用户名: 密码: 验证码:
小流域面源污染特征与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水资源和水环境问题日益突出,农业面源污染已经成为水环境质量恶化和湖泊富营养化的重要原因。为此,控制农业面源污染对我国保障粮食安全、协调资源环境有序发展、建设美丽中国具有重要的理论和现实意义。
     本论文将实地调查、野外试验观测和模型模拟技术等研究手段结合起来,以辽河吉林段为例,分析面源污染时空分布特征及主要污染物负荷,运用GIS技术和AnnAGNPS模型模拟东辽小流域面源污染负荷和识别面源污染控制关键源区,研究坡耕地面源污染控制技术、植被过滤带技术,为北方低山丘陵区面源污染控制提供理论依据和技术方法。主要研究内容和结论如下:
     1.通过对1999-2009年数据分析,采用等标污染负荷法,得出:总氮、总磷是辽河吉林段流域面源污染的主要污染物,其等标污染负荷总量分别为14,426.20t/a、5,423.44t/a,等标污染负荷比分别为27.55%、51.79%;4类污染源按污染负荷贡献由大到小分别是:畜禽养殖>农村生活源>种植业>水产养殖,畜禽养殖业为流域最主要污染来源,污染负荷比为93.15%;总氮、总磷、COD和氨氮的污染负荷均在梨树县分布最多,其次是公主岭市、东辽县和双辽县。辽河吉林段划分为3个面源污染控制区。其中,第一类区(高风险区)主要分布于流域中东部地区,土地利用类型为耕地,面积约占流域面积的15.19%;第二类区(中风险区)主要分布于流域中部和东南部的平原丘陵区,即辽源地区、四平市的西部、梨树县的中部和西部及公主岭的南部地区,面积约占流域面积的71.67%;第三类区(低风险区)主要分布于流域西部地区,面积约占流域面积的13.15%。流域内梨树县南部、公主岭市东部和南部地区是面源污染控制的重点区域,畜禽污染防治和坡耕地治理是流域水污染防治的重点。
     2.采用GIS技术和AnnAGNPS模型对东辽小流域面源污染负荷进行模拟和验证,结果表明:经过参数校正后的AnnAGNPS模型在东辽小流域具有适用性,对小流域(小于100km2)面源污染总氮负荷的模拟效果较好,对总磷负荷输出的模拟结果偏差较大,但模型模拟精度在可接受范围内;小流域内氮的流失量远大于磷流失量,氮流失主要以溶解态为主,磷流失则主要以吸附态为主,2010年面源污染总氮和总磷输出分别为364.7t和21.5t,主要来源于化肥施用带来的污染;面源污染物输出负荷具有季节性特点,降雨和化肥施用是主要驱动因素,总氮和总磷7-8月输出负荷分别占全年的52%和74%;总氮、总磷污染负荷分布在流域空间尺度上具有一定的相似性,面源污染负荷在区域之间具有差异性,以坡耕地的单位面积污染物输出量较大,林地输出较小;氮磷流失关键源区包括常年耕种的农业区、河流沿岸和坡耕地区,坡度、径流和侵蚀是主要驱动力。
     3.2009-2011年3年径流小区试验结果表明:面源污染途径控制对污染物截留效果与各种阻控措施对降雨径流的阻控作用相似,阻控效果从大到小依次为:裸地(原生土著植被)>地埂植物带>水平梯田>横垄>顺坡垄,其中横垄单位面积氨氮和COD流失量较顺坡垄分别减少32%和26%,在横垄耕种的坡耕地上实施水土保持措施(梯田)、生物措施(地埂植物带)可使COD和氨氮单位面积流失量削减72%和77%,减少径流量30%以上;面源污染源头控制中农药减量和肥料减量2种措施条件下,污染物流失量与背景试验条件相差不明显。研究成果证明,在坡耕地实施退耕还林、还草等保护性耕作方式,可以最为有效地减缓面源污染物输出。
     4.2009-2010年2年植被过滤带试验小区观测结果表明:不同植被配置的过滤带对COD、氨氮、总磷均有一定的去除效果。按COD平均去除率大小排序,乔灌草复合过滤带>乔草复合过滤带>灌草复合过滤带>草地过滤带;按氨氮平均去除率大小排序,草地过滤带>乔灌草复合过滤带>灌草复合过滤带>乔草复合过滤带;按总磷平均去除率大小排序,灌草复合过滤带>乔灌草复合过滤带>乔草复合过滤带>草地过滤带。本试验条件下,采用本地种植物进行植被配置,植被过滤带为10m宽时,对农田地表漫流中的氮磷有良好的去除效果,平均去除率在32%-57%之间。
     5.在野外试验基础上,研发了2项面源污染控制技术。一是坡耕地面源污染控制集成技术,根据坡耕地的地形、坡度、坡面大小、土地利用等,集成水平梯田、地埂植物带、改垄等防控技术。在8°以上坡耕地上横垄修筑梯田;3~8°坡耕地上修筑地埂植物带,带与带之间横垄种植,埂上栽植固土植物紫穗槐;0.25~3°顺坡垄改为横垄种植3种方式进行控制。一是植被过滤带技术,在未被硬质化的自然河道,配置植被过滤带,宽度在10m,植物种类以土著物种为主,其中沿河一侧配置乔木或灌丛,乔木优先选用萌芽力强、根系发达、抗冲刷性强的柳树等耐水淹植物护岸;沿农田一侧配置草被,优先选择多年生的草本植物芦蒿。
The problems of water resource shortage and environmental pollution inChina have become increasingly prominent, and agricultural nonpoint sourcepollution has become an important reason for water quality deterioration andeutrophication. To this end, the control of agricultural nonpoint source pollutionhas important theoretical and practical significance of ensuring food security,fully coordination of resources and environment, and building up a beautifulChina.
     Taking the Jilin section of Liao River as an example, the thesis combinesthe techniques of in situ field investigation, field observation with modelsimulation, to analyze the spatial and temporal distribution of nonpoint sourcepollution and major pollutants’ load, to simulate non-point source pollution inDongliao watershed and identify the critical source areas of non-point sourcepollution control by applying GIS technology and AnnAGNPS models, and tostudy nonpoint source pollution control technology for sloping field andvegetation filter strip technology as well. The research work will provide atheoretical basis and practical nonpoint source pollution control techniques forhilly areas in north China. The main contents and conclusions are listed asfollowing:
     1. By applying the equal standard pollution loading method, the thesis hasanalyzed11-year data from1999to2009, and found that TN and TP are themain nonpoint source pollutants in the Jilin section of Liao River Basin, and thetotal pollution loads are14,426.20t/a and5,423.44t/a, while equal standardpollution load ratio are27.55%and51.79%, respectively. The contributedloads of4-type nonpoint source pollution from high to low are: livestock>rural life source>farming>aquaculture, and the livestock breeding is themain source of nonpoint source pollution for the river basin, whose pollutionload ratio is93.15%. The heaviest load of TN, TP, COD and ammonia nitrogenis distributed in Lishu, followed by Gongzhuling, Dongliao and ShuangliaoCounty. The Jilin section of Liao River is divided into three nonpoint sourcepollution control areas. Wherein the first class area (high risk area) is mainly distributed in the eastern basin, lands are used as arable field, covering15.19%of the watershed. The second class area (medium risk area) is mainlydistributed in the basin plain and hilly areas in the central and southeasternwatershed, namely Liaoyuan city, western Siping city, western and central ofLishu county and southern Gongzhuling county, covering71.67%of thewatershed. The third class area (low-risk area) is mainly distributed in thewestern region of the watershed, covering13.15%of it. Within the watershed,the southern Lishu county, eastern and southern Gongzhuling city are the keyareas for nonpoint pollution control. Livestock pollution prevention and slopingland governance are crucial for preventing the water pollution in watershedarea.
     2. The thesis has simulated the nonpoint source pollution in Dongliaowatershed by using GIS technology and AnnAGNPS model, the results showthat, after proper parameter corrections, the AnnAGNPS model is suitableto be used to simulate the nonpoint source pollution in Dongliao watershed,better fitting to the TN load in the small watershed (less than100km2), whileless better fitting to the TP load, nevertheless, the simulation accuracy is wellwithin the acceptable extent. In the small watershed, the loss of nitrogen ismuch higher than that of phosphorus, the loss of nitrogen is dominantly in adissolving form, while that of phosphorus is in an absorbing form. In2010, theoutput of nonpoint source pollution is364.7t for TN,21.5t for TP, respectively,which mainly come from the pollution caused by chemical fertilizer. Thenonpoint source pollutant loads show a characteristics of seasonal variation,rainfall and chemical fertilizer application are the main driving forces, theoutput of TN and TP from July to August account for52%and74%,respectively, of the annual output. The spatial distributions of TN and TP loadsshow a certain similarity, while they are different from one area to another, e.g.,pollutant output per unit area is larger in slope farmland and smaller inwoodland. Critical source areas include perennial cultivated agricultural areas,riparian and sloping land. Slope, runoff and erosion are the main driving forces.
     3. An experiment of the small runoff collection zone was carried out from2009to2011, the results show that, the retention effects on pollutants byon-way nonpoint source pollution control are similar to the trapping effect on rainfall runoff by various control technologies, the effects in a descending orderare bare land (vegetation natural growth)>ridge plants>level terrace>transverse ridge>longitudinal ridge (down slope). The losses of ammonianitrogen and COD per unit area in transverse ridges reduce32%and26%,respectively as compared to the longitudinal ridges. For the longitudinalridged on sloping farmlands, the implementation of water and soil conservationmeasure (terraces), biological measures (ridge vegetation zones) can reducethe loss of ammonia nitrogen and COD by72%and77%, respectively, inaddition, reduce runoff by30%. For the two technologies of source-controlling,pesticide reduction and fertilizer reduction have no obvious difference from thebackground test condition in terms of reducing nonpoint source pollutant loss.The results prove that, the implementation of protective cultivation modes,such as returning sloping farmland to tree land and grasslands, could reducethe discharge of nonpoint source pollutants into rivers efficiently.
     4. Observation of two years (2009-2010) on vegetation filter strip in theexperimental area demonstrates that, different configurations of vegetationfilter strips show some certain removal effects of COD, ammonia nitrogenand TP. The average COD removal rate can be sorted from the maximum tothe minimum as follows, tree-shrub-grass complexes>tree-Grasscomplexes>shrub-grass complexes>grass filter strips; that of ammonianitrogen, grass filter strips>Tree-shrub-grass complexes>shrub-grasscomplexes>tree-grass complexes; that of TP, shrub-grass complexes>tree-shrub-grass complexes>tree-grass complexes>grass filter strips.Under the experimental conditions,10-m-width vegetative filter strip with nativeplant configuration have good removal effect on nitrogen and phosphorus inoverland flow of farmland, the average removal rate is within32%-57%.
     5. Based on the in situ field investigation, the thesis develops two nonpointsource pollution control technology. One is the intergrated nonpoint sourcepollution control technology for sloping land. Considering the terrain, slope,sloping length and landuse of the sloping land, an intergrated technology isapplied. it is supposed that, transverse ridge with level terrace for the slopingland with an angle larger than8degree, ridge plants for the sloping land with an angle between3degree and8degree, and transverse ridge instead oflongitudinal ridge. River locust is recommended as the ridge plant for itscapability in fixing soil. The second technology is the vegetation filter striptechnology. It is suggested to layout a10-m-width the vegetation filter stripalong the watercourse without hardening, covered by native vegetation. On theriver side, tree or shrubs are configurated, and the priority is given to willowthat is strong in germination and root system and erosion resistence. On thefarmland side, grass is configurated, and the priority is to the perennial herbArtemisia.
引文
[1]陶春,高明,徐畅,等.农业面源污染影响因子及控制技术的研究现状与展望[J].土壤,2010,42(3):336-343.
    [2]杨勇,陈颖,张晓兰,等.农村非点源污染污染防治模式研究——以天津市宁河县为例[J].安徽农业科学,2011,39(27):16743-16746.
    [3]孙丽娜.辽河源头区农业非点源污染研究[D].吉林:吉林农业大学,2011,5.
    [4]赵新峰,陈利顶,杨丽蓉,等.基于水流路径与景观单元相互作用的非点源污染模拟研究[J].环境科学学报,2010,30(3):621-630.
    [5]宋珉.汾河水库上游流域面污染负荷研究[D].山西:太原理工大学,2011,6.
    [6]樊在义,杨勇,陈颖,等.海河流域农业非点源污染防治对策措施[J].环境整治,2011(2):65-68.
    [7]纪丁愈,王庆安,余红英,等.川中丘陵地区小流域农业面源污染特征及水环境容量研究——以黄腊溪小流域为例[J].水资源与水工程学报,2011,22(4):81-84.
    [8]崔键,马友华,赵艳萍,等.农业面源污染的特性及防治对策[J].中国农学通报,2006(1):335-341.
    [9] Kronvang B,Graesboll P, Larsen S.E., et al. Diffuse nutrient losses in Denmark[J]. WaterScience and Technology,1996,33(4-5):81-88.
    [10] Dennis L.C., Keith L, Tinothy R.E. GIS-based modeling of non-point source pollutants in thevadose zone[J]. Soil Water Conser Ankeny,1998,53(1):34-38.
    [11] Gu Qinghua, Li Yedong, Sun Jiashan. Analysis of the causes of agriculture non-point sourcepollution in Jilin [J]. Science&Technology Information,2011,11:11-12.
    [12] Ma Jili. Research on controlling technology of slope land non-point pollution in Liao RiverSource Area [J]. Northern Environment,2011,23(5):168-169.
    [13] Ennis L., Corwin, et al. Non-point pollution modeling based on GIS[J]. Soil&WaterConser,1998(1):75-88.
    [14]杨艳霞,红娟,张亚玲.流域面源污染危害及治理与管理对策分析[J].林业调查规划,2008,33(6):43-46.
    [15]王建英,邢鹏远,李国庆.浅谈中国农业面源污染的原因[J].现代农业科学,2009,16(2):135-137.
    [16]谷庆华,李亚东,孙家山.吉林省农业面源污染成因分析[J].科技信息,2011(11):6-11.
    [17]刘继忠.畜禽养殖污染现状及对策[J].中国环境报,2011(002):1-2.
    [18]王晗生,刘国彬,王青宁.流域植被整体防蚀作用及景观结构剖析[J].水土保持学报,2000,10(5):73-78.
    [19]程积民,万惠娥.中国黄土高原植被建设与水土保持[M],北京:中国林业出版社,2002.
    [20]素安宁,于波,王天明,等.泾河流域植被景观对流域径流的调节作用[J].水土保持学报,2005,19(4):40-43.
    [21]刘瑞民,杨志峰,沈珍瑶,等.土地利用/覆盖变化对长江流域非点源污染的影响及其信息系统建设[J].长江流域资源与环境,2006,15(3):372-377.
    [22]素安宁,王天明,王辉,等.基于格局-过程理论的非点源污染实证研究以黄土丘陵沟壑区水土流失为例[J].环境科学,2006,27(12):2415-2420.
    [23]侯伟,李法云,马溪平,等.土地利用变化对流域面源污染的累积生态效益影响[J].干旱区资源与环境,2009(7):117-120.
    [24]王夏辉,尹澄清,单保庆.农业流域“汇”型景观结构对径流调控及磷污染物截留作用的研究[J].环境科学学报,2005,25(3):293-299.
    [25] Alvarez-Cobelas M, Angeler DG, Sánchez-carrillo S. Export of nitrogen from catchments: Aworldwide analysis[J]. Environmental Pollution,2008,156:261-269.
    [26] Alvarez-Cobelas M, Sánchez-carrillo S, Angeler DG, et al. Phosphorus export fromcatchments: a global view[J]. Journal of the North American Benthological Society,2009,28:805-820.
    [27]高常军.流域土地利用对苕溪水体C、N、P输出的影响[D].北京:中国林业科学研究院,2013.
    [28]梁流涛.农村生态环境时空特征及其演变规律研究[D].南京:南京农业大学,2009.
    [29]李远,王晓霞.我国农业面源污染的环境管理:背景及演变[J].环境保护,2005,(4):23-27.
    [30]梁流涛,冯淑仪,曲福田.农业面源污染形成机制:理论与实证[J].中国人口资源与环境,2010,20(4):74-80.
    [31]葛继红,周曙东.农业面源污染的经济影响因素分析——基于1978-2009年的江苏省数据[J].中国农村经济,2011,5:72-81.
    [32]全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J].生态学报,2002,22(3):291-299.
    [33]斯琴高娃.松花江流域农业面源污染特征研究[D].内蒙古:内蒙古农业大学,2010,4.
    [34]胡艳,张红举.非点源污染计算与控制研究进展[J].安徽农业科学,2003,31(5):788-790.
    [35]刘国中,张勇军,李哲,等.基于CREAM追溯法的变电运行人因失效分析[J].中国电力,2007,40(5):85-89.
    [36]张玉斌,郑粉莉,贾媛媛.WEPP模型概述[J].水土保持研究,2004,11(4):146-149.
    [37]张玉斌,郑粉莉.ANSWERS模型及其应用[J].水土保持研究,2004,11(4):165-168.
    [38]张银辉.SWAT模型及其应用研究进展[J].地理科学进展,2005,24(5):121-130.
    [39]杨博琼,甲晨夜,王凯军.欧美面源污染防治管理经验及其对我国的启示[J].中国环境科学学会学术年会论文集[C].四川成都:四川大学建筑与环境学院,2012:404-408.
    [40]章茹.流域综合管理之面源污染控制措施(BMPs)研究[D].江西:南昌大学,2008,12.
    [41]孙本发,马友华,胡善宝,等.农业面源污染模型及其应用研究[J].农业环境与发展,2013(3):1-5.
    [42]贺阳,王印亮,张国兴.我国非点源污染的现状及其治理前景浅析[J].山西建筑,2010,36(36):348-349.
    [43]孙晓龙,蒋文举,王克勤.抚仙湖尖山河小流域山地典型地类非点源污染特征与分析[J].环境科学学报,2009,29(7):1534-1541.
    [44]李子君,李秀彬.水利水保措施对潮河流域年径流量的影响——基于经验统计模型的评估[J].地理学报,2008,63(9):958-968.
    [45]李丹,薛联青,郝振纯.基于SWAT模型的流域面源污染模拟影响分析[J].环境污染与防治,2008,30(3):4-7.
    [46]夏昊,王云鹏.AnnAGNPS模型在流溪河下游流域农业非点源污染模拟应用[J].环境,2009(sl):1-3.
    [47]宁吉才,刘高焕,叶宇,等.SWAT模型降水输入参数的改进研究[J].自然资源学报,2012,27(5):866-875.
    [48] USEPA. National management measures to control nonpoint source pollution fromagriculture[M],2003.
    [49] Ham JH, Yoon CG, Jeon JH, et al. Feasibility of a constructed wetland and wastewaterstabilization pond system as a sewage reclamation system for agricultural reuse in a decentralizedrural area[J]. Water Sci Technol,2007,55(1-2):503-511.
    [50]许春华,周琪,宋乐平.人工湿地在农业面源污染控制方面的应用[J].重庆环境科学,2001,23(3):70-72.
    [51] Brix H, Arias CA. Danish guidelines for small-scale constructed wetland systems for onsitetreatment of domestic sewage[J]. Water Sci Technol,2005,51(9):1-9.
    [52] Koskiaho J. Flow velocity retardation and sediment retention in two constructedwetland-ponds[J]. Ecol Eng,2003,19(5):325-337.
    [53] Koskiaho J, Ekholm P, R ty M, et al. Retaining agricultural nutrients in constructedwetlands-experiences under boreal conditions[J]. Eco Eng,2003,20(1):89-103.
    [54] Braskerud BC. Factors affecting nitrogen retention in small constructed wetlands treatingagricultural non-point source pollution[J]. Eco Eng,2002,18(3):351-370.
    [55]汪洪,李录久,王凤忠,等.人工湿地技术在农业面源水体污染控制中的应用[J].农业环境科学学报,2007,26(增刊):441-446.
    [56]丁晔,韩志英,吴坚阳,等.不同基质垂直流人工湿地对猪场污水季节性处理效果的研究[J].环境科学学报,2006,26(7):1093-1100.
    [57]何连生,朱仰波,席北斗,等.循环强化垂直流人工湿地处理猪场污水[J].中国给水排水,2004,20(12):5-8.
    [58]柴世伟,裴晓梅,张亚雷,等.农业面源污染及其控制技术研究[J].水土保持学报,2006,20(6):192-195.
    [59]王晓燕.农业非点源污染及其控制管理.农业面源污染与综合防治:全国农业面源污染与综合防治学术研讨论文集[C],昆明,2004.
    [60] Poudel DD, Midmore DJ, West T. Farmer participatory research to minimize soil erosion onsteepland vegetable systems in the Philippines[J]. Agriculture, Ecosystems&Environment,2000,79(3):113-127.
    [61] Jon ES, Karl WJW, James JZ. Nutrient in agricultural surface runoff by riparian buffer zonein southern Illinois, USA[J]. Agroforestry Systems,2005,64:169-180.
    [62] Barling RD, Moore ID. Role of buffer strips in management of waterway pollution: Areview[J]. Environmental Management,1994,18:543-558.
    [63] Delgado AN, Periago EL, Viqueira FD. Vegetated filter strips for water purification: Areview[J]. Bioresource Technology,1995,51:13-22.
    [64] Muscutt AD, Harris CL, Bailey SW, et al. Buffer zones to improve water quality. A review oftheir potential use in UK agriculture[J]. Agriculture, Ecosystems and Environment,1993,45:59-77.
    [65] Reed T, Carpenter SR. Comparison of P-yield riparian buffer strips and land cover in sixagricultural watersheds[J]. Ecosystems,2002,5:568-577.
    [66] Hay V, Pittroff W, Tooman EE, et al. Effectiveness of vegetative filter strips in attenuatingnutrient and sediment runoff from irrigated pastures[J]. The Journal of Agricultural Science,2006,144:349-360.
    [67] Phillips JD. An evaluation of the factors determining the effectiveness of water quality. Areview of their potential use in UK agriculture[J]. Agriculture, Ecosystems and Environment,1993,45:59-77.
    [68]王良民,王彦辉.植被过滤带的研究和应用进展[J].应用生态学报,2008,19(9):2074-2080.
    [69] Mather RJ. An evaluation of cannery waste disposal by overland flow spray irrigation[J].Carles Warren Thornthwaite,1969,22:221-246.
    [70] Magette WL, Brinsfield RB, Palmer RE, et al. Nutrient and sediment removal by vegetatedfilter strips[J]. Transactions of American Society of Agricultural Engineers,1989,32:663-667.
    [71] Helners MJ, Eisenhauer DE, Franti TG, et al. Modeling sediment trapping in a vegetativefilter accounting for converging overland flow[J]. Transactions of American Society ofAgricultural Engineers,2005,48:541-555.
    [72]侯丽萍,何萍,钱金平,等.河岸缓冲带宽度确定方法研究综述[J].湿地科学,2012,10(4):500-506.
    [73] Delgado AN, Periago EL, Viqueira FD. Vegetated filter strips for water purification: Areview[J]. Bioresource Technology,1995,51:13-22.
    [74] Bedard H, Haughn A, Tate KW, Kessel CV. Using nitrogen-15to quantify vegetative buffereffectiveness for sequestrating nitrogen in runoff[J]. Journal of Environmental Quality,2005,34:1651-1664.
    [75] Helners MJ, Eisenhauer DE, Franti TG, et al. Modeling sediment trapping in a vegetativefilter accounting for converging overland flow[J]. Transactions of American Society ofAgricultural Engineers,2005,48:541-555.
    [76] Qin Z. A VSA-based strategy for placing conservation buffers in agricultural watersheds[J].Environmental Management,2003,32:299-311.
    [77]蒋鸿昆,高海鹰,张奇.农业面源污染最佳管理措施(BMPs)在我国的应用[J].环境管理,2006(4):64-67.
    [78]刘永波,吴辉,刘军志.加拿大最佳管理措施流域评价项目评述[J].生态与农村环境学报,2012,28(4):337-342.
    [79] Bottcher A B,Tremwel Terry K,Campbell Kenneth L.Best management practices for waterquality improvement in the Lake keechobee Watershed [J].Ecol Eng,1995(5):341-351.
    [80] Rita Cestt, Jitendra Srivastava and Samira Jung. Agriculture non-point source pollutioncontrol good management practices Chesapeake Bay Experience[R].Environmentally&SociallyDevelopment Unit, Europe and Central Asia, The World Bank, Washington,D.C.,2002.
    [81]黄沈发,唐浩,吴健.美国农业面源污染控制最佳管理措施(BMPs)概述[J].上海交通大学学报(农业科学版),2006,24(增刊):105-110.
    [82]闫伟伟,陈小红,顾睿,等.生态与治污相结合的最佳管理措施的应用设计[J].中国给水排水,2008,24(18):50-53.
    [83]仓恒瑾,许炼峰,李志安,等.农业非点源污染控制中的最佳管理措施及其发展趋势[J].生态科学,2005,24(2):173-177.
    [84]唐浩.农业面源污染控制最佳管理措施体系研究[J].人民长江,2010,41(17):54-57.
    [85] Arabi M,Govindaraju RS,Hantush MM.Cost-effective allocation of watershed managementpractices using a genetic algorithm[J].Water Resources Research,2006,42(10):W10429(1-14).
    [86] Maringanti C,Chaubey I,Arabi M,et al.Application of a multi-objective optimization methodto provide least cost alternatives for NPS pollution control[J].Environmental Management,2011,48:448-461.
    [87] Kaini P,Aritita K,Nicklow JW.Optimizing structural best management practices using SWATand genetic algorithm to improve water quality goals[J].Water Resources Management,2012,26:1827-1845.
    [88] Chaubey I,Chiang L,Gitau MW,et al.Effectiveness of best management practices inimproving water quality in a pasture-dominated watershed[J].Journal of Soil and WaterConservation,2010,65:424-437.
    [89]李强坤.青铜峡灌区农业非点源污染负荷及控制措施研究[D].西安理工大学,2010,2.
    [90]裴亮,刘慧明,莫家玉,等.南水北调中线工程农业非点源污染来源及控制措施[J].生态经济,2011,(6):164-167.
    [91]孙棋棋,张春平,于兴修,等.中国农业面源污染最佳管理措施研究进展[J].生态学杂志,2013,32(3):772-778.
    [92] Wu Yonghong, Philip G Kerr,Hu Zhengyi, et al. Eco-restoration: Simultaneous nutrientremoval from soil and water in a complex residential-cropland area[J]. Environmental Pollution.2010,158:2472-2477.
    [93]吴永红,胡正义,杨林章.农业面源污染控制工程的“减员-拦截-修复”(3R)理论与实践[J].2011,27(5):1-6.
    [94]王秀英,王晓燕.苏格兰农业非点源污染管理措施评述及启示[J].生态与农村环境学报,2011,27(3):10-14.
    [95]周慧平,高超,朱晓东.关键源区识别:农业非点源污染控制方法[J].生态学报,2005,25(12):3368-3374.
    [96] ENDRENY T A,WOOD E F. Watershed weighting of export coefficients to map criticalphosphorous loading areas[J].American Water Resources Association,2003,39(1):165-181.
    [97] SIVERTUN A, PRANGE L. Non-point source critical area analysis in the Gissel watershedusing GIS[J].Environmental Modelling&Software,2003,18(10):887-898.
    [98]周惠平,高超.巢湖流域非点源磷流失关键源区识别[J].环境科学,2008,29(10):2696-2701.
    [99] Strauss P, Leone A, Ripa MN, et al. Using critical source areas for targeting cost-effectivebest management practices to mitigate phosphorus and sediment transfer at the watershedscale[J].Soil Use and Management,2007,23:144-153.
    [100]李振炜,于兴修,姚孝友,等.农业非点源污染关键源区识别方法研究进展[J].生态学杂志,2011,30(12):2907-2914.
    [101] Jones PJ. Evaluation and management of the impact of land use change on the nitrogen andphosphorus load delivered to surface waters: The export coefficient modeling approach[J]. Journalof Hydrology,1996,183:323-349.
    [102] Soranno PA, Hubler SL, Carpenter SR. Phosphorus loads to surface waters: A simple modelto account for spatial pattern of land-use[J]. Ecological Applications,1996,6:865-878.
    [103] USEPA. PLOAD version3.0. An ArcView GIS tool to calculate nonpoint sources ofpollution in watershed and storm water projects, User’s Manual,2001.
    [104]龙天渝,梁常德,李继承,等.基于SLURP模型和输出系数法的三峡库区非点源氮磷负荷预测[J].环境科学学报,2008,28(3):574-581.
    [105] Petersen GW, Hamlet JM, Batuner GM, et al. Evaluation of agricultural non-point pollutionpotential in Pennsylvania using a geographic information system. Final Report ME89279to thePaDEP. ERRI, Penn. Environmental Restores Research Institute, University PARK, PA,1991.
    [106]周徐海,王宁,郭红岩,等.农业非点源污染潜力指数系统(APPI)在太湖典型区域的应用[J].农业环境科学学报,2006,25(4):1029-1034.
    [107]孟丹,王宁,刘振峰.石头口门水库双阳河流域农业非点源污染发生潜力评价[J].农业环境科学学报,2008,27(4):1421-1426.
    [108] Lemunyon JL, Gilbert RG. The concept and need for a phosphorus assessment tool[J].Journal of Production Agriculture,1993,6:483-496.
    [109] Gurbert WJ, Sharpley AN, Heathwaite L, et al. Phosphorus management at the watershedscale: A modification of the phosphorus index[J]. Journal of Environmental Quality,2000,34:287-298.
    [110] Hughes KJ, Magette WL, Kurz I. Identifying critical source areas for phosphorus loss inIreland using field and catchments scale ranking schemes[J]. Journal of Hydrology,2005,304:430-445.
    [111] Birr AS, Mulla DJ. Evaluation of phosphorus index in the watershed at the regional scale[J].Journal of Environmental Engineering, ASCE,2001,30:2018-2025.
    [112] Anderson HE, Kronvang B. Modifying and evaluating a P index for Denmark[J]. Water, Air,and Soil Pollution,2006,174:341-353.
    [113]张淑荣,陈利顶,傅伯杰,等.农业区域非点源污染潜在风险性评价——以于桥水库流域磷流失为例[J].第四级研究,2003,23(3):262-269.
    [114]李琪,陈利顶,齐鑫,等.流域尺度农业磷流失危险性评价与关键源区识别方法[J].
    [115]张秋玲,陈英旭,俞巧钢.非点源污染模型研究进展[J].应用生态学报,2007,18(8):1886-1890.
    [116]孙勤芳,段华平,赵建波,等.基于清单分析的农业非点源污染控制区划方法[J].生态与农村环境学报,2011,27(4):104-109.
    [117]杨树华,贺彬.滇池流域的景观格局与面源污染控制[M].昆明:云南科技出版社.1998:102-104.
    [118]李怀恩,蔡明.非点源营养负荷.泥沙关系建立及其应用[J].地理科学,2003,23(4):461-464.
    [119]张秀川.元江县干热河谷的特殊植物保护区划[J].云南环境科学,2005,24(增刊):74-76.
    [120]张淑荣,陈利顶,傅伯杰.于桥水库流域农业非点源磷污染控制区划研究[J].地理科学,2004,24(2):232-237.
    [121]段华平,朱琳,孙勤芳,等.农村环境污染控制区划方法与应用研究[J].中国环境科学,2010,30(3):426-432.
    [122]潘竟虎,董晓峰.基于GIS的黑河流域生态环境敏感性评价与分区[J].自然资源学报,2006,21(2):267-273.
    [123]康秀亮,刘艳红.生态系统敏感性评价方法研究[J].安徽农业科学,2007,35(33):10569-10571,10574.
    [124]沈鸿飞.庆阳市生态敏感性研究及生态环境状况评价[D].兰州:甘肃农业大学,2010.
    [125]张智全.庆阳市生态承载力与生态环境评价研究[D].兰州:甘肃农业大学,2010.
    [126]康秀亮.运用GIS和RS技术评价内蒙古额济纳旗沙漠化胁迫下植被敏感性[D].北京:北京林业大学,2008.
    [127]罗先香,邓伟.松嫩平原西部土壤盐渍化动态敏感性分析与预测[J].水土保持学报,2000,14(3):36-40.
    [128]钱乐祥,秦奋,许叔明.福建土地退化的景观敏感性综合评估与分区[J].生态学报,2002,22(1):17-23.
    [129] KUMAR KSK, PARIKH J. Indian agriculture and climates sensitivity[J].GlobalEnvironmental Changes, Part A: Human and Policy Dimensins,2001,11(2):147-154.
    [130]欧阳志云,王效科,苗鸿.中国生态环境敏感性及其区域差异规律研究[J].生态学报,2000,20(1):9-12.
    [131]贾良清,欧阳志云,赵同谦,等.安徽省生态功能区划研究[J].生态学报,2005,25(2):254-260.
    [132]陈晓琴.青海湖流域生态环境敏感性评价研究[D].青海:青海师范大学,2012,5.
    [133]宋晓龙,李晓文,白军红,等.黄河三角洲国家级自然保护区生态敏感性评价[J].生态学报,2009,29(9):4836-4846.
    [134]蔡佳亮,殷贺,黄艺.生态功能区划理论研究进展[J].生态学报,2010,30(11):3018-3027.
    [135]郑达贤,汤小华.福建省生态功能区划研究[M].北京:中国环境科学出版社,2007.
    [136]侯亚红.拉萨市生态服务功能价值评估及生态功能区划[D].杨凌:西北农林科技大学,2010.
    [137] Commission for Environmental Cooperation. Ecological regions of North America: Towardcommon perspective. Quebec: Commission for Environmental Cooperation,1997.
    [138] Food and Agriculture Organization of the United Nations. Global mapping in global forestresources assessment2000. Rome: FAO Forestry Paper140, Food and Agriculture Organization ofthe United Nations,2001:321-331.
    [139]傅伯杰,刘国华,陈利顶,等.中国生态区划方案[J].生态学报,2010a,21(1):1-6.
    [140]于力,刘慧清,张树文.吉林省生态功能区划研究[M].长春:吉林人民出版社,2005.
    [141]刘星才,徐宗学,徐琛.水生态一二级分区技术框架[J].生态学报,2010,30(11):3018-3027.
    [142]高永胜,王浩,王芳.河流健康生命内涵的探讨[J].中国水利,2006(14):15-16.
    [143]耿艳辉,闵庆文,吕爱锋,等.泾河流域不同生态功能区可持续发展能力评价[J].中国人口资源与环境,2010,20(9):127-133.
    [144]龚磊,卢文喜,张蕾.东辽河流域水生态功能分区研究[J].人民黄河,2012,34(5):57-60.
    [145]阳平坚,吴为中,孟伟,等.基于生态管理的流域水环境功能区划——以浑河流域为例[J].环境科学学报,2007,27(6):944-952.
    [146]高永年,高俊峰.太湖流域水生态功能分区[J].地理研究,2010,29(1):111-117.
    [147]尤洋,许志兰,王培京,等.温榆河生态河流健康评价研究[J].水资源与水工程学报,2009,203(3):19-24.
    [148]吴佳宁,王刚.河流生态功能区划研究[J].水利水电技术,2013,44(9):25-30.
    [149] Seifert A. Naturnaeherer wasserbau[J].Deutsche Wasserwirtschaft,1983,33(12):361-365.
    [150]杨俊鹏,王铁良,范昊明,等.河流生态修复研究进展[J].水土保持研究,2012,19(6):299-304.
    [151]董哲仁,孙东亚,彭静.河流生态修复理论技术及其应用[J].水利水电技术,2009,40(1):4-10.
    [152]胡静波.城市河道生态修复理论方法初探[J].南水北调与水利科技,2009,7(2):128-131.
    [153]王薇,李传奇.河流廊道与生态修复[J].水利水电技术,2009,34(9):56-58.
    [154]杨海军,内田泰三,盛连喜,等.受损河岸生态系统修复研究进展[J].东北师大学报,2004,36(1):95-100.
    [155]蔡晔.平原地区城市内河河道结构与水质恢复关系的实验研究[D].苏州:苏州大学,2007.
    [156]赫晓磊.山丘区生态河道设计方法研究[D].扬州:扬州大学,2008.
    [157]高凌.工程稳定问题的干扰能量法[D].南京:河海大学,1993.
    [158]吴智洋,韩冰,朱悦.河流生态修复研究进展[J].河北农业科学,2010,14(6):69-71.
    [159]李兴德,颜宏亮,马静,等.污染河流生态修复研究进展[J].水利科技与经济,2011,17(8):4-6.
    [160]王文君,黄道明.国内外河流生态修复研究进展[J].水生态学杂志,2012,33(4):142-146.
    [161]江惠霞,肖继波.污染河流生态修复研究现状与进展[J].环境科学与技术,2011,34(3):138-143.
    [162]赵进勇,孙东亚,董哲仁.河流地貌多样性修复方法[J].水利水电技术,2007,38(2):77-83.
    [163]叶飞.江苏省水环境农业非点源污染综合评价与控制对策研究[D].江苏:南京农业大学,2005.
    [164]叶飞,卞新民.江苏省水环境农业非点源污染等标污染指数的评价分析[J].农业环境科学学报,2005,24(S):137140.
    [165]高新昊,江丽华,李晓林,等.等标污染法在山东省水环境农业非点源污染源评价中的应用[J].中国生态农业学报,2010,18(5):1066-1070.
    [166]段勇,张玉珍,李延风,等.闽江流域畜禽粪便的污染负荷及其环境风险评价[J].生态与农村环境学报,2007,23(3):5559.
    [167]陈述彤,鲁学军,周成虎.地理信息系统导论[M].北京:科学出版社,1999.
    [168]路松奇,周郑辉,李卫卫.3S技术在流域产流量预报中的应用[J].华北水利水电学院学报,2011,32(2):15-18.
    [169]曾远,张永春,张龙江,等.GIS支持下AGNPS模型在太湖流域典型圩区的应用[J].农业环境科学学报:2006,25(3):761-765.
    [170]李士美,谢高地,张彩霞,等.森林生态系统土壤保持价值的年内动态[J].生态学报:2010,30(13):3482-3490.
    [171]中华人民共和国水利部.SL342-2006水土保持监测设施通用技术条件[S].北京:中国水利水电出版社,2006.
    [172]中华人民共和国水利部.SL419-2007水土保持试验规程[S].北京:中国水利水电出版社,2008.
    [173] Daniels RB, Gilliam JW. Sediment and chemical load reduction by grassand riparian filters[J]. Soil Science Society of America Journal,1996,60:246-251.
    [174] Dallaha TA, Renean RB,Mostahini S, et al. Vegetative filter strips for agricultural non-pointsource pollution control[J]. Transactions of American Society of Agricultural Engineers,1989,32:513-519.
    [175]李怀恩,邓娜,杨寅群,等.植被过滤带对地表径流中污染物的净化效果[J].农业工程学报,2010,26(7):81-86.
    [176]石嫣,程存旺,朱艺,等.中国农业源污染防治的制度创新与组织创新——兼析《第一次全国污染源普查公报》[J].农业经济与管理,2011,2:27-37.
    [177]王军霞,周冏,董广霞,等.缓解规模化畜禽养殖污染治理压力方略探讨[J].环境保护,2013(19):43-44.
    [178]郑培生,金福杰,问青春.辽河流域农业面源污染结构与格局特征分析[J].科技创新导报,2012,29:154-156.
    [179]王秀娟,刘瑞民,何孟常.松辽流域非点源污染TN时空变化特征研究[J].水土保持研究,2009,16(4):192-196,2002.
    [180]沈万斌,杨育红,金国华.吉林省农业非点源氨氮污染环境影响评价[J].云南农业大学学报,2007,22(4):574-576.
    [181]颜淼,陈求稳,吴文强.典型山区面源模型研究[J].中国水土保持,2009,6:33-35.
    [182]可欣,于维坤,尹炜,等.小流域面源污染特征及其控制对策[J].环境科学与技术,2009,32(7):201-205。
    [183]王印川.紫穗槐及其经济利用价值[J].山西水土保持科技,2003(1):21-23.
    [184]韩富伟,张柏,王宗明,等.吉林省低山丘陵区水土保持措施减蚀效应研究[J].吉林农业大学学报,2007,29(6):668-672.
    [185]吕刚,班小峰,雷泽勇,等.东北黑土区坡耕地治理过程中的水土保持效应[J].水土保持研究,2009,16(6):51-55.
    [186]刘明义,许晓鸿,刘艳军,等.不同植物带地埂土壤抗侵蚀效果研究[J].中国水土保持:2012,7:43-45.
    [187]南德标,姜同弟.紫穗槐的特征特性与栽培技术[J].现代农业科技,2009,15:211.
    [188]王凤.通渭县园林绿化优良树种紫穗槐[J].甘肃科技,2011,27(13):166-167.
    [189]路顺海,陈军,张婷婷.宁宿徐高速公路盱眙南段绿化护坡植物的选择与管理技术[J].现代农业科技,2008,18:106-108.
    [190]陈子珊,高甲荣.北京郊区河流生态护岸木本植物的选择[J].林业调查规划,2007,32(4):65-68.
    [191]王华玲,赵建伟,程东升,等.不同植被缓冲带对坡耕地地表径流中氮磷的拦截效果[J].农业环境科学学报,2010,29(9):1730-1736.
    [192]霍炜洁.草地过滤带对农业非点源污染物的截留效应研究[D].北京:中国水利水电科学研究院,2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700