用户名: 密码: 验证码:
自热式好氧厌氧一体化反应器处理城镇污水厂污泥的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国城市生活垃圾清运量快速增加,但一些城市垃圾无害化处理能力不足,配套设施不齐全,造成“垃圾围城”的现象时有发生。污水处理厂污泥产量也在不断增长,但普遍存在的污泥出路不畅已影响到污水厂的正常运行。小城镇由于经济发展水平和相关技术人才的缺乏,垃圾和污泥处理的问题更为突出,因此,开发一种成本可接受、管理运行简便的技术已迫在眉睫。围绕节能减排与循环利用这一重大原则,本研究在课题组前期小试成果的基础上,开发了自热式好氧厌氧一体化反应器(SHAAI反应器),反应器由污泥仓和垃圾仓组成,二者容积根据热量平衡要求,依据小城镇生活垃圾实际产生量与同等规模污水处理厂污泥产生量的比值确定,这样既能充分利用垃圾产热为污泥厌氧消化提供温度条件,还具有节约投资和用地,便于管理,实现垃圾和污泥处理区域平衡的优势。以大渡口区的生活垃圾及大渡口污水处理厂储泥池的污泥为研究对象,对反应器进行了系统的试验研究,取得的主要结论如下:
     ①开发了自热式好氧厌氧一体化处理中试反应器,垃圾仓有效容积为5.28m3,污泥仓有效容积为0.9m3,污泥仓外室与内室体积比为1.48:1,垃圾仓和污泥仓分别采用好氧堆肥和厌氧消化的方式开展试验研究。
     ②利用SHAAI反应器进行了启动试验研究,每天处理垃圾200kg,污泥投配率为10%,在启动试验过程中,污泥仓内、外室温度与垃圾仓温度变化趋势基本一致,而且温度相差不大,说明垃圾仓产热对污泥仓温度变化的影响显著,二者之间的传热效率较高;反应器运行稳定,污泥仓内pH值、碱度、VFA和SCOD等指标均在微生物适宜生存范围之内;污泥浓缩效果较好,排泥体积较进泥减少68%,而有机质去除率仅为13.2%。
     ③在15%、20%和25%等投配率下进行了SHAAI中试反应器处理效能的研究。结果表明:污泥仓的温度变化趋势与垃圾仓的基本一致,在污泥投配率为20%时,反应器的处理效能最好,污泥仓平均温度35.2±2.5℃;在该投配率下,污泥仓内、外室的pH值、碱度、VFA和SCOD均在厌氧菌适宜的范围之内,没有出现酸化现象;反应器浓缩效果较好,含水率由进泥的98.4±0.6%降至排泥的89.7±1.8%,污泥体积减少84.5%;VS/TS由进泥的0.393±0.02减少至排泥的0.299±0.008,有机质平均去除率为24.0±3.6%;日均产气量为110L/d,其中,甲烷占气体总体积的61.6%,二氧化碳占24.2%,氮气占12.5%,氧气占0.9%;随着污泥厌氧消化过程的进行,EPS、蛋白质和多糖含量逐渐减少,且蛋白质/多糖在厌氧消化过程中发生了改变。
     ④在各自最佳工况下,对课题组开发的两相一体式污泥浓缩消化反应器(TISTD反应器)在恒温加热条件下、两相一体式污泥浓缩消化生产性试验反应器(TISTDP反应器)在常温条件下和SHAAI反应器在自热条件下的污泥厌氧消化处理性能进行了对比分析,结果表明:TISTD反应器温度波动最小,浓缩效果和稳定性最好,产气中甲烷含量最高,综合处理效能最佳;SHAAI反应器综合处理效能次之,但和TISTD反应器非常接近;TISTDP反应器综合处理效能相对最差。
     ⑤对不同投配率下污泥仓微生物的基因组DNA进行PCR扩增和变性梯度凝胶电泳(DGGE)试验,结果表明:扩增后的条带清晰,亮度较高,PCR扩增效果较好,产物纯度高;DGGE图谱均有多个条带,说明微生物呈多样性分布,表明在垃圾堆肥产热的条件下,SHAAI反应器污泥厌氧消化能够维持多种微生物生长,具有较强的抗冲击负荷能力;香农-威纳指数(H)和物种丰富指数结果表明污泥仓内、外室微生物呈多样性分布,且在同一投配率下,污泥仓外室物种丰富指数和香浓-维纳指数均大于污泥仓内室。
     ⑥将不同投配率下反应器污泥样品DGGE图谱中的特异性条带1至27进行了割胶回收、扩增、克隆和测序,并与GenBank中的序列进行比对,结果表明:在反应器稳定运行阶段,微生物种群结构进入较长的稳定期,优势种群明显且不易更替。反应器中的优势菌种大部分为Clostridium acidurici等具有水解酸化功能的菌属以及Helicobacter muridarum等盐螺旋藻属的厌氧菌,同源性基本都在95%以上。
     ⑦论文最后对SHAAI反应器有机物去除动力学进行了分析。基于米-门公式,采用试验数据求定了不同投配率下反应器有机物的降解动力学参数max和Ks,结果表明:当投配率为20%时,vmax达到最大,为0.025d-1,证明了最佳投配率为20%的结论;垃圾仓的温度与污泥仓温度呈直线相关关系,相关系数R2=0.825,说明垃圾仓温度对污泥仓温度造成了比较显著的影响。
     研究证实利用一体化反应器处理城镇生活垃圾和污水处理厂污泥是可行的,试验结果为SHAAI反应器的工程设计、运行和控制方面提供了较系统的理论和技术支撑,对推动污泥与垃圾一体化处理技术在小城镇工程化应用、实现小城镇污泥和垃圾处理的区域平衡方面具有重要意义。
With a rapid increase in domestic garbage, auxiliary facilities and garbage innocenttreatment ability in some cities are insufficient, which caused garbage siege problem.The growth of the sewage sludge makes the disposal difficult, influencing the normaloperation of the sewage plant.. Due to the limit of economic development level and thelack of relevant technical capacity, the problem of garbage and sludge treatment in smalltowns is increasingly apparent. Therefore, it is imperative to develop a effectivetreatment technology which has a low operation cost and is easy to operate and maintain.On the major principle of energy conservation and recycling, self-heatingaerobic-anaerobic integrated reactor (SHAAI) was developed based on the previousbatch-scale research results. According to the ratio of output of municipal garbage insmall town to the yield of sludge in sewage plant, the volume of garbage tank andsludge tank were determined. And the centralized treatment (municipal garbage andsewage plant sludge) was not only carried out to make full use of waste heat used tosludge anaerobic digestion, but also have advantages such as investment saving, landuse, and easy management, achieving the regional balance of garbage and sludgetreatment. Aiming at the waste in Dadukou and the sewage sludge of sewage treatmentplant in Dadukou district, the reactor was examined by a systematic study. The resultswere showed as follows:
     ①SHAAI was composed of waste tank and sludge tank. The effective volume ofwaste tank and sludge tank were5.28m3and0.9m3, respectively. The volume ratio ofouter sludge tank to inner sludge tank was1.48:1. The research of waste tank and sludgetank were conducted using aerobic composting and anaerobic digestion, respectively.
     ②The start-up of SHAAI was studied by dealing with200kg of garbage every dayand with a dosing ratio of10%. During the SHAAI start-up stage, the tempreturechanges in the outer sludge tank and inner sludge tank was consistent with that in wastetank. And the tempreture were slightly different indicating that waste heat has asignificant effect on waste tank tempreture and a high heat transfer efficiency. DuringSHAAI start-up, it showed a very stable operation. The pH, alkalinity, Volatile fatty acid(VFA) and Soluble chemical oxygen demand (SCOD) were in the proper range whichwere suitable for microorganisms survival. Sludge thickening showed a goodperformance with a decreased volume (by68%) of disposal sludge to raw sludge. However, the removal rate of VSS was only13.2%.
     ③The effectiveness of SHAAI in a pilot-scale with different dosing ratios of15%,20%and25%was investigated. Results showed that the temperature changes in thesludge tank was consistent with that of waste tank. The best efficiency was obtainedunder a dosing ratio of20%with a sludge tank average temperature35.2±2.5℃. Afterstart-up, SHAAI treatment process also presented a good stability. The pH in the outersludge tank and inner tank, alkalinity, VFA and SCOD were all in the proper rangesuitable for anaerobic bacteria survival. No acidification phenomenon was found.Sludge thickening showed good performance with a fact that moisture contentdecreased from98.4±0.6%in raw sludge to89.7±1.8%in disposal sludge. The sludgevolume was decreased by84.5%. A high VSS removal efficiency was found, and theVS/TS decreased from0.393±0.02in raw sludge to0.299±0.008in disposal sludge. Theaverage removal rate of VSS was24.0±3.6%. Daily gas production was110L/d. Thevolume of methane, CO2, N2and O2accounted for61.6%,24.2%,12.5%, and0.9%,respectively. As the anaerobic digestion process was conducted, the content of EPS,protein and polysaccharide gradually reduced. The polysaccharide and protein alsochanged during anaerobic digestion.
     ④The results of sludge anaerobic digestion under the most appropriate dosing ratiowith three ractors, including the two-phase integrated sludge thickening and digestion(TISTD) reactor under the condition of the electric heating, the two-phase integratedsludge thickening and digestion productive (TISTDP) reactor under the normalatmospheric temperature, and the SHAAI reactor under spontaneous heating, werecompared. The results showed that TISTDP reactor had the smallest fluctuation oftemperature, best efficiency, stability and the highest content of methane. TISTD has thebest removal efficiency, while SHAAI reactor took second place and was very close toTISTD reactor. TISTDP reactor had the worst removal effectiveness.
     ⑤The PCR amplification and denaturing gradient gel electrophoresis (DGGE) testof genomic DNA of the microorganism in the sludge tank under different dosing ratiowere investigated. It showed that clear bands and high brightness, and there were nonon-specific bands and primer dimers, which indicated good effects of amplificationand the high purity of products. All the DGGE profiles had many bands, whichindicated the species diversity and a variety of microorganisms can surive in the SHAAIreactor with strong anti-shock loading capability under the condition of waste composthesting. Shannon-wiener indexs and abundant species indexs showed the microorganisms diversity of the inside and outside of sludge tank. And the two indexsof outsides were higher than that insides under the same dosing ratio.
     ⑥Specific band from1to27in DGGE profiles of sludge in the reactor underdifferent dosing ratios was gel extraction, amplification, cloning and sequencing,comparing with the sequences in GenBank. The results showed that microbialpopulation structure was in a long stable period in the stable operation of the reactor.But dominant population was difficult to change significantly. Dominant bacteria in thereactor were mostly Clostridium acidurici which was also dominant bacteria withhydrolysis acidification functions with a homology basically above95%.
     ⑦Finally, the kinetics of organic matter removal in SHAAI was investigated.Vmax and Ks were identified based on Michaelis-Menten equation and experimentaldata under different dosing ratios. The results elucidated that vmax achieved themaximum of0.025d-1in the dosing ratio of20%, proving that the optimum dosingratio was20%. Waste tank temperature was linear correlation with that in sludge tankwith a correlation coefficient R2=0.825, indicating that waste tank temperature had asignificant effect on sludge tank temperature.
     ⑧It was feasible that SHAAI may treat domestic garbage and sludge in sewagetreatment plant. The results provided theory and technical support for the design,operation and control of SHAAI, and have imporatant significance in promoting theintegrated treatment technology of sludge and waste in small towns.
引文
[1]盛奎川,林福呈,闵航.城镇生活垃圾综合处置系统及关键技术的研究进展[J].浙江大学学报(农业与生命科学版),2005,2:002.
    [2] ZHANG D Q, TAN S K, GERSBERG R M. Municipal solid waste management in china:Status, problems and challenges[J]. Journal of Environmental Management,2010,91(8):1623-1633.
    [3]梁明武,高春荣,赵平.北京市污泥堆肥处理现状与发展趋势[J].安徽农业科学,2012,40(7):4213-4216.
    [4] CHEN Y. Sewage sludge aerobic composting technology research progress[J]. AASRI Procedia,2012,1:339-343.
    [5]戴晓虎.我国城镇污泥处理处置现状及思考[J].给水排水,2012,38(2):1-5.
    [6] JIANG J, DU X, YANG S. Analysis of the combustion of sewage sludge-derived fuel by athermogravimetric method in china[J]. Waste management,2010,30(7):1407-1413.
    [7] WANG J, LU Z, TIAN S, et al. Existing state and development of sludge researches in domesticand foreign[J]. Municipal Engineering Technology,2006,24(3):140-142.
    [8] WANG J, WANG J. Application of radiation technology to sewage sludge processing: Areview[J]. Journal of hazardous materials,2007,143(1):2-7.
    [9]唐建国.对《城镇污水处理厂污泥处理处置及污染防治技术政策》的解读[J].给水排水,2009,35(11):48-51.
    [10]马学文,翁焕新,章金骏.中国城市污泥重金属和养分的区域特性及变化[J].中国环境科学,2011,31(8):1306-1313.
    [11]李国刚,曹杰山.我国城市生活垃圾处理处置的现状与问题[J].环境保护,2002(4):35-38.
    [12]张英民,尚晓博,李开明,等.城市生活垃圾处理技术现状与管理对策[j][J].生态环境学报,2011,20(2):389-396.
    [13]闵庆文,裴晓菲,余卫东.我国城市垃圾及其处理的现状,问题与对策[J].城市环境与城市生态,2002,15(6).
    [14] YAQIN Q. Analysis of the sludge disposal method[J]. Friend of Science Amateurs,2012,10(5):120-121.
    [15]唐建国,林洁梅.对城镇污水处理厂污泥处理处置技术路线选择的思考[J].给水排水,2011,37(9):54-57.
    [16] CHITIKELA S, DENTEL S K. Dual-chemical conditioning and dewatering of anaerobicallydigested biosolids: Laboratory evaluations[J]. Water environment research,1998,70(05):1062-1069.
    [17] LEE C, LIU J. Enhanced sludge dewatering by dual polyelectrolytes conditioning[J]. WaterResearch,2000,34(18):4430-4436.
    [18]吴雪峰,李青青,李小平.城市污泥处理处置管理体系探讨[J].环境科学与技术,2010,33(4):186-189.
    [19] GE H, JENSEN P D, BATSTONE D J. Pre-treatment mechanisms duringthermophilic–mesophilic temperature phased anaerobic digestion of primary sludge[J]. Waterresearch,2010,44(1):123-130.
    [20] KIM D-H, KIM S-H, KIM H-W, et al. Sewage sludge addition to food waste synergisticallyenhances hydrogen fermentation performance[J]. Bioresource technology,2011,102(18):8501-8506.
    [21] PATHAK A, DASTIDAR M, SREEKRISHNAN T. Bioleaching of heavy metals from sewagesludge: A review[J]. Journal of environmental management,2009,90(8):2343-2353.
    [22]张辉.污泥处理处置现状的思考与展望[J].给水排水,2012,38(S1):234-239.
    [23]杨丽标,邹国元,张丽娟,等.城市污泥农用处置研究进展[J].中国农学通报,2008,24(1):420-424.
    [24]唐建国.日本下水污泥处理处置情况介绍[J].给水排水,2012,38(11):48-54.
    [25]史骏.城市污水污泥处理处置系统的技术经济分析与评价(下)[J].给水排水,2009,35(9):56-59.
    [26]池勇志,迟季平,马颜,等.城镇污水污泥性质与处理处置概况[J].环境科学与技术,2010,33(12):169-172.
    [27] CAO Y, PAW OWSKI A. Sewage sludge-to-energy approaches based on anaerobic digestionand pyrolysis: Brief overview and energy efficiency assessment[J]. Renewable and SustainableEnergy Reviews,2012,16(3):1657-1665.
    [28]付胜涛,于水利,严晓菊,等.剩余活性污泥和厨余垃圾的混合中温厌氧消化[J].环境科学,2006,7.
    [29] PITK P, KAPARAJU P, PALATSI J, et al. Co-digestion of sewage sludge and sterilized solidslaughterhouse waste: Methane production efficiency and process limitations[J]. Bioresourcetechnology,2013,134:227-232.
    [30] LU S-G, IMAI T, UKITA M,等. Start-up performances of dry anaerobic mesophilic andthermophilic digestions of organic solid wastes[J]. Journal of environmental Sciences,2007,19(4):416-420.
    [31]陈广银,郑正,常志州,等. Naoh处理对互花米草高温干式厌氧发酵的影响[J].环境科学,2011,32(7):2158-2163.
    [32] ERKAN M, SANIN F. Can sludge dewatering reactivate microorganisms in mesophilicallydigested anaerobic sludge? Case of belt filter versus centrifuge[J]. Water research,2013,47(1):428-438.
    [33] CRAIG K, NIEUWOUDT M, NIEMAND L. Cfd simulation of anaerobic digester withvariable sewage sludge rheology[J]. Water research,2013,47(13):4485-4497.
    [34] ZHANG L, HENDRICKX T L, KAMPMAN C, et al. Co-digestion to support low temperatureanaerobic pretreatment of municipal sewage in a uasb–digester[J]. Bioresource technology,2013,148:560-566.
    [35]李军,任健,王洪臣,等.初沉污泥水解酸化试验研究[J].北京工业大学学报,2009,34(12):1304-1308.
    [36]杨洁.碱和超声波预处理技术促进污泥厌氧消化效能及机理研究[D].天津大学,2008.
    [37]张希衡,废水厌氧生物处理工程[M]北京:中国环境科学出版社,1996.
    [38] LI Y-Y, NOIKE T. Upgrading of anaerobic digestion of waste activated sludge by thermalpretreatment[J]. Water Science&Technology,1992,26(3-4):857-866.
    [39] UCISIK A S, HENZE M. Biological hydrolysis and acidification of sludge under anaerobicconditions: The effect of sludge type and origin on the production and composition of volatilefatty acids[J]. Water research,2008,42(14):3729-3738.
    [40] SURYAWANSHI P, CHAUDHARI A, KOTHARI R. Thermophilic anaerobic digestion: Thebest option for waste treatment[J]. Critical reviews in biotechnology,2010,30(1):31-40.
    [41] ARNOLD M, MERTA E. Towards energy self-sufficiency in wastewater treatment byoptimized sludge treatment[J]. Water Practice and Technology,2011,6(4).
    [42] ASTALS S, VENEGAS C, PECES M, et al. Balancing hygienization and anaerobic digestion ofraw sewage sludge[J]. Water research,2012,46(19):6218-6227.
    [43] P REZ-ELVIRA S, FDZ-POLANCO M, FDZ-POLANCO F. Enhancement of the conventionalanaerobic digestion of sludge: Comparison of four different strategies[J]. Water Science&Technology,2011,64(2):375-383.
    [44] ZIEMBA C, PECCIA J. Net energy production associated with pathogen inactivation duringmesophilic and thermophilic anaerobic digestion of sewage sludge[J]. Water research,2011,45(16):4758-4768.
    [45] KARDOS L, JUH SZ A, PALKO G, et al. Comparing of mesophilic and thermophilic anaerobicfermented sewage sludge based on chemical and biochemical tests[J]. Applied Ecology andEnvironmental Research,2011,9(3):293-302.
    [46] FERRER I, PONS S, V ZQUEZ F, et al. Increasing biogas production by thermal (70c)sludge pre-treatment prior to thermophilic anaerobic digestion[J]. Biochemical EngineeringJournal,2008,42(2):186-192.
    [47] PALATSI J, GIMENEZ-LORANG A, FERRER I, et al. Start-up strategies of thermophilicanaerobic digestion of sewage sludge[J]. Water Science&Technology,2009,59(9):1777-1784.
    [48] RIMKUS R R, RYAN J M, COOK E J. Full-scale thermophilic digestion at the west-southwestsewage treatment works, chicago, illinois[J]. Journal (Water Pollution Control Federation),1982:1447-1457.
    [49] DE LA RUBIA M, RIAU V, RAPOSO F, et al. Thermophilic anaerobic digestion of sewagesludge: Focus on the influence of the start-up. A review[J]. Critical reviews in biotechnology,2013,33(4):448-460.
    [50] BRAGUGLIA C, GAGLIANO M, ROSSETTI S. High frequency ultrasound pretreatment forsludge anaerobic digestion: Effect on floc structure and microbial population[J]. Bioresourcetechnology,2012,110:43-49.
    [51] QIAO W, PENG C, WANG W, et al. Biogas production from supernatant of hydrothermallytreated municipal sludge by upflow anaerobic sludge blanket reactor[J]. Bioresource technology,2011,102(21):9904-9911.
    [52] SHAO L, WANG X, XU H, et al. Enhanced anaerobic digestion and sludge dewaterability byalkaline pretreatment and its mechanism[J]. Journal of Environmental Sciences,2012,24(10):1731-1738.
    [53]杜俊,何强,刘鸿霞,等. ICSTD反应器处理污泥的启动试验研究[J].环境工程学报,2009,3(8):1429-1432.
    [54]周杨,高超,毛士泽,等.污泥厌氧消化池的启动运行经验[J].中国给水排水,2007,23(6):91-94.
    [55]田磊,史琳,吴静,等.基于污水源热泵的污泥高温厌氧消化系统实验研究[J].应用基础与工程科学学报,2011,19(5):792-798.
    [56]余杰,田宁宁,王凯军.城市污水厂污泥处理与处置技术的新思路[J].中国给水排水,2008,24(6):11-14.
    [57]戴前进,李艺,方先金.污泥中硫浓度与产气中硫化氢含量的相关性探讨[J].中国给水排水,2008,24(2):36-39.
    [58] COMTE S, GUIBAUD G, BAUDU M. Effect of extraction method on eps from activatedsludge: An hpsec investigation[J]. Journal of hazardous materials,2007,140(1):129-137.
    [59] FR B, GRIEBE T, NIELSEN P. Enzymatic activity in the activated-sludge floc matrix[J].Applied Microbiology and Biotechnology,1995,43(4):755-761.
    [60] CARR RE H, DUMAS C, BATTIMELLI A, et al. Pretreatment methods to improve sludgeanaerobic degradability: A review[J]. Journal of hazardous materials,2010,183(1):1-15.
    [61] RUDLFS W, HEUKELEKIAN H. Thermophilic digestion of sewage solids[J]. Industrial&Engineering Chemistry,1931,23(1):67-69.
    [62] WETT B, PHOTHILANGKA P, ELADAWY A. Systematic comparison of mechanical andthermal sludge disintegration technologies[J]. Waste management,2010,30(6):1057-1062.
    [63] ESKICIOGLU C, TERZIAN N, KENNEDY K J, et al. Athermal microwave effects forenhancing digestibility of waste activated sludge[J]. Water Research,2007,41(11):2457-2466.
    [64]万立国,田禹,张丽君,等.污水污泥高温热解技术研究现状与进展[J]. EnvironmentalScience&Technology,2011,34(6).
    [65] NICKEL K, NEIS U. Ultrasonic disintegration of biosolids for improved biodegradation[J].Ultrasonics sonochemistry,2007,14(4):450-455.
    [66] PHAM T, BRAR S K, TYAGI R, et al. Ultrasonication of wastewater sludge—consequences onbiodegradability and flowability[J]. Journal of hazardous materials,2009,163(2):891-898.
    [67]杨洁.碱和超声波预处理技术促进污泥厌氧消化效能及机理研究[D].天津大学,2008.
    [68]刘畅.超声预处理组合技术改善污水污泥厌氧消化的研究[D].华中科技大学,2011.
    [69] BOUGRIER C, ALBASI C, DELGENES J, et al. Effect of ultrasonic, thermal and ozonepre-treatments on waste activated sludge solubilisation and anaerobic biodegradability[J].Chemical Engineering and Processing: Process Intensification,2006,45(8):711-718.
    [70] WEEMAES M, GROOTAERD H, SIMOENS F, et al. Anaerobic digestion of ozonizedbiosolids[J]. Water Research,2000,34(8):2330-2336.
    [71] BOUGRIER C, BATTIMELLI A, DELGENES J-P, et al. Combined ozone pretreatment andanaerobic digestion for the reduction of biological sludge production in wastewater treatment[J].Ozone: Science and Engineering,2007,29(3):201-206.
    [72] KATSIRIS N, KOUZELI-KATSIRI A. Bound water content of biological sludges in relation tofiltration and dewatering[J]. Water Research,1987,21(11):1319-1327.
    [73] KIM J, PARK C, KIM T-H, et al. Effects of various pretreatments for enhanced anaerobicdigestion with waste activated sludge[J]. Journal of bioscience and bioengineering,2003,95(3):271-275.
    [74] LIN J-G, CHANG C-N, CHANG S-C. Enhancement of anaerobic digestion of waste activatedsludge by alkaline solubilization[J]. Bioresource Technology,1997,62(3):85-90.
    [75]霍贞,王芬,季民.污泥破解技术的研究与进展[J].工业水处理,2005,25(9):16-19.
    [76] TYAGI V K, LO S-L. Sludge: A waste or renewable source for energy and resourcesrecovery?[J]. Renewable and Sustainable Energy Reviews,2013,25:708-728.
    [77] BOROWSKI S, WEATHERLEY L. Co-digestion of solid poultry manure with municipalsewage sludge[J]. Bioresource technology,2013,142:345-352.
    [78] AY J-J, LEE Y-J, NOIKE T. Feasibility of biological hydrogen production from organic fractionof municipal solid waste[J]. Water Research,1999,33(11):2579-2586.
    [79] ZHU H, PARKER W, BASNAR R, et al. Biohydrogen production by anaerobic co-digestion ofmunicipal food waste and sewage sludges[J]. International journal of hydrogen energy,2008,33(14):3651-3659.
    [80]罗维,陈同斌,高定,等.城市污泥-猪粪混合堆肥过程中湿度的层次效应及其动态变化[J].环境科学,2004,25(2):140-144.
    [81]孟昭辉,吴凡松,郭婉茜,等.餐厨垃圾与剩余污泥处理现状及技术展望[J].中国给水排水,2013,29(010):9-11.
    [82]吴正松,谢光健,陈大志,等.污泥/生活垃圾一体化反应器处理污泥的研究[J].中国给水排水,2010,23:006.
    [83]吴正松,智悦,何强,等.城镇生活垃圾与污水厂污泥一体化处理反应器开发[J].重庆大学学报,2013,36(1).
    [84] RAVIV M, MEDINA S, KRASNOVSKY A, et al. Organic matter and nitrogen conservation inma
    [85]杨天学,席北斗,魏自民,等.生活垃圾与畜禽粪便联合好氧堆肥[J].环境科学研究,2009(10):1187-1192.
    [86]安淼,王华伟,占美丽,等.污泥用量对生活垃圾堆肥氮素转化与损失的影响[J].环境工程学报,2011,5(8):1877-1881.
    [87]杨延梅,杨志峰,张相锋,等.底物含氮量对厨余堆肥氮素转化及其损失的影响研究[J].环境科学学报,2007,27(6):993-999.
    [88]逯延军,吴星五.城市生活垃圾和污泥混合堆肥中氮素变化规律研究[J].环境污染与防治,2008,30(2):59-63.
    [89]王秀蘅,杜彦武.粪便与生活垃圾混合堆肥过程控制[J].环境污染与防治,2010,9-13(3):9-13.
    [90] HIDAKA T, ARAI S, OKAMOTO S, et al. Anaerobic co-digestion of sewage sludge withshredded grass from public green spaces[J]. Bioresource technology,2013,130:667-672.
    [91]焦刚珍,李明,赵由才.不同来源污泥接种餐厨垃圾厌氧发酵产氢效果研究[J].环境污染与防治,2009,31(2):19-22.
    [92]宋玉.微生物来源对餐厨垃圾厌氧消化产氢的影响[J].环境科学与技术,2011,34(6G):65-69.
    [93]李明,赵由才,徐迪民.矿化垃圾与碱性添加剂对餐厨垃圾发酵产氢的影响[J].中国给水排水,2008,24(3):49-52.
    [94]段妮娜,董滨,李江华,等.污泥和餐厨垃圾联合干法中温厌氧消化性能研究[J].环境科学,2013,34(1):321-327.
    [95] SOSNOWSKI P, KLEPACZ-SMOLKA A, KACZOREK K, et al. Kinetic investigations ofmethane co-fermentation of sewage sludge and organic fraction of municipal solid wastes[J].Bioresource technology,2008,99(13):5731-5737.
    [96]赵云飞,刘晓玲,李十中,等.餐厨垃圾与污泥高固体联合厌氧产沼气的特性[J].农业工程学报,2011,27(10):255-260.
    [97]吴正松,唐世田,凌建军,等.一体化反应器协同处理生活垃圾与污泥启动试验研究[J].中南大学学报(自然科学版),2012,43(12):4968-4973.
    [98]张笑,蔡玮玮,王利红,等.固含率对酒糟与餐厨垃圾混合厌氧发酵产沼气的影响[J].农业环境科学学报,2013,32(5):1078-1084.
    [99]占美丽,董蕾,孙英杰,等.青岛市餐厨垃圾与菜市场垃圾混合高温厌氧消化研究[J].2013,7(5):1945-1950.
    [100]赵宋敏,李定龙,王晋,等.基于活性污泥的厨余垃圾厌氧发酵产酸研究[J].环境工程学报,2011,5(1):205-208.
    [101]邵敬,罗文邃,万顺刚,等.不同园林废弃物对污泥和餐厨垃圾厌氧消化的影响[J].环境污染与防治,2013,35(3):66-71.
    [102] FR LUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers fromactivated sludge using a cation exchange resin[J]. Water Research,1996,30(8):1749-1758.
    [103]张辰,孙晓,王恩顺,等.无接种污泥的厌氧消化系统启动策略研究[J].中国给水排水,2011,27(13):12-15.
    [104]闫江,江娟.生活垃圾厌氧堆肥产甲烷及古细菌多样性分析[J].环境科学与技术,2006,29(4):9-10.
    [105] APPELS L, BAEYENS J, DEGR VE J, et al. Principles and potential of the anaerobic digestionof waste-activated sludge[J]. Progress in Energy and Combustion Science,2008,34(6):755-781.
    [106] TUROVSKIY I S, MATHAI P, Wastewater sludge processing[M]: New Jersey:John Wiley&Sons,2006.
    [107] TAKASHIMA M, KUDOH Y, TABATA N. Complete anaerobic digestion of activated sludgeby combining membrane separation and alkaline heat post-treatment[J]. Water Sci. Technol.,1996,34(5):477-481.
    [108] BABEL S, FUKUSHI K, SITANRASSAMEE B. Effect of acid speciation on solid wasteliquefaction in an anaerobic acid digester[J]. Water Research,2004,38(9):2417-2423.
    [109] VEEKEN A, HAMELERS B. Effect of temperature on hydrolysis rates of selected biowastecomponents[J]. Bioresource technology,1999,69(3):249-254.
    [110] KE S, SHI Z, FANG H H. Applications of two-phase anaerobic degradation in industrialwastewater treatment[J]. International journal of environment and pollution,2005,23(1):65-80.
    [111] BOE K, ANGELIDAKI I. Online monitoring and control of the biogas process[D]. TechnicalUniversity of Denmark,2006.
    [112] SUN X, WANG W, CHEN C, et al. Acidification of waste activated sludge during thermophilicanaerobic digestion[J]. Procedia Environmental Sciences,2012,16:391-400.
    [113] LIU H, WANG J, LIU X, et al. Acidogenic fermentation of proteinaceous sewage sludge: Effectof ph[J]. Water research,2012,46(3):799-807.
    [114] DE VRIEZE J, GILDEMYN S, ARENDS J, et al. Biomass retention on electrodes rather thanelectrical current enhances stability in anaerobic digestion[J]. Water Research,2014,54:211-221.
    [115] GR NROOS A, KYLL NEN H, KORPIJ RVI K, et al. Ultrasound assisted method to increasesoluble chemical oxygen demand (scod) of sewage sludge for digestion[J]. UltrasonicsSonochemistry,2005,12(1):115-120.
    [116]胡学斌.污泥浓缩消化一体化反应器的优化设计与中试研究[D].重庆大学,2009.
    [117]李江.城市污水厂污泥浓缩消化一体化处理生产性试验研究[D].重庆大学,2012.
    [118]李振华.浓缩时间对污泥浓缩效果,磷释放及去除的影响[J].中国给水排水,2012,28(003):64-66.
    [119] URBAIN V, BLOCK J, MANEM J. Bioflocculation in activated sludge: An analyticapproach[J]. Water Research,1993,27(5):829-838.
    [120] ZHANG P, CHEN Y-P, GUO J-S, et al. Adsorption behavior of tightly bound extracellularpolymeric substances on model organic surfaces under different ph and cations with surfaceplasmon resonance[J]. Water research,2014,57:31-39.
    [121] DIGNAC M-F, URBAIN V, RYBACKI D, et al. Chemical description of extracellular polymers:Implication on activated sludge floc structure[J]. Water Sci. Technol.,1998,38(8):45-53.
    [122] CESCUTTI P, TOFFANIN R, POLLESELLO P, et al. Structural determination of the acidicexopolysaccharide produced by a pseudomonas sp. Strain1.15[J]. Carbohydrate research,1999,315(1):159-168.
    [123] FUKUZAKI S, NISHIO N, NAGAI S. High rate performance and characterization of granularmethanogenic sludges in upflow anaerobic sludge blanket reactors fed with various definedsubstrates[J]. Journal of fermentation and bioengineering,1995,79(4):354-359.
    [124] FANG H H, LIU H, ZHANG T. Characterization of a hydrogen‐producing granular sludge[J].Biotechnology and bioengineering,2002,78(1):44-52.
    [125] BENETTI A D, Composition, fate, and transformation of extracellular polymers in wastewaterand sludge treatment processes[M]: New York: Cornell University, May,2000.
    [126] KEIDING K, WYBRANDT L, NIELSEN P. Remember the water-a comment on eps colligativeproperties[J]. Water Science&Technology,2001,43(6):17-23.
    [127] ERIKSSON L, STEEN I, TENDAJ M. Evaluation of sludge properties at an activated sludgeplant[J]. Water Science&Technology,1992,25(6):251-265.
    [128]邹小玲,许柯,丁丽丽,等.不同状态下的同一污泥胞外聚合物提取方法研究[J].环境工程学报,2010(2):436-440.
    [129]朱睿,吴敏,杨健, et al.浓缩污泥中胞外聚合物组分与脱水性的关系[J].北京大学学报:自然科学版,2010,46(3):385-388.
    [130]高永青,彭永臻,王建龙, et al.剩余污泥水解酸化过程中胞外聚合物的影响因素研究[J].中国环境科学,2010,30(1):58-63.
    [131] JIN B, WIL N B-M, LANT P. Impacts of morphological, physical and chemical properties ofsludge flocs on dewaterability of activated sludge[J]. Chemical Engineering Journal,2004,98(1):115-126.
    [132] HOUGHTON J I, STEPHENSON T. Effect of influent organic content on digested sludgeextracellular polymer content and dewaterability[J]. Water Research,2002,36(14):3620-3628.
    [133]何培培,余光辉,邵立明,等.污泥中蛋白质和多糖的分布对脱水性能的影响[J].环境科学,2009,29(12):3457-3461.
    [134] DURMAZ B, SANIN F. Effect of carbon to nitrogen ratio on the composition of microbialextracellular polymers in activated sludge[J]. Water Science&Technology,2001,44(10):221-229.
    [135]孙赛玉,李秀芬,封磊,等.膜生物反应器中膜污染层胞外多糖性质及污染特征[J].环境科学与技术,2008,31(9):99-102.
    [136]刘丽,任婷婷,徐得潜,等.高强度好氧颗粒污泥的培养及特性研究[J].中国环境科学,2008,28(4):360-364.
    [137]朱邦辉,万金保.好氧颗粒污泥中胞外聚合物作用机理的探讨[J].江西科学,2009,27(6):848-854.
    [138]张丽丽,陈效,陈建孟,等.胞外多聚物在好氧颗粒污泥形成中的作用机制[J].环境科学,2007,28(4):795-799.
    [139]廖青,李小明,杨麒, et al.好氧颗粒污泥的快速培养以及胞外多聚物对颗粒化的影响研究[J].工业用水与废水,2008,39(4):13-19.
    [140] LIU Y, YANG S-F, QIN L, et al. A thermodynamic interpretation of cell hydrophobicity inaerobic granulation[J]. Applied microbiology and biotechnology,2004,64(3):410-415.
    [141] REID E, LIU X, JUDD S. Effect of high salinity on activated sludge characteristics andmembrane permeability in an immersed membrane bioreactor[J]. Journal of Membrane Science,2006,283(1):164-171.
    [142] LIU H, FANG H H. Extraction of extracellular polymeric substances (eps) of sludges[J].Journal of Biotechnology,2002,95(3):249-256.
    [143] DE LIPTHAY J R, ENZINGER C, JOHNSEN K, et al. Impact of DNA extraction method onbacterial community composition measured by denaturing gradient gel electrophoresis[J]. SoilBiology and Biochemistry,2004,36(10):1607-1614.
    [144] SEKIGUCHI H, WATANABE M, NAKAHARA T, et al. Succession of bacterial communitystructure along the changjiang river determined by denaturing gradient gel electrophoresis andclone library analysis[J]. Applied and Environmental Microbiology,2002,68(10):5142-5150.
    [145] STAMPER D M, WALCH M, JACOBS R N. Bacterial population changes in a membranebioreactor for graywater treatment monitored by denaturing gradient gel electrophoreticanalysis of16s rrna gene fragments[J]. Applied and environmental microbiology,2003,69(2):852-860.
    [146] MCCAIG A E, GLOVER L A, PROSSER J I. Numerical analysis of grassland bacterialcommunity structure under different land management regimens by using16s ribosomal DNAsequence data and denaturing gradient gel electrophoresis banding patterns[J]. Applied andEnvironmental Microbiology,2001,67(10):4554-4559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700