用户名: 密码: 验证码:
岩溶双重含水介质流场与溶质运移模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
七里沟水源地作为徐州市南区的主要供水水源地,面积约120余km2,区内岩溶地下水近年受到了四氯化碳污染。2001年以来,课题组在两项国家自然科学基金资助下,选取该地四氯化碳污染区作为研究区域,综合采用环境与水文地质调查、地球物理勘探、现场采样监测、场地示踪试验等多种方法,依据岩溶双重含水介质理论,对岩溶地下水流场与四氯化碳的运移规律进行了系统研究。研究区内共设置水位观测井80余口,四氯化碳浓度年度普测井35-40口,四氯化碳浓度常规监测井21口,根据课题组10余年来获得的3000多组监测数据,并结合地质、水文地质与勘探钻孔资料,揭示了该区上覆为松散层和下伏为岩溶含水层的二元水文地质结构特征,建立了松散层中四氯化碳垂向迁移模型、岩溶双重含水介质流场模型和四氯化碳运移模型,经实测数据验证准确后,对未来四氯化碳的污染状况进行了预测,取得下列成果:
     (1)系统研究了徐州市岩溶含水系统特征,将其划分为四种岩溶含水介质类型。研究区位于徐州市南部,主要含水介质类型为:第四系孔隙含水岩组和碳酸盐岩类裂隙溶洞含水岩组。根据徐州市多年岩溶水开采情况,分析了岩溶含水层的补给方式和影响因素,构建了徐州市岩溶地下水循环系统;
     (2)研究区岩溶发育和岩溶水运移具有明显的非均质性,除普通岩溶孔隙特征之外,还存在发育的溶洞和裂隙等管道介质;根据54口钻井资料及十几组岩芯溶蚀情况,调查了区内地下岩溶发育状况,尤其是裂隙、大溶洞等管道介质在垂向上的分布特征;通过现场示踪试验深入研究了岩溶含水介质的双重发育特征,确定了岩溶管道介质的空间分布位置;
     (3)运用DRASTIC模型对研究区地下水脆弱性进行了评价,根据7项评价因子分配权重并评分计算,划分地下水脆弱性等级。结果显示,研究区地下水脆弱性程度较高,60%以上面积属于较易污染范畴,农药西厂作为七里沟盆地四氯化碳污染源,正位于区内南部极易受污染区域;
     (4)采集污染源区松散层土样,进行了实验室土柱下渗实验,得出相关参数并运用Hydrus-1D软件研究了四氯化碳在松散层中的迁移规律;根据污染源区钻孔勘探数据,模拟计算污染源区四氯化碳从排污渠通过上覆松散层下渗进入岩溶含水层的浓度。结果显示,污染源区四氯化碳在松散层底部的平均渗出浓度为2773.6μg/L,这一数值即是岩溶含水层中的初始浓度;
     (5)依据岩溶双重含水介质理论,以2004年4月至2012年4月40余口典型井的水位监测数据为基础,建立了研究区岩溶地下水运动的的双重介质数学模型。运用ModelMuse软件,引入双重介质中水力交换系数,分别将双重介质的渗透系数分区,选取2004年4月至2005年4月为模型识别期,2005年4月至2012年4月为模型验证期,建立了岩溶双重含水介质流场模型。根据典型井的水位对比曲线得知,误差区间为0.27m-0.43m,显示所建模型较为可靠;
     (6)选取2004年8月至2012年4月期间21口常规监测井,40口普测井的四氯化碳连续监测数据,构建了研究区四氯化碳污染的运移模型。经验证得知,研究区四氯化碳浓度平均相对误差范围为11.4%-16.7%,与实际监测数据拟合较好,模型较为可靠。在此基础上预测了2015、2018、2022和2025年的四氯化碳污染状况,结果显示,随着农药厂的搬迁以及南区部分井点的抽水强排治理工作,区内四氯化碳整体趋势为:污染浓度逐年降低,污染羽范围逐步缩减,污染羽南部、北部和中部典型井中四氯化碳衰减速率依次递减,且中部和北部污染羽将于2022年和2025年消失,预测结果可为下一步水源地的污染治理和水资源利用规划提供理论依据。
Qiligou is the main water supply source located in South Xuzhou. Karst groundwater inthis area, with area of120km2, is severely contaminated by CCl4. Since2001, we conductedlocal environment and hydrogeological investigation, explored local physical geography,measured field data, performed tracing experiments, and studied transport of CCl4based onduel-conductivity medium theory under the supporting of National Science Foundation ofChina. Amount of80research wells were studied, among which water level and CCl4concentration of35-40wells were measured four times per year, CCl4concentration of21wells were measured every month. Based on3000field data in10years, local hydrogeologyinformation, and drilling data, dual structure of unconsolidated formation and karst aquiferwas established. Transport model of CCl4and dual-conductivity medium flow model werebuilt, as well as, future contamination by CCl4was forecasted. The research is meaningful andvaluable both for theory development and engineering application. The results are showedbelow:
     (1) Karst aquifer medium characteristic in Xuzhou was investigated and divided into4types. The reaseach area is located in the south of city, which has two kinds of aquifermedium characteristics: Quaternary porous medium and Carbonate fracture medium. Inaddition, the supply way and affecting factors was analyzed to construct karst groundwatercircle system.
     (2) Karst and karst water transport in studied area has significant heterogeneity,excepting the common features of karst porosity, there still exist developed cave, dissolvedpores, cracks, and other conduit media. According to54drilling data and core dissolutioninformation, karst development was investigated, especially for the cracks and large caves’distribution in vertical direction. Double-development characteristic of karst aquifer mediumwas studied via field-scale tracing experiments, and location of karst conduit medium wasidentified as a main migration pathway for both groundwater and CCl4.
     (3) According to the DRASTIC model on groundwater vulnerable assessment, sevenfactors were used to evaluate weight, calculate and grade the contaminated divisions. Theresults show that, the entire research area was being in high vulnerable condition; more than60%of the area was easy to be contaminated. Unfortunately, CCl4contamination source, westinsecticide factory, was located in the high susceptible contamination area.
     (4) The loose layer soil samples were collected to conducted lab-scale infiltration experiments. By using Hydrus-1D software, we verified transport of CCl4in loose layer andsimulated CCl4concentration in karst aquifer from contamination source and bypass looselayer, according drilling data of contamination area. The results showed the average CCl4leaking concentration at the bottom of loose layer was2773.6μg/L, which was the initialconcentration in karst aquifer.
     (5) Dual-conductivity mathematical model was built based on dual-conductivity theoryand water level data for more than40wells from April2004to April2012; hydro-exchangeparameter was introduced, and dual-medium was divided by ModelMuse software;dual-medium flow model was built according to model identification period, from April2004to April2005, as well as model verification period, from April2005to April2012. The errorwas between0.27m-0.43m, which indicated the reliability of the model by comparing withwater level in typical wells.
     (6) Research area CCl4transport model was established based on continuous monitordata for40general wells and21regular wells from August2004to April2012. The relativeerror was between11.4%-16.7%for CCl4concentration, which indicated the reliability ofthe model by comparing with real data. CCl4concentration in2015,2018,2022, and2025wasforecasted, which showed contamination concentration will decline over time, contaminationplume will decrease, and the southern typical well shows the highest decay rate of CCl4,followed by northern and middle ones. The contamination plumes in the middle and northernarea which will be disappeared by2022and2025due to the closing of pesticide factory andwater regulation and control. The forecasting results will provide the technical guide for watersource area pollution control and water resource planning.
引文
[1]前川统一朗.日本地下水污染问题[C].土壤污染对策及污染治理技术.地下水污染控制与修复战略研讨会,北京,2004.
    [2]武晓峰,藤间幸久.地下水饱和区中油-水两相流饱和度的试验研究[J].水利学报,2000,1012-15.
    [3]武晓峰,藤间幸久.有机污染物在多孔介质中的残留[J].云南环境科学,2000,1946-49.
    [4]武晓峰,唐杰,藤间幸久.地下水中轻质有机污染物(LNAPL)透镜体研究[J].环境污染与防治,2000,22(3):17-20.
    [5]钱正英,张光斗.中国可持续发展水资源战略研究(综合报告及专题报告)[M].北京:中国水利水电出版社,2001.
    [6] Han, Z., H. Wang. Groundwater resources in Asia-problem and change [C]. The34th Congress ofInternational Association of Hydrogeologists, Beijing,2006.
    [7]张宗祜,李烈荣.中国地下水资源(综合卷)[M].北京:中国地图出版社,2004.
    [8]中华人民共和国水利部.2012年中国水资源公报[EB/OL].2012,http://www.mwr.gov.cn/zwzc/hygb/szygb/qgszygb/201212/t20121217_335297.html.
    [9]陈梦熊.中国地下水资源的区域特征与初步评价[J].自然资源学报,1986,1(1):18-24.
    [10] Quinlan, J. F. Ground-Water Monitoring in Karst Terranes: Recommended Protocol and ImplicitAssumptions [R]. U.S. Environmental protection Agency, Environmental Monitoring Systems Laboratory,1989.
    [11] Sun, J., Y. Wei, H. Wu. Discussion on enrichment mechanism of groundwater in the representativewater-shourtage areas of the northwestern China [C]. The34th Congress of International Association ofHydrogeologists, Beijing,2006.
    [12]李家伦,孙菽芬,洪钟祥.地下水污染生物处理方法研究综述[J].气候与环境研究,1998,3(2):151-157.
    [13]于猛,我国将开展首轮地下水污染调查[N].人民日报,2005,5.
    [14]李晓茹,冯惠华.我国水环境有机污染现状与对策[J].环境科学学报,2005,10(5):25-29.
    [15] Ayral, D., M. O. Diaz, A. Demond. Impact of DNAPLs on the structure of clay in the subsurface [J].Abstracts of Papers of the American Chemical Society,2011,242.
    [16] Smith, B. A., A. L. Teel, R. J. Watts. Destruction of Trichloroethylene and Perchloroethylene DNAPLsby Catalyzed H2O2Propagations [J]. Journal of Environmental Engineering-Asce,2009,135(7):535-543.
    [17] Brooks, M. C., A. L. Wood, J. W. Jawitz. Source functions for multi-component DNAPLs based onstreamtube analysis [M].2011.
    [18] Shi, X. Q., J. C. Wu, X. B. Zhu, Y. H. Jiang, Y. Y. Sun. Characterization and monitoring transport ofDNAPLs at a contaminated site using geophysical methods and numerical simulation [J]. Geochimica etCosmochimica Acta,2010,74(12): A950-A950.
    [19]吴涛.徐州市水资源承载力量化评价与研究[J].环境科技,2011,24(2):54-58.
    [20] Zheng, C., M. C. Hill, G. Cao, R. Ma. Model use, calibration, and validation [J]. Transactions of theAsabe,2012,55(4):1549-1559.
    [21] Zarei, H. R., A. Uromeihy, M. Sharifzadeh. Evaluation of high local groundwater inflow to a rocktunnel by characterization of geological features [J]. Tunnelling and Underground Space Technology,2011,26(2):364-373.
    [22] Zambrano-Bigiarini, M., R. Rojas. A model-independent Particle Swarm Optimisation software formodel calibration [J]. Environmental Modelling&Software,2013,435-25.
    [23] Yeh, H. D., T. H. Chang, Y. C. Lin. Groundwater contaminant source identification by a hybridheuristic approach [J]. Water Resources Research,2007,43(9).
    [24] Feng, J., Q. S. Zhao, S. Quan. The Numerical Simulation Of Groundwater In The Baisha River Area[M].2013.
    [25] Abrams, D. Correcting Transit Time Distributions in Coarse MODFLOW-MODPATH Models [J].Ground Water,2013,51(3):474-478.
    [26] Borsi, I., R. Rossetto, C. Schifani, M. C. Hill. Modeling unsaturated zone flow and runoff processes byintegrating MODFLOW-LGR and VSF, and creating the new CFL package [J]. Journal of Hydrology,2013,48833-47.
    [27] Liu, P., Y. Tao, M. S. The calculation of mine water yield using the non-continuous flow theory [J].Environmental Earth Sciences,2014,71(2):975-981.
    [28] Narula, K. K., A. K. Gosain. Modeling hydrology, groundwater recharge and non-point nitrateloadings in the Himalayan Upper Yamuna basin [J]. Science of The Total Environment,2013,468(S):102-116.
    [29] GroundwaterGo. A very short review of ModelMuse [EB/OL].2013,http://www.groundwatergo.com/blog/a-very-short-review-of-modelmuse/.
    [30] USGS. USGS Groundwater Software MudelMuse Introduction [EB/OL].2013,http://water.usgs.gov/nrp/gwsoftware/ModelMuse/ModelMuse.html.
    [31] Ismail, W., I. Yusoff, B. Rahim. Simulation of horizontal well performance using Visual MODFLOW[J]. Environmental Earth Sciences,2013,68(4):1119-1126.
    [32] Zhang, Y., L. Lv, Y. B. Chai. Application of Visual MODFLOW on Groundwater Research In TianjinCity [M].2009.
    [33] Feng, J., G. Q. Liu, Q. S. Zhao. Application of Visual MODFLOW to the dynamic change andsimulation of deep groundwater in Dezhou City, China [M].2010.
    [34] Pan, J., C. Y. Han, R. R. Kang, S. X. Li. Application of Visual MODFLOW to Numerical Simulationof Multi-level Groundwater [M].2012.
    [35] Sagharavni, S. R., S. Mustapha, S. F. Saghravani, S. Ibrahim. Application of visual MODFLOW insimulation of contamination migration in an unconfined aquifer [M].2011.
    [36] Wang, L., Y. Liu. Based on the Visual Modflow surge water numerical simulation study [M].2012.
    [37] Ajami, H., T. Maddock, T. Meixner, J. F. Hogan, D. P. Guertin. RIPGIS-NET: A GIS Tool for RiparianGroundwater Evapotranspiration in MODFLOW [J]. Ground Water,2012,50(1):154-158.
    [38] Haque, M. A. M., C. S. Jahan, Q. H. Mazumder, S. M. S. Nawaz, G. C. Mirdha, P. Mamud, M. I.Adham. Hydrogeological condition and assessment of groundwater resource using visual modflowmodeling, Rajshahi city aquifer, Bangladesh [J]. Journal of the Geological Society of India,2012,79(1):77-84.
    [39] Shi, W. F., W. H. Zeng, B. Chen. Application of Visual MODFLOW to assess the Sewage Plantaccident pool leakage impact on groundwater in the Guanting Reservoir area of Beijing [J]. Frontiers ofEarth Science,2010,4(3):320-325.
    [40] SWS. Visual Modflow flex-integrated conceptual and numerical groundwater modeling [R].Schlumberger Water Services,2012.
    [41] NorthCarolinaTeachingFellows. Home-Teaching Fellows [EB/OL].2013,http://www.teachingfellows.org/.
    [42] Ren, J. M., Y. Yang, X. W. Hu. Application of GIS and FEFLOW in Forecasting Groundwater FlowField of Minqin Basin [M].2012.
    [43] Dong, D. L., W. J. Sun, S. Xi. Optimization of Mine Drainage Capacity Using FEFLOW for the No.14Coal Seam of China's Linnancang Coal Mine [J]. Mine Water and the Environment,2012,31(4):353-360.
    [44] Ma, L., X. M. Wei, A. M. Bao, S. F. Wang. Simulation of groundwater table dynamics based on Feflowin the Minqin Basin, China [J]. Journal of Arid Land,2012,4(2):123-131.
    [45] Seferou, P., P. Soupios, N. N. Kourgialas, Z. Dokou, G. P. Karatzas, E. Candasayar, N. Papadopoulos,V. Dimitriou, A. Sarris, M. Sauter. Olive-oil mill wastewater transport under unsaturated and saturatedlaboratory conditions using the geoelectrical resistivity tomography method and the FEFLOW model [J].Hydrogeology journal,2013,21(6):1219-1234.
    [46] AQUAVEO. Groundwater Modeling System (GMS) software platform [EB/OL].2013,http://www.aquaveo.com/software/gms-groundwater-modeling-system-introduction.
    [47] ScientificSoftwareGroup. GMS-groundwater modeling system [EB/OL].2013,http://www.scientificsoftwaregroup.com/pages/product_info.php?products_id=42.
    [48] Jin, M. G., W. Y. Luo, Y. F. Liu, R. L. Sun. Modeling of groundwater flow using GMS in ZhengzhouPlain, China [M].2009.
    [49] Liang, S. C., X. S. Zhao, S. Li, L. H. Feng, X. L. Liu, X. M. Qin. The application of GMS in numericalsimulation of groundwater and faults disposing in Gaizi River Source [M].2012.
    [50] Sun, S. M., C. L. Dai, C. L. Liu, L. Q. Liang. Prediction of Groundwater Inundation Based onGMS-with Example of Inundation-affected Areas in Upstream of Dadingzishan Reservoir [M].2012.
    [51] Borgia, A., L. Cattaneo, D. Marconi, C. Delcroix, E. L. Rossi, G. Clemente, C. G. Amoroso, F. Lo Re,E. Tozzato. Using a MODFLOW grid, generated with GMS, to solve a transport problem with TOUGH2incomplex geological environments: The intertidal deposits of the Venetian Lagoon [J]. Computers&Geosciences,2011,37(6):783-790.
    [52] Pan, J., Y. Liu, T. Leng. Simulation and Analysis of Groundwater Environment in Shenfu New Town
    [M].2013.
    [53] Alam, F., R. Umar. Groundwater flow modelling of Hindon-Yamuna interfluve region, Western UttarPradesh [J]. Journal of the Geological Society of India,2013,82(1):80-90.
    [54] Korkmaz, S. Transient Solutions to Groundwater Mounding in Bounded and Unbounded Aquifers [J].Ground Water,2013,51(3):432-441.
    [55] Rao, S. M., K. Asha, S. Shivachidambaram. Influence of anthropogenic contamination on groundwaterchemistry in Mulbagal town, Kolar District, India [J]. Geosciences Journal,2013,17(1):97-106.
    [56] Reed, P. M., J. B. Kollat. Visual analytics clarify the scalability and effectiveness of massively parallelmany-objective optimization: A groundwater monitoring design example [J]. Advances in Water Resources,2013,561-13.
    [57] Teutsch HG, A Lesot, C Stoltz, J M Garnier, J M Jeltsch, F Durst, D. Werck-Reichhart. Isolation andsequence of a cDNA encoding the Jerusalem artichoke cinnamate4-hydroxylase, a major plant cytochrome450involved in the general phenylpropanoid pathway [J]. National Acad Sciences,1993,90(9):4102-4106.
    [58] Cortis, A., B. Berkowitz. Anomalous Transport in “Classical” Soil and Sand Columns [J]. Soil ScienceSociety of America Journal,2004,68(5):1539-1548.
    [59] Scanlon, B. R., R. E. Mace, M. E. Barrett, B. Smith. Can we simulate regional groundwater flow in akarst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA [J].Journal of Hydrology,2003,276(1-4):137-158.
    [60] Sharp, J., Y. Maini.1972. Fundamental considerations on the hydraulic characteristics of joints inRock.
    [61] Difrenna, V. J. Effect of scaling on hydraulic conductivity in a karst aquifer [D]. Miami Florida FloridaInternational University,2005.
    [62] Worthington, S. R. H., D. C. Ford, P. A. Deddows. Porosity and Permeability Enhancement inUnconfined Carbonate Aquifers as a Result of Solution in Speleogenesis [C]. The13th InternationalCongress of Speleology, Brazil,2000.
    [63] White, W. B., E. L. White. Conduit fragmentation, cave patterns, and the localization of karst groundwater basins: the appalachians as a test case [J]. Speleogenesis and Evolution of Karst Aquifers,2003,1(2):1-15.
    [64] Kiraly, L. Modelling karst aquifers by the combined discrete channel and continuum approach [J].Bulletin d’Hydrogeologie,1998,1677-98.
    [65] Liedl, R., M. Sauter, D. Hückinghaus, T. Clemens, G. Teutsch. Simulation of the development of karstaquifers using a coupled continuum pipe flow model [J]. Water Resources Research,2003,39(3):1057-1062.
    [66] Anwar, S., A. Cortis, M. C. Sukop. Lattice Boltzmann simulation of solute transport in heterogeneousporous media with conduits to estimate macroscopic continuous time random walk model parameters [J].Computational Fluid Dynamics,2008,8213-221.
    [67] White, W., E. White. Ground water flux distribution between matrix, fractures, and conduits:constraints on modeling [J]. Speleogenesis and Evolution of Karst Aquifers,2005,3(8):2-8.
    [68] Birk, S., T. Geyer, R. Liedl, M. Sauter. Process-based interpretation of tracer tests in carbonate aquifers[J]. Ground Water,2005,43(3):381-388.
    [69] Abusaada, M., M. Sauter. Studying the Flow Dynamics of a Karst Aquifer System with an EquivalentPorous Medium Model [J]. Ground Water,2013,51(4):641-650.
    [70] Jeannin, P. Y., U. Eichenberger, M. Sinreich, J. Vouillamoz, A. Malard, E. Weber. KARSYS: apragmatic approach to karst hydrogeological system conceptualisation. Assessment of groundwaterreserves and resources in Switzerland [J]. Environmental Earth Sciences,2013,69(3):999-1013.
    [71] Masciopinto, C., D. Palmiotta. Relevance of solutions to the Navier-Stokes equations for explaininggroundwater flow in fractured karst aquifers [J]. Water Resources Research,2013,49(6):3148-3164.
    [72] Taborosi, D., J. W. Jenson, J. E. Mylroie. Field Observations of Coastal Discharge from an UpliftedCarbonate Island Aquifer, Northern Guam, Mariana Islands: A Descriptive Geomorphic and HydrogeologicPerspective [J]. Journal of Coastal Research,2013,29(4):926-943.
    [73] Cao, Y. Z., M. Gunzburger, X. L. Hu, F. Hua, X. M. Wang, W. D. Zhao. FINITE ELEMENTAPPROXIMATIONS FOR STOKES-DARCY FLOW WITH BEAVERS-JOSEPH INTERFACECONDITIONS [J]. Siam Journal on Numerical Analysis,2010,47(6):4239-4256.
    [74] Criss, R. E. A DARCIAN MODEL FOR THE FLOW OF BIG SPRING AND THE HYDRAULICHEAD IN THE OZARK AQUIFER, MISSOURI, USA [J]. Acta Carsologica,2010,39(2):379-387.
    [75] Faulkner, J., B. X. Hu, S. Kish, F. Hua. Laboratory analog and numerical study of groundwater flowand solute transport in a karst aquifer with conduit and matrix domains [J]. Journal of contaminanthydrology,2009,110(1-2):34-44.
    [76] Giudici, M., S. Margiotta, F. Mazzone, S. Negri, C. Vassena. Modelling hydrostratigraphy andgroundwater flow of a fractured and karst aquifer in a Mediterranean basin (Salento peninsula, southeasternItaly)[J]. Environmental Earth Sciences,2012,67(7):1891-1907.
    [77] Hao, Y. H., T. C. J. Yeh, Y. R. Wang, Y. Zhao. Analysis of karst aquifer spring flows with a gray systemdecomposition model [J]. Ground Water,2007,45(1):46-52.
    [78] Hu, B. X. Examining a coupled continuum pipe-flow model for groundwater flow and solute transportin a karst aquifer [J]. Acta Carsologica,2010,39(2):347-359.
    [79] GB5749-2006,生活饮用水卫生标准[S].中华人民共和国卫生部,2006.
    [80] Alvarado, J., C. Rose, L. LaFreniere. Degradation of carbon tetrachloride in the presence ofzero-valent iron [J]. Journal Of Environmental Monitoring,2010,12(8):1524-1530.
    [81] Sautter, S. BHI ERC Team Zeroes in on Sources of Carbon Tetrachloride Contamination [J]. HanfordRench,2001,31-17.
    [82] Manwaring, J. F. Van and Barbara Faust. EPA Puts Emergency Water Provisions into Action [J]. Waterand Waste water Engineering,1980,1740-43.
    [83] Ram, V. S. A Deterministic and Probabilistic Analyses of the Carbon Tetrachloride Contaminant Plumein Groundwater at the Former Union Carbide India Limited Factory in Bhopal, Madhya Pradesh, India [D].Atlanta, USA: Emory University,2012.
    [84] Helperin, A. N., D. S. Beckman, D. Inwood. Colifonia's contaminated groundwater [R]. NaturalResources Defense Council,2001.
    [85] FreirIa-Gadara, M. J., R. A. Lorenzo-Perreira, A. Alvarez-Devesa, F. Bermejo. Occurrence ofhalogenated hydrocarbons in the water supply of different cities of Galicia (Spain)[J]. EnvironmentalTechnology,1992,13(5):437-447.
    [86] Skrokki, A. Quality of drinking water from one surface water plant and six groundwater plants in thetown of Kajaani in Finland [J]. Renewable Resources-Water,1992,4878-81.
    [87] Brown, R. A., R. C. Blake, E. R. Brandstetter. Livermore ground water protection managementprogram, LLNL Environmental Report for1995[R]. U.S. Department of Energy,1995.
    [88]方生,陈秀玲.地下水开发引起的环境问题与治理[J].地下水,2001,23(1):8-11.
    [89]项玮,韩宝平.岩溶含水层四氯化碳人体健康风险评价[J].农业环境科学学报,2007,26(5):1702-1706.
    [90]韩宝平,王小英,朱雪强,何康林.某市岩溶地下水四氯化碳污染特征研究[J].环境科学学报,2004,24(6):982-988.
    [91]韩宝平,朱雪强,王小英,孙晓菲.某岩溶水源地四氯化碳污染途径研究[J].中国矿业大学学报,2005,35(1):61-65.
    [92]单爱琴,韩宝平,王爱宽,杨秀婧,刘敬武,周海霞.四氯化碳污染对土壤酶活性的影响[J].中国矿业大学学报,2008,37(2):207-210.
    [93]单爱琴,王爱宽,韩宝平,杨秀婧,揣小明,张静.四氯化碳对厌氧降解系统中两类主要细菌的影响[J].农业环境科学学报,2007,26(5):1822-1826.
    [94]张达政,陈鸿汉,李海明,邹胜章,刘立才.浅层地下水卤代烃污染初步研究[J].中国地质,2002,29(3):326-329.
    [95]田家怡,张洪凯,周桂芬,张新华,张洪勋.小清河沿岸地下水污染强度及发展速度预测的研究[J].环境科学学报,1994,14(2):160-167.
    [96]黄业茹.饮用水中挥发性有机物(VOCs)的GC-MS分析[J].分析测试技术与仪器,1999,537-44.
    [97] Wu, J. M., H. S. Huang, C. D. Livengood. Ultrasonic Destruction of Chlorinated Compounds inAqueous Solution [J]. Environmental Progress,1992,11(3):195–201.
    [98] Froud, S., R. W. Gillham, J. F. Barker, J. F. Devlin. Sequential treatment using abiotic reductivedechlorination and enhanced bioremediation [C]. In situ and on site bioremediation Internationalsymposium;4th, In situ and on site bioremediation, Columbus,1997.
    [99] Jin, G., J. Englande. Carbon Tetrachloride Biodegradation in a Fixed-Biofilm Reactor and Its KineticStudy [J]. Water Science and Technology,1998,38(8-9):155–162.
    [100] Witt, M. E., D. C. Wiggert, M. J. Dybas, K. C. Kelly. Bioaugmentation and Numerical Simulation ofCarbon Tetrachloride Transformation in Groundwater [C]. In situ and on site bioremediation Internationalsymposium;4th, In situ and on site bioremediation, Columbus,1997.
    [101] Gorby, Y. A., J. E. Amonette, J. S. Fruchter. Remediation of contaminated subsurface materials by ametal-reducing bacterium [C]. Hanford symposium on health and the environment: symposium on in-situremediation--scientific basis for current and future technologies, Richland, WA, USA,1994.
    [102] Johnsona, T. L., W. Fisha, Y. A. Gorbyb, P. G. Tratnyek. Degradation of carbon tetrachloride by ironmetal: Complexation effects on the oxide surface [J]. Journal of Contaminant Hydrology,1998,29(4):379–398.
    [103] Erbs, M., H. C. B. Hansen, C. E. Olsen. Reductive dechlorination of carbon tetrachloride usingiron(II) iron(III) hydroxide sulfate (Green Rust)[J]. Environmental Science&Technology,1999,33(2):307–311.
    [104] Doong, R., T. Chen, Y. Wu. Anaerobic dechlorination of carbon tetrachloride by free-living andattached bacteria under various electron-donor conditions [J]. Applied Microbiology and Biotechnology,1997,47(3):317-323.
    [105] Francony, A., C. Pétrier. Sonochemical degradation of carbon tetrachloride in aqueous solution at twofrequencies:20kHz and500kHz [J]. Ultrasonics Sonochemistry,1996,3(2): S77–S82.
    [106]马增辉,韩霁昌,解建仓,张扬,孙剑虹.基于HYDRUS-3D的陕西卤泊滩水盐运移建模方法研究[J].陕西农业科学,2011,57(1):62-65.
    [107] Heatwole, K. K., J. E. McCray. Modeling potential vadose-zone transport of nitrogen from onsitewastewater systems at the development scale [J]. Journal of Contaminant Hydrology,2007,91(1):184-201.
    [108] Shekofteh, H., M. Afyuni, M. A. Hajabbasi. Modeling of Nitrate Leaching from a Potato Field usingHYDRUS-2D [J]. Communications in Soil Science and Plant Analysis,2013,44(20):2917-2931.
    [109]李玮,何江涛,刘丽雅. Hydrus-1D软件在地下水污染风险评价中的应用[J].中国环境科学,2013,33(4):639-647.
    [110] Pan, F., J. Ma, Y. Wang. Simulation of the migration and transformation of petroleum pollutants in thesoils of the Loess plateau: a case study in the Maling oil field of northwestern China [J]. Environmentalmonitoring and assessment,2013,185(10):8023-8034.
    [111]孙才志,林山杉.地下水脆弱性概念的发展过程与评价现状及研究前景[J].吉林地质,2000,19(1):30-36.
    [112] Fritch, T. G., C. L. Mcknight, J. C. Yelderman. An aquifer vulnerability assessment of the Paluxyaquifer, central Texas, USA, using GID and modified DRASTIC approach [J]. Environmental Management,2000,25(3):337-345.
    [113] Rupert, M. G. Calibration of the DRASTIC ground water vulnerability mapping method [J]. GroundWater,2001,39(4):625-630.
    [114]雷静.地下水环境脆弱性的研究[D].北京:清华大学,2002.
    [115] Tesoriero, A. J., F. D. Voss. Predicting the probabiliy of elevated nitrate concentrations in the PugetSound Basin: implication for aquifer susceptibility and vulnerability [J]. Ground Water,1997,36(5):1029-1039.
    [116] Bates, L. E., C. Barber, C. J. Otto. Aquifer vulnerability mapping using GIS and Bayesian weights ofevidence: review of application [J]. Hydro GIS,1996,9(6):7-14.
    [117] Alberti, L., D. Amicis, M. Masetti. Bayes' rule and GIS for evaluating sensitivity of groundwater tocontamination [C]. IAMG Annual Conference, Cancun, Messico,2001.
    [118] Marc, S., M. Andre. Coupling1D Monte-Carlo simulations and geostatistics to assess groundwatervulnerability to pesticides contamination on a regional scale [J]. Journal of contaminant hydrology,1998,3225-39.
    [119]郑西来.西安市潜水污染的潜在性分析与评价[J].工程勘探,1997,422-25.
    [120]杨庆,栾茂田,崇金. DRASTIC指标体系法在大连市地下水易污染性评价中的应用[J].大连理工大学学报,1999,35(9):684-688.
    [121]姜志群,朱元生.地下水污染敏感性评价中DRATsCI法的应用[J].河海大学学报,2001,29(2):100-103.
    [122]付素蓉,王焰新,蔡鹤生.城市地下水污染敏感性分析,[J].中国地质大学学报,2000,25(5):482-486.
    [123]刘淑芳,郭永海.区域地下水防污性能评价方法及其在河北平原的应用[J].河北地质学院学报,1996,19(1):41-45.
    [124]陈守煌,伏广涛,周惠成.含水层脆弱性模糊分析评价模型与方法[J].水利学报,2002,723-30.
    [125]林山杉,武健强,张勃夫.地下水环境脆弱程度图编图方法研究[J].水文地质工程地质,2000,36-8.
    [126]马金珠.塔里木盆地南缘地下水脆弱性评价[J].中国沙漠,2001,21(2):170-174.
    [127]邹胜章,张文慈,梁彬.南岩溶区表层岩溶带水脆弱性评价指标体系的探讨,[J].地学前沿,2005,12152-158.
    [128]徐明峰,李绪谦,金春花.尖点突变模型在地下水特殊脆弱性评价中的应用[J].水资源保护,2005,21(5):19-22.
    [129] Johnson, J. M. Dissolution of dense chlorinated solvents into groundwater.2. Source functions forpools of solvents [J]. Environmental Science and Technology,1992,26896-901.
    [130] Griffin, T. W., K. W. Watson. A comparison of field techniques for confirming dense nonaqueousphase liquids [J]. Groundwater Monitor&Remediation,2002,48-59.
    [131] Rossabi, B. D. R. J., C. A. Eddy-Dilek. Field tests of a DNAPL characterization system using conepenetrometer-based Raman spectroscopy [J]. Groundwater Monitor&Remediation,2001,72-81.
    [132] Temples, M. G. W. T. J., W. J. Domoracki. Noninvasive determination of the location and distributionof DNAPL using advanced seismic reflection techniques [J]. Ground Water,2001,39465-474.
    [133] Crimi, M. L., R. L. Siegrist. Geochemical effects on metals following permanganate oxidation ofDNAPLs [J]. Ground Water,2003,41(4):458-469.
    [134] Bastiaens, L., W. Boenne, T. De Ceuster, J. Gemoets, G. Verreydt, P. Vanderauwera, R.-U. HelmholtzCentre Environmental. Treatment of DNAPLs by (bio)surfactant flushing: from lab scale testing to pilottest [M].2008.
    [135] Jerome, K. M., B. B. Looney, J. Wilson. Field demonstration of in situ Fenton's destruction ofDNAPLs [M].1998.
    [136] Olexsey, R. A., R. A. Parker. Current and future in situ treatment techniques for the remediation ofhazardous substances in soil, sediments, and groundwater [M].2006.
    [137] Lee, Y. C., T. S. Kwon, J. S. Yang, J. W. Yang. Remediation of groundwater contaminated withDNAPLs by biodegradable oil emulsion [J]. Journal of Hazardous Materials,2007,140(1-2):340-345.
    [138] Starrc, J. A Cherry in Situ Remediation of Contaminated Groundwater:The Funnel and Gate System[J]. Journal of Ground Water,1994,32(3):465-476.
    [139] Cantrell, K. J., D. I. Kaplan. Retention of zero,valent iron colloids by sand columns: application tochemical barrier formation [J]. Journal of Environmental Engineering,1997,123(5):499-505.
    [140] Cantrell, K. J., D. I. Kaplan, T. J. Gilmore. Injection of colloedal Fe0particles in sand with shearthinning fluids [J]. Journal of Environmental Engineering,1997,8786-791.
    [141]何宇彬,韩宝平,徐超.中国喀斯特水研究[M].上海:同济大学出版社,1997.
    [142]刘建立,朱学愚,钱孝星.中国北方裂隙岩溶水资源开发和保护中若干问题研究[J].地质学报,2000,74(4):344-352.
    [143]朱雪强.四氯化碳在岩溶含水层中的运移规律研究[D].徐州:中国矿业大学,2005.
    [144]江苏省地矿局第二水文地质工程地质大队.江苏省徐州市城市供水水文地质勘察报告[R].江苏省地矿局第二水文地质工程地质大队,1985.
    [145]韩宝平.微观喀斯特作用机理研究[M].北京:地质出版社,1998.
    [146] Buckner, R. L., J. Sepulcre, T. Talukdar, F. M. Krienen, H. S. Liu, T. Hedden, J. R. Andrews-Hanna,R. A. Sperling, K. A. Johnson. Cortical Hubs Revealed by Intrinsic Functional Connectivity: Mapping,Assessment of Stability, and Relation to Alzheimer's Disease [J]. Journal of Neuroscience,2009,29(6):1860-1873.
    [147] Smit, B., J. Wandel. Adaptation, adaptive capacity and vulnerability [J]. Global EnvironmentalChange-Human and Policy Dimensions,2006,16(3):282-292.
    [148] Oki, T., S. Kanae. Global hydrological cycles and world water resources [J]. Science,2006,313(5790):1068-1072.
    [149] Schroter, D., W. Cramer, R. Leemans, I. C. Prentice, M. B. Araujo, N. W. Arnell, A. Bondeau, H.Bugmann, T. R. Carter, C. A. Gracia, A. C. de la Vega-Leinert, M. Erhard, F. Ewert, M. Glendining, J. I.House, S. Kankaanpaa, R. J. T. Klein, S. Lavorel, M. Lindner, M. J. Metzger, J. Meyer, T. D. Mitchell, I.Reginster, M. Rounsevell, S. Sabate, S. Sitch, B. Smith, J. Smith, P. Smith, M. T. Sykes, K. Thonicke, W.Thuiller, G. Tuck, S. Zaehle, B. Zierl. Ecosystem service supply and vulnerability to global change inEurope [J]. Science,2005,310(5752):1333-1337.
    [150] Henquet, C., L. Krabbendam, J. Spauwen, C. Kaplan, R. Lieb, H. U. Wittchen, J. van Os. Prospectivecohort study of cannabis use, predisposition for psychosis, and psychotic symptoms in young people [J].British Medical Journal,2005,330(7481):11-14.
    [151] Turner, B. L., R. E. Kasperson, P. A. Matson, J. J. McCarthy, R. W. Corell, L. Christensen, N. Eckley,J. X. Kasperson, A. Luers, M. L. Martello, C. Polsky, A. Pulsipher, A. Schiller. A framework forvulnerability analysis in sustainability science [J]. Proceedings of the National Academy of Sciences of theUnited States of America,2003,100(14):8074-8079.
    [152] Naghavi, M., P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, J. J. Badimon, C.Stefanadis, P. Moreno, G. Pasterkamp, Z. Fayad, P. H. Stone, S. Waxman, P. Raggi, M. Madjid, A. Zarrabi,A. Burke, C. Yuan, P. J. Fitzgerald, D. S. Siscovick, C. L. de Korte, M. Aikawa, K. E. J. Airaksinen, G.Assmann, C. R. Becker, J. H. Chesebro, A. Farb, Z. S. Galis, C. Jackson, I. K. Jang, W. Koenig, R. A.Lodder, K. March, J. Demirovic, M. Navab, S. G. Priori, M. D. Rekhter, R. Bahr, S. M. Grundy, R. Mehran,A. Colombo, E. Boerwinkle, C. Ballantyne, W. Insull, R. S. Schwartz, R. Vogel, P. W. Serruys, G. K.Hansson, D. P. Faxon, S. Kaul, H. Drexler, P. Greenland, J. E. Muller, R. Virmani, P. M. Ridker, D. P. Zipes,P. K. Shah, J. T. Willerson. From vulnerable plaque to vulnerable patient-A call for new definitions andrisk assessment strategies: Part I [J]. Circulation,2003,108(14):1664-1672.
    [153] van Os, J., M. Bak, M. Hanssen, R. V. Bijl, R. de Graaf, H. Verdoux. Cannabis use and psychosis: Alongitudinal population-based study [J]. American Journal of Epidemiology,2002,156(4):319-327.
    [154] Hulme, M., R. Doherty, T. Ngara, M. New, D. Lister. African climate change:1900-2100[J]. ClimateResearch,2001,17(2):145-168.
    [155] Arias-Estevez, M., E. Lopez-Periago, E. Martinez-Carballo, J. Simal-Gandara, J. C. Mejuto, L.Garcia-Rio. The mobility and degradation of pesticides in soils and the pollution of groundwater resources[J]. Agriculture Ecosystems&Environment,2008,123(4):247-260.
    [156] Bakalowicz, M. Karst groundwater: a challenge for new resources [J]. Hydrogeology journal,2005,13(1):148-160.
    [157] Gogu, R. C., A. Dassargues. Current trends and future challenges in groundwater vulnerabilityassessment using overlay and index methods [J]. Environmental Geology,2000,39(6):549-559.
    [158] Baalousha, H. Vulnerability assessment for the Gaza Strip, palestine using DRASTIC [J].Environmental Geology,2006,50(3):405-414.
    [159] Babiker, I. S., M. A. A. Mohamed, T. Hiyama, K. Kato. A GIS-based DRASTIC model for assessingaquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan [J]. Science of The TotalEnvironment,2005,345(1-3):127-140.
    [160] Panagopoulos, G. P., A. K. Antonakos, N. J. Lambrakis. Optimization of the DRASTIC method forgroundwater vulnerability assessment via the use of simple statistical methods and GIS [J]. Hydrogeologyjournal,2006,14(6):894-911.
    [161] Gemitzi, A., C. Petalas, V. A. Tsihrintzis, V. Pisinaras. Assessment of groundwater vulnerability topollution: a combination of GIS, fuzzy logic and decision making techniques [J]. Environmental Geology,2006,49(5):653-673.
    [162] Assaf, H., M. Saadeh. Geostatistical Assessment of Groundwater Nitrate Contamination withReflection on DRASTIC Vulnerability Assessment: The Case of the Upper Litani Basin, Lebanon [J].Water Resources Management,2009,23(4):775-796.
    [163] Al Hallaq, A. H., B. S. Abu Elaish. Assessment of aquifer vulnerability to contamination inKhanyounis Governorate, Gaza Strip-Palestine, using the DRASTIC model within GIS environment [J].Arabian Journal of Geosciences,2012,5(4):833-847.
    [164] Malik, P., S. Vojtkova. GROUNDWATER VULNERABILITY ASSESSMENT USING PHYSICALPRINCIPLES OF CONTAMINATION SPREADING Theory Demonstrated on Tisovec KarstHydrogeological Structure [M].2009.
    [165] Worrall, F., T. Besien, D. W. Kolpin. Groundwater vulnerability: interactions of chemical and siteproperties [J]. Science of The Total Environment,2002,299(1-3):131-143.
    [166] Sauter, M., A. Kovacs, T. Geyer, G. Teutsch. Modelling karst groundwater hydraulics-An overview[J]. Grundwasser,2006,11(3):143-156.
    [167] Bekesi, G., J. McConchie. The use of aquifer-media characteristics to model vulnerability tocontamination, Manawatu region, New Zealand [J]. Hydrogeology journal,2002,10(2):322-331.
    [168] Majandang, J., S. Sarapirome. Groundwater vulnerability assessment and sensitivity analysis in NongRua, Khon Kaen, Thailand, using a GIS-based SINTACS model [J]. Environmental Earth Sciences,2013,68(7):2025-2039.
    [169] Nalbantcilar, M. T., A. Guzel, S. S. Durduran. Assessment of Groundwater VulnerabilityContamination Potential of Konya, Turkey, Using Hydrogeological Specifications and GIS [J]. AsianJournal of Chemistry,2009,21(4):2925-2934.
    [170] Chitsazan, M., Y. Akhtari. A GIS-based DRASTIC Model for Assessing Aquifer Vulnerability inKherran Plain, Khuzestan, Iran [J]. Water Resources Management,2009,23(6):1137-1155.
    [171] Salazar, O., I. Wesstr m, M. A. Youssef. Evaluation of the DRAINMOD–N II model for predictingnitrogen losses in a loamy sand under cultivation in south-east Sweden [J]. Agricultural Water Management,2009,96(3):267-281.
    [172]裴宗平.某市岩溶地下水水源地四氯化碳污染机理研究[D].徐州:2009.
    [173] Drew, D. Glossary of karstic terminology. In: COST Action65Report Hydrogeological aspects ofgroundwater protection in karstic areas.[R]. European Commission,1995.
    [174] Smart, C. C., D. C. Ford. Structure and foundation of a conduit aquifer [J]. Canadian Journal of EarthSciences,1986,23(7):919-929.
    [175] White, B. Karst hydrology: recent developments and open questions [J]. Engineering Geology,2002,6585-105.
    [176] Field, M. S. Karst hydrology and chemical contamination [J]. Journal of Environmental Systems,1993,22(1):1-26.
    [177] Bear, J. Dynamics of fluids in porous media [M]. New York: American Elsevier,1972.
    [178] Halihan, T. J., M. Sharp, R. E. Mace. Flow in the San Antonio Segment of the Edwards Aquifer:Matrix, Fractures, or Conduits?[M]. Rotterdam: Balkema,2000.
    [179] Murdoch, J. W. Mechanics of Fluids [M]. New York: McGraw Hill,1996.
    [180] Springer, G. S. A pipe-based, first approach to modeling closed conduit flow in caves [J]. Journal ofHydrology,2004,289(1-4):178-189.
    [181]丁元芳,迟宝明,易树平,吴法伟. Visual MODFLOW在李官堡水源地水流模拟中的应用[J].水土保持研究,2006,5103-106.
    [182]杜超.下辽河平原地下水水质实时预报模型研究[D].长春:吉林大学,2011.
    [183]陈崇希,李国敏.地下水溶质运移理论及模型[M].武汉:中国地质大学出版社,1996.
    [184] Morway, E. D., R. G. Niswonger, C. D. Langevin, R. T. Bailey, R. W. Healy. Modeling VariablySaturated Subsurface Solute Transport with MODFLOW-UZF and MT3DMS [J]. Ground Water,2013,51(2):237-251.
    [185] Gedeon, M., D. Mallants. Sensitivity analysis of a combined groundwater flow and solute transportmodel using local-grid refinement: a case study [J]. Mathematical Geosciences,2012,44(7):881-899.
    [186] He, L. A., G. D. Liu, X. F. Li, Ieee. Modeling and Predicting Groundwater Pollution Caused by OilPipeline Leakage Using MODFLOW and MT3D [M].2009.
    [187] Lautz, L. K., D. I. Siegel. Modeling surface and ground water mixing in the hyporheic zone usingMODFLOW and MT3D [J]. Advances in Water Resources,2006,29(11):1618-1633.
    [188] Bugai, D., A. Skalskyy, S. Dzhepo, Y. Kubko, V. Kashparov, N. Van Meir, D. Stammose, C.Simonucci, A. Martin-Garin. Radionuclide migration at experimental polygon at Red Forest waste site inChernobyl zone. Part2: Hydrogeological characterization and groundwater transport modeling [J]. AppliedGeochemistry,2012,27(7):1359-1374.
    [189]张晓辉.含水介质水敏感性的初步研究[D].青岛:中国海洋大学,2006.
    [190]王岩.酸性矿井水对地下水污染规律的数值模拟研究[D].阜新:辽宁工程技术大学,2007.
    [191]许增光.地下水有机物和重金属迁移与污染修复的数值模拟研究[D].上海:上海交通大学,2012.
    [192]刘明颖,李文涛,陈焕贞.平面非均匀水沙模型的多步特征有限元数值模拟[J].应用数学学报,2013,36(5):871-880.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700