandrin T. R., Bodour A. A.. Rhamnolipid induced removal of lipopolysaccharide from Pseudomonas aeruginosa:effect on cell surface properties and interaction with hydrophobic substrates [J]. Applied and Environmental Microbiology,2000, 66(8):3262-3268.
    [231]钟华,曾光明,黄国和,付海燕. 生物表面活性剂对土壤中微生物降解疏水性有机物的作用机制[J]。高技术通讯,2006,16(3):325-330。
    [232]Wang L., Liu P. G., Ma C., Cheng S.. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil [J]. Journal of Hazardous Materials,2008,151(1):155-163.
    [233]霍丹群,易志红,候长军。鼠李糖脂对微生物降解石油烃废水的影响[J]。生物技术,2009,19(4):78-81。
    [234]欧阳科,张甲耀,戚琪。生物表面活性剂和化学表面活性剂对多环芳烃蒽的生物降解作用研究[J]。农业环境科学学报,1997,23(4):806-809。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700