用户名: 密码: 验证码:
鲢鱼脑的营养评价及生理活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是淡水鱼生产及加工大国,淡水鱼加工产生大量下脚料,若不进行有效处理,不仅造成资源浪费,而且污染环境。在中国的传统饮食文化中,吃脑可以补脑,鱼脑更被视为幼儿及青少年补脑佳品。药食同源的理念贯穿于中国的饮食文化中,除作为食材,中国民间常以鱼脑入药,医治头部病症。鱼脑营养丰富,富含多不饱和脂肪酸(PUFA)、磷脂、蛋白等物质,其中被称为“脑黄金”的二十碳五烯酸(EPA,C20:5n3)和二十二碳六烯酸(DHA,C22:6n3)含量较高。目前对鱼下脚料的利用中,鱼脑未经分离直接和鱼头被作为饲料处理或简单加工为低值产品,对其中有价值的功能性成分尚未提取和利用。本文对鲢鱼脑的营养价值进行了全面分析,并与鳙鱼,草鱼和青鱼脑比较;对鲢鱼脑脂肪的理化特性、挥发性物质及脂类组成进行了分析;对鲢鱼脑不同脂类组分在抗菌、抗血小板活化、抗氧化及抗肿瘤等方面的生理功效进行了进一步研究,探讨了鱼脑益智及保健的机理。本研究对于对阐明鱼脑的营养价值、揭示鱼脑的生理功能具有学术意义,对相关产业开发具有实用价值。
     首先对鲢鱼脑进行营养评价,并与鳙鱼、草鱼、青鱼对比,通过基本营养成分测定、氨基酸组成分析、氨基酸营养评价、矿物元素分析及脂肪酸组成分析等对鱼脑的营养价值进行了研究。结果表明:鱼脑脂肪含量高,鲢鱼、鳙鱼、草鱼、青鱼脑的脂肪含量分别为20.53g/100g、13.72g/100g、53.75g/100g、73.81g/100g;四种鱼脑蛋白质必需氨基酸组成合理,无限制性氨基酸;Na、Ca和P是四种鱼脑中含量最高的三种矿物质元素;脂肪酸分析表明四种淡水鱼脑PUFA含量丰富,二十碳四烯酸(ARA,C20:4n6)、EPA和DHA含量较高;四种淡水鱼脑中鲢鱼脑蛋白质(1.92g/100g)、必需氨基酸(7.96mg/g)及总氨基酸(16.64mg/g)含量最高,鲢鱼脑ARA(2.54%)、EPA(5.42%)、DHA(7.28%)、ω-3PUFA总量(20.56%)及ω-3/ω-6(2.77)远高于其余三种淡水鱼脑,草鱼脑的ω-6/ω-3为7.62,高于安全推荐限量4.0。
     鱼脑的营养价值主要来源于鱼脑中高含量及高质量的PUFA。在营养评价的基础上对鲢鱼脑脂肪的理化指标,挥发性物质,脂类组成及含量,尤其是磷脂的组成、含量及脂肪酸进行了分析。鲢鱼脑总脂肪(TL)具有较好的理化性质,其中碘价为124.26g/100g、过氧化值为2.42meq/kg、酸价为0.58mg/g,达到精制鱼油一级标准;鲢鱼脑TL共检出40种挥发性物质,烃类含量最高;极性脂肪(PL)和磷脂分别占鲢鱼脑TL的的22.73%和10.95%,磷脂中的磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)和磷酯酰丝氨酸(PS)之和占磷脂总量的83.9%;脂肪酸分析表明PL中PUFA含量为35.17%,高于中性脂肪(NL),PL中DHA含量是NL的6.3倍;鲢鱼脑PC、PE和PS的PUFA含量分别为33.19%、39.34%、36.27%,PC、PE和PS中EPA及DHA的含量均较高。丰富的磷脂含量及磷脂中结合的大量PUFA对于增强记忆,防治心血管疾病及癌症的预防和治疗具有积极意义。
     研究了鲢鱼脑TL、NL、PL抑菌,抗血小板活化因子(PAF)及抗氧化活性。结果表明:鲢鱼脑TL、NL及PL具有一定的抑菌能力,PL由于PUFA含量高,抑菌活性大于NL;鲢鱼脑TL、NL及PL对PAF诱导的血小板聚集表现出抑制作用,IC50分别为104.13μg、2.35μg、87.47μg,因此NL抗PAF活性的效价最高,这可能是因为NL中PAF拮抗剂的含量更高;氧化损伤是心脑血管疾病及癌症的重要诱因之一,在癌症的发生和发展中起重要作用。体外抗氧化研究发现鲢鱼脑脂肪可有效清除DPPH自由基,细胞抗氧化表明鲢鱼脑脂肪对H2O2氧化损伤的HEK-293细胞具有一定的保护作用,可提高H2O2氧化损伤HEK-293细胞的存活率,改善受损细胞的形态,提高抗氧化关键酶超氧化物歧化酶、谷胱甘肽过氧化物酶、过氧化氢酶的活性,PL富含磷脂,PUFA含量高,因此抗氧化活性高于NL。细菌除引起食品的腐败外,许多细菌活动也会产生PAF,而心脑血管疾病的发生与血小板的活化密切相关,此外,氧化损伤也是心脑血管疾病的重要诱因。鲢鱼脑脂肪抗菌、抗PAF及抗氧化的研究和发现对于揭示鱼脑的保健机理具有重要意义,表明鲢鱼脑脂肪具有预防或作为辅助因子用于治疗心脑血管疾病的潜能。
     研究了鲢鱼脑TL、NL及PL的体外抗肿瘤活性。结果表明:鲢鱼脑TL可抑制MCF-7,HeLa,CACO-2,HepG2细胞的增殖;TL、NL及PL对MCF-7细胞和HeLa细胞增殖的抑制活性表现为一定的时间效应和剂量效应;鲢鱼脑TL、NL及PL作用于MCF-7细胞和HeLa细胞后细胞形态发生明显变化,细胞数减少,细胞贴壁异常,染色质聚集,细胞表现为浓密致染;细胞周期分析发现,鲢鱼脑TL、NL及PL作用后,MCF-7细胞和HeLa细胞被阻滞在S期,其中处理48h后HeLa细胞出现较大凋亡峰,TL、NL及PL的Sub-G1比例分别为5.62%、3.06%、9.98%,因此鲢鱼脑脂肪通过阻滞S期及诱导细胞的凋亡而抑制MCF-7细胞和HeLa细胞的增殖;细胞凋亡率检测证实了鲢鱼脑脂肪对MCF-7细胞及HeLa细胞的作用方式是诱导凋亡而非坏死;对鲢鱼脑脂肪诱导肿瘤细胞凋亡机制的研究发现,鲢鱼脑脂肪作用后,MCF-7细胞和HeLa细胞细胞内活性氧(ROS)升高,TL、NL及PL处理MCF-7细胞24h后,ROS较对照分别上升了23.12%、17.69%、32.76%;JC-1染色,流式细胞仪对线粒体膜电位(Ψ)的分析指出鲢鱼脑TL、NL及PL处理会导致MCF-7细胞和HeLa细胞Ψ的降低,因此引起MCF-7细胞和HeLa细胞ROS的升高及的Ψ降低是鲢鱼脑脂肪诱导细胞凋亡的重要原因;PL富含磷脂,PUFA含量高,因此在鲢鱼脑三个脂肪组分中表现出最强的HeLa细胞和MCF-7细胞抑制活性。
China is rich in freshwater fishes and they are abundantly processed into diverse products.However, with the rapid increase of processing, large amounts of by-products are producedevery year. If the by-prducts are not exploited scientifically and rationally, it not only wastesthe resources, but also pollutes the environment. In China, fish brain is considered to benutritious and known to contribute to health and intelligence. Besides, fish brain has beenused in traditional Chinese medicine for the treatment of head diseases. Fish brain is rich inpolyunsaturated fatty acid (PUFA), phospholipids, protein et al. Eicosapentaenoic acid (EPA,C20:5n3) and docosahexaenoic acid (DHA, C22:6n3) which have been proved nutritious aswell as beneficial to physical and intelligent development are abundantly contained in fishbrain. However, brain, with other by-products is discarded or or used as material for feed.Lots of functional substances are not extracted. In the study, the nutritional value of brainfrom silver carp was evaluated and compared with big head carp, grass carp and black carp.The physicochemical properties, volatile compounds and lipid classes of silver carp brainlipids were determined. Furthermore, anti-platelet-activating factor (PAF), antibacterial,antioxidant and anticancer activities of lipids extracted from silver carp brain were studied.The mechanisms of fish brain in contributing to health and intelligence were discussed. Thisstudy was of theoretical significance and of great practical significance in exploiting fishbrain as functional products.
     Proximate composition, amino acid, essential amino acid score, mineral elements and fattyacid (FA) profiles of brain from silver carp were investigated and compared with big headcarp, grass carp and black carp. The results indicated that brains from the four fish specieswere rich in lipids. The lipids content of silver carp, bighead carp, grass carp and black carpwere20.53g/100g,13.72g/100g,53.75g/100g and73.81g/100g, respectively. No limitingamino acid existed in brains. Na, Ca, and Mg were the predominant minerals in brains of thefour fish species. FA analysis revealed that brains from the four freshwater fish speciescontained abundant PUFA, especially arachidonic acid (ARA, C20:4n6), EPA and DHA.Among the four fish species, silver carp brain had the highest protein content (1.92g/100g),essential amino acid (7.96mg/g), total amino acid (16.64mg/g), ARA (2.54%), EPA (5.42%)and DHA (7.28%) contents, total ω-3PUFA (20.56%) and ω-3/ω-6ratios (2.77). However,ω-6/ω-3ratio in brain of grass carp (7.62) was higher than safe range (4.0).
     The advantages of fish brain stem from the high content and quality of lipids. Thus, on thebasis of nutritional value evaluation, the physicochemical properties, volatile vompounds,lipid classes, especially phospholipids of silver carp brain lipids were analyzed. The lipidsextracted from brain of silver carp exhibited good physicochemical properties, of which theiodine value (124.26g/100g), peroxide value (2.42meq/kg) and acid value (0.58mg/g) reached to the first-grade criterion of refined fish oil. Forty volatile compounds wereidentified, of which hydrocarbons predominated. The ratios of polar lipid (PL) andphospholipids to total lipids were22.73%and10.95%respectively. Phosphatidylcholine (PC),phosphatidylethanolamine (PE) and phosphatidylserine (PS) accounted for83.9%of thephospholipids. The PUFA level in PL (35.17%) is higher than that in neutral lipid (NL), ofwhich the level of DHA in PL was6.3times of that in NL. The PUFA levels of PC, PE and PSwere33.19%,39.34%and36.27%, respectively. PC, PE and PS were rich in EPA and DHA.The abundant phospholipids and PUFA content may assist to explain the intelligencebeneficial activities as well as pharmacological activities of fish lipids against variousdiseases including cardiovascular diseases, liver disease, cancer and so on
     The capabilities of lipids (TL, NL, PL) from silver carp brain in antibacterial, anti-PAFand antioxidant activities were studied. TL, NL and PL from silver carp brain exhibitedantibacterial activity. Because of higher PUFA content in PL, it showed stronger antibacterialactivity than NL. The silver carp brain lipids exhibited strong anti-PAF activity. The IC50value of TL, NL and PL was104.13μg,2.35μg and87.47μg, respectively. Thus, theanti-PAF activity of TL was mainly attributed to NL because NL may contain more PAFantagonists. The scavenging effects for1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assayindicated TL, NL and PL possessed strong antiradical activities. HEK-293cells were used asan oxidative stress model to investigate the protective effects of silver carp brain lipids againstH2O2-induced cytotoxicity and apoptosis. TL, NL and PL showed protective effects onH2O2-induced HEK-293cells, including increasing cell viability, improving injured cellmorphology as well as increasing the activities of superoxide dismutase, Glutathioneperoxidase and catalase which are regarded as the first line of the antioxidant defense systemduring oxidative stress. Therefore, lipids from silver carp brain possessed strong antioxidantactivty, and because of abundant phospholipids and higher level of PUFA contained in PL, PLplayed more important in antioxidant acitivity. Many foods primarily deteriorate because ofmicrobes that give rise to the loss of quality and safety. In addition, numerous bacteria areable to produce PAF. PAF, which is a key in atherosclerosis development, is also an extremelypotent aggregating agent participating in the inflammatory development of plaque and theblockage of blood vessels that finally lead to coronary heart disease. Besides, oxidativedamages are engaged in the development of cardiovascular disease and cancer. The presentstudy may help to explain the protective role of fish lipids against diseases and may beresponsible for the effectiveness of fish brain in benefiting health. Furthermore, the resultsmay shed light on the utilization of silver carp brain lipids as eligible bioactive ones forprevention and treatement of cardiovascular disease.
     The anticancer activity of silver carp brain lipids (TL, NL, PL) were investigaged. Theproliferations of MCF-7cells,HeLa cells,CACO-2cells and HepG2cells were suppressed by TL from silver carp brain. TL, NL and PL suppressed the proliferations of MCF-7cells andHeLa cells in time-and dose-dependent manner. Exposure MCF-7cells and HeLa cells to TL,NL and PL resulted in loss of adhesion and the cells rounding up, indicating the possibility ofapoptosis occurrence. The results observed from fluorescence microscope showed thatincubated MCF-7cells and HeLa cells with sliver carp brain lipids resulted in nucleifragmentation as indicated in condensed chromatin and bright staining in morphology,indicating apoptosis. Cell cycle progressions were determined by flow cytometry. The resultsindicated that after treatment with TL, NL and PL, MCF-7cells and HeLa cells were arrestedat S stage. The obvious apoptotic peaks were observed after HeLa cells were incubated withlipids for48h. Compared to control, the Sub-G1proportions of TL, NL and PL were increased5.62%,3.06%and9.98%, respectively. Therefore, lipids from silver carp brain inhibited theproliferations of MCF-7cells and Hela cells through promoting apoptosis and blocking Sphase. The detecting of apoptosis proved that the effects of silver carp brain lipids onMCF-7cells and HeLa cells were primarily apoptosis rather than necrosis. The production ofROS was significantly increased in lipids treated MCF-7cells and Hela cells in comparison ofcontrol. For instances, after treated by TL, NL and PL for24h, compared to control, the ROSlevel of MCF-7cells increased23.12%,17.69%and32.76%, respectively. Further analysisindicated that TL, NL and PL could cause the collapse of mitochondrial membrane potential(Ψ) of MCF-7cells and HeLa cells. Thus, the apoptotic effects of silver carp brain lipids onMCF-7cells and HeLa cells were associated with the elevated level of ROS accumulation andthe loss of Ψ. The anticancer role of PL surpassed that of NL which may attributed toabundant phspholipids and higher PUFA level in PL.
引文
[1]中国农业部渔业局.2013年渔业统计年鉴[M].北京:中国农业出版社,2013.
    [2]张丽.鲣鱼脑的磷脂提取及活性研究[D]:[硕士论文].大连海洋大学,2013.
    [3]张路遥,姜启兴,许艳顺等.高温杀菌冷却速率对食品品质的影响研究[J].食品工业科技,2013,(14):113-116.
    [4] Innis S M. The role of dietary n-6and n-3fatty acids in the developing brain[J]. DevelopmentalNeuroscience,2000,22(5-6):474-480.
    [5]刘安军,马志民,朱振元等.猪脑中磷脂的提取及鉴定分析[J].现代食品科技,2008,(10):999-1001.
    [6]杨雅婷,刘代成.动物脑组织磷脂的薄层分离测定[J].山东科学,2007,(01):38-41.
    [7]李想.脑蛋白水解物类药物中活性成分的比较分析[D]:[硕士论文].东北林业大学,2005.
    [8]孙中武,王宏伟.动物脑蛋白水解物研究进展及生产工艺中若干问题的解决初探[J].东北林业大学学报,2004(01):68-69.
    [9]杨树长,陈雅蕙,王镜岩等.猪脑抗吗啡镇痛肽的分离纯化及其抗血清对吗啡耐受影响的初步研究[J].生物化学杂志,1997,(03):322-326.
    [10] Zhang H M, Zhang X N, Xu B J. Analys is and determination of biological activity of short-chainpeptides from porcine brain hydrolysate[J]. Journal of Pharmaceutical and Biomedical Analys is,2005,37(2):333-339.
    [11]姜悦,陈远童,陈峰.多不饱和脂肪酸及其保健食品[J].中国食品,1999,(06):29.
    [12] Reppond K, De Oliveira A C M, Bechtel P J. Enzymatic Digestion of Eye and Brain Tissues ofSockeye and Coho Salmon and Dusky Rockfish Commercially Harvested in Alaska[J]. Journal ofAquatic Food Product Technology,2009,18(3):209-222.
    [13] Stoknes I S, Okland H M, Falch E, et al. Fatty acid and lipid class composition in eyes and brain fromteleosts and elasmobranchs[J]. Comparative Biochemistry and Physiology. B, ComparativeBiochemistry,2004,138(2):183-191.
    [14] Anel A, Naval J, Desportes P, et al. Increased cytotoxicity of polyunsaturated fatty-acids on humantumoral b-cell and t-cell lines compared with normal lymphocytes[J]. Leukemia,1992,6(7):680-688.
    [15] Whigham L D, Cook M E, Atkinson, R L. Conjugated linoleic acid: implications for human health[J].Pharmacological Research,2000,42:503-510.
    [16]程朝晖,金波,华文俊.不饱和脂肪酸的分离及应用进展[J].食品工业科技,2004,(05):143-144.
    [17] Alessandra P, Maurizio P, Gianni T, et al. Effect of Diets Containing Different Oils on Brain FattyAcid Composition in Sea Bass (Dicentrarchus Labrax L.)[J]. Comparative Biochemistry andPhysiology,1986,83B(2):277-282.
    [18] Zabelinskii S A, Chebotareva M A, Ivanova V P, et al. Peculiarities of ultraviolet absorption spectra oflamprey and rat brain lipid extracts and their correlation with fatty acid composition[J]. Journal ofEvolutionary Biochemistry and Physiology,2001,37(5):535-541.
    [19] Douglas R T, Douglas G H. Fatty acid compositions of the major phosphoglycerides from fish neuraltissues;(n-3) and (n-6) polyunsaturated fatty acids in rainbow trout (Salmo gairdneri) and cod (Gadusmorhua) brains and retinas[J]. Fish Physiology and Biochemistry,1988,5(4):229-239.
    [20]殷涌光,陈玉江,刘瑜等.磷脂功能性质及其生产应用的研究进展[J].食品与机械,2009,(03):120-124.
    [21] Hanus L O, Rezanka T, Dembitsky V M. Fatty acid and phospholip id profile of freshwater sardineMirogrex terraesanctae from the sea of Galilee[J]. Journal of Food Lipids,2008,15(2):150-163.
    [22]黄书才,谌红献. ω-3多不饱和脂肪酸对认知功能影响的研究进展[J].中国神经精神疾病杂志,2013,(02):111-114.
    [23]韩宏裕,苏宜香.妊娠与哺乳妇女对n-3系长链多不饱和脂肪酸的营养需要[J].中山医科大学学报,2002,(04):318-319.
    [24]钱兴国,苏宜香,苗丽曼等.孕妇、乳母二十二碳六烯酸摄入水平对婴儿早期运动发育和视功能的影响[J].中国儿童保健杂志,2004,(02):123-126.
    [25]刘汇汇,方玉英,徐辉.磷脂的营养保健功能及其应用[C].上海市粮油学会2004年学术年会.中国上海.2004.
    [26]黄楚龙,方玉婵,江涛.鲨鱼脑提取物对小鼠学习记忆的影响及毒性研究[J].广东药学,2000,(05):53-54.
    [27] Brooksbank B W, Martinez M. Lipid abnormalities in the brain in adult Down's syndrome andAlzheimer's disease.[J]. Molecular and Chemical Neuropathology,1989,11(3):157-185.
    [28]谢朝顺,李桂华.羊、猪、鸡脑中磷脂及磷脂脂肪酸组成分析[J].河南工业大学学报(自然科学版),2010,(04):29-31.
    [29] Simonetti M S, Blasi F, Bosi A, et al. Stereospecific analysis of triacylglycerol and phospholipidfractions of four freshwater fish species: Salmo trutta, Ictalurus punctatus, Ictalurus melas andMicropterus salmoides[J]. Food Chemistry,2008,110(1):199-206.
    [30] Lei L, Li J, Li G, et al. Stereospecific analysis of triacylglycerol and phospholipid fractions of fivewild freshwater fish from poyang lake[J]. Journal of Agricultural and Food Chemistry,2012,60(7):1857-1864.
    [31] Kim M, Choi M. Seven dietary minerals (Ca, P, Mg, Fe, Zn, Cu, and Mn) and their relationship withblood pressure and blood lipids in healthy adults with self-selected diet[J]. Biological Trace ElementResearch,2013,153(1-3):69-75.
    [32]杨学东,白秀珍.头发中锌、铜、铅含量与儿童智商的关系[J].数理医药学杂志,2006,(04):430-432.
    [33] Nabavi S F, Nabavi S M, Latifi A M, et al. Determination of trace elements level of pikeperchcollected from the caspian sea[J]. Bulletin of Environmental Contamination and Toxicology,2012,88(3):401-405.
    [34]付迎,韩梅.火焰原子吸收光谱法测定鱼脑和鱼肉中铜、锌的含量[J].光谱实验室,2000,(02):229-231.
    [35]钟宇,江黎明. ω-3多不饱和脂肪酸生理功能的研究概况[J].国际检验医学杂志,2010,(10):1137-1139.
    [36]刘利江,刘辉.多不饱和脂肪酸的营养功能及其与运动能力的关系研究[J].和田师范专科学校学报,2007,(06):203-204.
    [37]胡小中,温光源,刘小炜.磷脂的生物合成与生理功能[C].中国粮油学会第二届学术年会.中国成都.2002.
    [38]曹栋,裘爱泳,王兴国.磷脂结构、性质、功能及研究现状(2)[J].粮食与油脂,2004,(06):13-16.
    [39] Ting H, Hsu Y, Tsai C, et al. The in vitro and in vivo antioxidant properties of seabuckthorn(Hippophae rhamnoides L) seed oil[J]. Food Chemistry,2011,125(2):652-659.
    [40]鲍建民.多不饱和脂肪酸的生理功能及安全性[J].中国食物与营养,2006,(01):45-46.
    [41] Tisdale M J. The 'cancer cachectic factor'[J]. Supportive Care in Cancer,2003,11(2):73-78.
    [42] Hudson E A, Tisdale M J. Comparison of the effectiveness of eicosapentaenoic acid administered aseither the free acid or ethyl-ester as an anticachectic and antitumor agent[J]. ProstaglandinsLeukotrienes and Essential Fatty Acids,1994,51(2):141-145.
    [43] Barber M D, McMillan D C, Preston T, et al. Metabolic response to feeding in weight-losingpancreatic cancer patients and its modulation by a fish-oil-enriched nutritional supplement[J]. ClinicalScience,2000,98(4):389-399.
    [44] Murphy R A, Mourtzakis M, Chu Q S C, et al. Nutritional intervention with fish oil provides a benefitover standard of care for weight and skeletal muscle mass in patients with nonsmall cell lung cancerreceiving chemotherapy[J]. Cancer,2011,117(8):1775-1782.
    [45] Ueda K, Asai Y, Yoshimura Y, et al. Effect of oil-in-water lipid emulsions prepared with fish oil orsoybean oil on the growth of MCF-7cells and HepG2cells[J]. Journal of Pharmacy andPharmacology,2008,60(8):1069-1075.
    [46]王琦.海产动物来源n-3PUFA磷脂的提取及生物活性研究[D]:[博士论文].中国海洋大学,2008.
    [47] Kafrawy O, Zerouga M, Stillwell W, et al. Docosahexaenoic acid in phosphatidylcholine mediatescytotoxicity more effectively than other omega-3and omega-6fatty acids[J]. Cancer Letters,1998,132(1-2):23-29.
    [48]杨玉红,王静凤,龙腾腾等.磷脂型DHA对肿瘤细胞凋亡的影响[J].中国药理学通报,2011,(02):178-182.
    [49]王琼瑶,阮征,李俊侃.鸽脑磷脂软胶囊改善人体记忆的研究[J].中国热带医学,2007,(10):1904-1905.
    [50]蔡宝玉,王利平,王树英.甘露青鱼肌肉营养分析和评价[J].水产科学,2004,(09):34-35.
    [51]程汉良,蒋飞,彭永兴等.野生与养殖草鱼肌肉营养成分比较分析[J].食品科学,2013,(13):266-270.
    [52]黄湘芬,陈开健,许宝红等.不同饲养条件下的鳙鱼肌肉营养成分研究[J].当代水产,2011,(07):57-61.
    [53]金庆华,李桂玲.中国鲢鱼营养成分的研究[J].食品科学,1998,(08):41-43.
    [54] AOAC (1997) Method for the determination of hydroxyl value of animal and vegetable oil[S],16th edn.Association of Official Analytical Chemists, Arlington, VA, USA.
    [55] Folch J, Lees M, Sloane Stanley G H. A simple method for the isolation and purification of totallipides from animal tissues[J]. The Journal of Biological Chemistry,1957,226(1):497-509.
    [56] FAO (1989) Yield and nutritional value of the commercially more important fish species[R]. FAOFish309:1-187.
    [57] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248-254.
    [58] Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature,1970,227(5259):680-685.
    [59] FAO/WHO/UNU (1985) Energy and protein requirements: Report of a joint FAO/WHO/UNU ExpertConsultation[R]. World Health Organization Technical Report Series724:1-206.
    [60] FAO/WHO. Joint FAO/WHO food standards programme codex committee additives andcontaminants[R]. Geneva: FAO/WHO,1997.
    [61] Wu X, Zhou B, Cheng Y, et al. Comparison of gender differences in biochemical composition andnutritional value of various edible parts of the blue swimmer crab[J]. Journal of Food Compositionand Analysis,2010,23(2):154-159.
    [62] Wise M B, Ordoveza A L, Barrick E R. Influence of variations in dietary calcium: phosphorus ratio onperformance and blood constituents of calves[J]. The Journal of Nutrition,1963,79:79-84.
    [63] Pagliarani A, Pirini M, Trigari G, et al. Effect of diets containing different oils on brain fatty acidcomposition in sea bass (Dicentrarchus labrax L.)[J]. Comparative Biochemistry and Physiology. B,Comparative Biochemistry,1986,83(2):277-282.
    [64] Karapanagiotidis I T, Yakupitiyage A, Little D C, et al. The nutritional value of lipids in varioustropical aquatic animals from rice–fish farming systems in northeast Thailand[J]. Journal of FoodComposition and Analysis,2010,23(1):1-8.
    [65] Usydus Z, Szlinder-Richert J, Adamczyk M, et al. Marine and farmed fish in the Polish market:Comparison of the nutritional value[J]. Food Chemistry,2011,126(1):78-84.
    [66] Xu J, Yan B, Teng Y, et al. Analysis of nutrient composition and fatty acid profiles of Japanese seabass Lateolabrax japonicus (Cuvier) reared in seawater and freshwater[J]. Journal of FoodComposition and Analysis,2010,23(5):401-405.
    [67] Bettger W J, DiMichelle-Ranalli E, Dillingham B, et al. Nervonic acid is transferred from the maternaldiet to milk and tissues of suckling rat pups[J]. Journal of Nutritional Biochemistry,2003,14(3):160-165.
    [68]龚蜜,王亚南,王素娟等.神经酸的研究进展[J].中国蜂业,2011,(Z3):50-53.
    [69] Kelley D S, Branch L B, Love J E, et al. Dietary alpha-linolenic acid and immunocompetence inhumans[J]. The American Journal of Clinical Nutrition,1991,53(1):40-46.
    [70] Xie C L, Woollett L A, Turley S D, et al. Fatty acids differentially regulate hepatic cholesteryl esterformation and incorporation into lipoproteins in the liver of the mouse[J]. Journal of Lipid Research,2002,43(9):1508-1519.
    [71] Harper C R, Jacobson T A. Usefulness of omega-3fatty acids and the prevention of coronary heartdisease[J]. American Journal of Cardiology,2005,96(11):1521-1529.
    [72] Zheng Z J, Folsom A R, Ma J, et al. Plasma fatty acid composition and6-year incidence ofhypertension in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study.[J].American Journal of Epidemiology,1999,150(5):492-500.
    [73] Muskiet F, van Goor S A, Kuipers R S, et al. Long-chain polyunsaturated fatty acids in maternal andinfant nutrition[J]. Prostaglandins Leukotrienes and Essential Fatty Acids,2006,75(3):135-144.
    [74] HMSO. Nutritional aspects of cardiovascular disease. Report of the Cardiovascular Review GroupCommittee on Medical Aspects of Food Policy[R]. Reports on Health and Social Subjects,1994,46:1-186.
    [75] Moreira A P B, Sabarense C M, Dias C M G C, et al. Fish oil ingestion reduces the number of aberrantcrypt foci and adenoma in1,2-dimethylhydrazine-induced colon cancer in rats[J]. Brazilian Journal ofMedical and Biological Research,2009,42(12):1167-1172.
    [76]林杰.不饱和脂肪酸的生理功能及其应用进展[J].广东化工,2013,(06):92-93.
    [77] Kinsella J E, Lokesh B, Stone R A. Dietary n-3polyunsaturated fatty acids and amelioration ofcardiovascular disease: possible mechanisms[J]. The American Journal of Clinical Nutrition,1990,52(1):1-28.
    [78] Simopoulos A P. Omega-3fatty acids in inflammation and autoimmune diseases[J]. Journal of theAmerican College of Nutrition,2002,21(6):495-505.
    [79] Sargent J R. Fish oils and human diet[J]. The British Journal of Nutrition,1997,78Suppl1: S5-S13.
    [80]曾学熙,刘书成,欧广勇等.从鱼糜下脚料中提取鱼油的研究[J].南方水产,2007,(02):60-65.
    [81] Hellhammer J, Waladkhani A R, Hero T, et al. Effects of milk phospholipid on memory andpsychological stress response[J]. British Food Journal,2010,112(10-11):1124-1137.
    [82]罗毅皓.牦牛脑磷脂的萃取及其表征[J].现代食品科技,2008,(09):911-913.
    [83]高尔,李华洲,于淑敏等.兔脑的化学成分分析和磷脂制备[J].中国生化药物杂志,1997,(02):62-64.
    [84] Cohn J S, Kamili A, Wat E, et al. Dietary phospholipids and intestinal cholesterol absorption[J].Nutrients,2010,2(2):116-127.
    [85]陈文娟,陈建福.大黄鱼鱼卵脂质含量及脂肪酸组成分析[J].肉类工业,2012,(04):21-23.
    [86]大连轻工业学院八大院校.食品分析[M].北京:中国轻工业出版社,2002.
    [87] Nasopoulou C, Karantonis H C, Andriotis M, et al. Antibacterial and anti-PAF activity of lipid extractsfrom sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparus aurata)[J]. Food Chemistry,2008,111(2):433-438.
    [88] Galanos D S, Kapoulas V M. Isolation of polar lipids from triglyceride mixtures[J]. Journal of LipidResearch,1962,1-3:134-137.
    [89] AOCS (1999) Official and tentative methods of the American Oil Chemists' Society[S].5th edn.Champaign, USA.
    [90]王肇慈.粮油食品品质分析[M].北京:中国轻工业出版社,2005.
    [91] Pomeranz Y, Meloan C E. Food analysis; theory and practice[M]. Avi/Van Nostrand Reinhold Co.,New York.1987.
    [92] ISO (2001) Animal and vegetable fats and oils: Determination of peroxide value[S]. InternationalOrganisation for Standardisation.
    [93] Watson C A. Official and standardized methods of analys is[M]. The Royal Society of Chemistry,Cambridge, UK.1994.
    [94] ISO (2000) Animal and vegetable fats and oils: Determination of unsaponifiable matter-method usingdiethyl ether extraction[S]. International Organisation for Standardisation.
    [95] Liu S C, Li D T, Hong P Z, et al. Cholesterol, Lipid content, and fatty acid composition of differenttissues of farmed cobia (rachycentron canadum) from China[J]. Journal of the American Oil ChemistsSociety,2009,86(12):1155-1161.
    [96] Dannenberger D, Nuernberg G, Scollan N, et al. Diet alters the fatty acid composition of individualphospholipid classes in beef muscle[J]. Journal of Agricultural and Food Chemistry,2007,55(2):452-460.
    [97] Immanuel G, Sathasivan S, Shankar V S, et al. Processing and characterisation of low cost Balistidfish Sufflamen capistratus liver oil for edible purpose[J]. Food Chemistry,2009,115(2):430-435.
    [98] Jourdehi A Y, Sabour A K, Ghashti G Z. Initial investigation on liver oil extraction from threesturgeon species of the Caspian Sea[J]. Journal of Applied Ichthyology,2006,22:427-429.
    [99] Boran G, Karacam H, Boran M. Changes in the quality of fish oils due to storage temperature andtime[J]. Food Chemistry,2006,98(4):693-698.
    [100] Shipar M A H. Physical and chemical characteristics, major fatty acids, antimicrobial activity andtoxicity analysis of red shrimp (Metapenaeus brevicornis) brain lipid[J]. Food Chemistry,2007,102(3):649-655.
    [101] Yin H, Solval K M, Huang J, et al. Effects of oil extraction methods on physical and chemicalproperties of red salmon oils (Oncorhynchus nerka)[J]. Journal of the American Oil Chemists Society,2011,88(10):1641-1648.
    [102] Sathivel S, Prinyawiwatkul W, Negulescu I I, et al. Thermal degradation of FA and catfish andmenhaden oils at different refining steps[J]. Journal of the American Oil Chemists Society,2003,80(11):1131-1134.
    [103] Crawford L, Kretsch M J, Guadagni D. Identification of volatiles from extracted commercial tuna oilwith a high docosahexaenoic acid content[J]. Journal of the Science of Food and Agriculture,1976,27(6):531-535.
    [104] Giogios I, Grigorakis K, Nengas I, et al. Fatty acid composition and volatile compounds of selectedmarine oils and meals[J]. Journal of the Science of Food and Agriculture,2009,89(1):88-100.
    [105] Hsleh T C Y, Williams S S, Vejaphanb W, et al. Characterization of volatile components ofmenhaden fish (brevoortia tyrannus) oil[J]. Journal of the American Oil Chemists' Society,1989,66(1):114-117.
    [106] Karahadian C, Lindsay R C. Evaluation of compounds contributing characterizing fishy flavor in fishoils[J]. Journal of the American Oil Chemists' Society,1989,66(7):953-960.
    [107] Shoeb Z E, Salama F M, El-Nockrashy A S. Investigations on fish oils. V. Phospholipid compositionof Anguilla vulgaris and Mugil cephalus[J]. Die Nahrung,1973,17(1):31-40.
    [108] Som C R S, Radhakrishnan C K. Antibacterial activities of polyunsaturated fatty acid extracts fromSardinella longiceps and Sardinella fimbriata[J]. Indian Journal of Geo-Marine Sciences,2011,40(5):710-716.
    [109]刘凯,魏延津,李敬田.血小板活化因子表达与急性冠脉综合症的相关性研究[J].山东医学高等专科学校学报,2013,(01):15-16.
    [110]沈志强,陈植和,王德成.12种云南胡椒属植物乙醇提取物抗血小板活化因子作用的筛选[J].昆明医学院学报,1997,(03):26-28.
    [111]张艺,贾敏如,孟宪丽等.中药紫花前胡抗血小板活化因子(PAF)作用的研究[J].成都中医药大学学报,1997,(01):40-41.
    [112]张永忠,李小莉,郭群.辛夷木脂素类成分抗血小板活化因子(PAF)作用的研究[J].湖北中医杂志,2001,(10):7.
    [113] Nomikos T, Karantonis H C, Skarvelis C, et al. Antiatherogenic properties of lipid fractions of rawand fried fish[J]. Food Chemistry,2006,96(1):29-35.
    [114] Ogata M, Nandate K, Kawasaki T, et al. A platelet activating factor receptor antagonist inhibitscytokine production in human whole blood by bacterial toxins and live bacteria[J]. Anesthesia andAnalgesia,2004,98(6):1767-1772.
    [115] Antonopoulou S, Semidalas C E, Koussissis S, et al. Platelet-activating factor (PAF) antagonists infoods: A study of lipids with PAF or anti-PAF-like activity in cow's milk and yogurt[J]. Journal ofAgricultural and Food Chemistry,1996,44(10):3047-3051.
    [116] Nasopoulou C, Tsoupras A B, Karantonis H C, et al. Fish polar lipids retard atherosclerosis in rabbitsby down-regulating PAF biosynthesis and up-regulating PAF catabolism[J]. Lipids in Health andDisease,2011,10.
    [117]宫芸芸.氧化损伤与癌症的发生和预防[J].国外医学(卫生学分册),2000,(01):11-14.
    [118] NCCLS (National Committee for Clinical Laboratory Standards): In Performance standards forantimicrobial susceptibility test[S]. Wayne:NCCLS;1999.
    [119] Tian H, Zhang H, Zhan P, et al. Composition and antioxidant and antimicrobial activities of whiteapricot almond (Amygdalus communis L.) oil[J]. European Journal of Lipid Science and Technology,2011,113(9):1138-1144.
    [120] Jin M M, Zhang L, Yu H X, et al. Protective effect of whey protein hydrolysates on H2O2-inducedPC12cells oxidative stress via a mitochondria-mediated pathway[J]. Food Chemistry,2013,141(2):847-852.
    [121] Lu X, Guo H, Zhang Y. Protective effects of sulfated chitooligosaccharides against hydrogenperoxide-induced damage in MIN6cells[J]. International Journal of Biological Macromolecules,2012,50(1):50-58.
    [122] Bak M J, Jun M, Jeong W S. Antioxidant and Hepatoprotective Effects of the Red Ginseng EssentialOil in H2O2-Treated HepG2Cells and CCl(4)-Treated Mice[J]. International Journal of MolecularSciences,2012,13(2):2314-2330.
    [123] Bae J H, Lim S Y. Chemical composition, antiproliferative and antioxidant properties of lipid classesin ordinary and dark muscles from chub mackerel (Scomber japonicus)[J]. Food and ChemicalToxicology,2012,50(3-4):823-828.
    [124] Zheng C J, Yoo J S, Lee T G, et al. Fatty acid synthesis is a target for antibacterial activity ofunsaturated fatty acids[J]. Febs Letters,2005,579(23):5157-5162.
    [125] Mil-Homens D, Bernardes N, Fialho A M. The antibacterial properties of docosahexaenoic omega-3fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia[J]. FemsMicrobiology Letters,2012,328(1):61-69.
    [126] Mishra P M, Sree A, Acharya M, et al. Fatty acid profile, volatiles and antibacterial screening oflipids of the sponge Fasciospongia cavernosa (Schmidt) collected from the Bay of Bengal (OrissaCoast)[J]. Journal of the Serbian Chemical Society,2009,74(11):1241-1248.
    [127] Duan R, Nilsson A. Metabolism of sphingolipids in the gut and its relation to inflammation andcancer development[J]. Progress in Lipid Research,2009,48(1):62-72.
    [128] Duan J, Sugawara T, Hirata T. Rapid Quantitative Analysis of Sphingolipids in Seafood Us ing HPLCwith Evaporative Light-Scattering Detection: Its Application in Tissue Distribution of Sphingolipids inFish[J]. Journal of Oleo Science,2010,59(9):509-513.
    [129] Strobel C, Jahreis G, Kuhnt K. Survey of n-3and n-6polyunsaturated fatty acids in fish and fishproducts[J]. Lipids in Health and Disease,2012,11.
    [130] Mori T A, Beilin L J, Burke V, et al. Interactions between dietary fat, fish, and fish oils and theireffects on platelet function in men at risk of cardiovascular disease[J]. Arteriosclerosis Thrombosisand Vascular Biology,1997,17(2):279-286.
    [131] Nasopoulou C, Nomikos T, Demopoulos C A, et al. Comparison of antiatherogenic properties oflipids obtained from wild and cultured sea bass (Dicentrarchus labrax) and gilthead sea bream (Sparusaurata)[J]. Food Chemistry,2007,100(2):560-567.
    [132] Richard D, Kefi K, Barbe U, et al. Polyunsaturated fatty acids as antioxidants[J]. PharmacologicalResearch,2008,57(6):451-455.
    [133] Nitta H, Kinoyama M, Watanabe A, et al. Effects of nutritional supplementation with antioxidantvitamins and minerals and fish oil on antioxidant status and psychosocial stress in smokers: an opentrial[J]. Clinical and Experimental Medicine,2007,7(4):179-183.
    [134]朱玲娇.禽蛋磷脂组成及其结构特点分析研究[D]:[硕士论文].华中农业大学,2013.
    [135] Mori T A. Effect of fish and fish oil-derived omega-3fatty acids on lipid oxidation[J]. Redox Report,2004,9(4):193-197.
    [136]夏春燕,郭晓晖,李富华等.细胞抗氧化活性方法在食物抗氧化活性评价中的研究进展[J].食品科学,2012,(15):297-302.
    [137] Liu Q, Wu D, Ni N, et al. Omega-3polyunsaturated fatty acids protect neural progenitor cells againstoxidative injury[J]. Marine drugs,2014,12(5):2341-2356.
    [138]黎巍威,王学美. PC12细胞作为氧化应激细胞模型的研究进展[J].中国中西医结合杂志,2011,31(11):1575-1580.
    [139] Fukui M, Kang K S, Okada K, et al. EPA, an omega-3fatty acid, induces apoptosis in humanpancreatic cancer cells: Role of ROS accumulation, caspase-8activation, and autophagy induction[J].Journal of Cellular Biochemistry,2013,114(1):192-203.
    [140] Kaizer L, Boyd N F, Kriukov V, et al. Fish consumption and breast cancer risk: an ecologicalstudy[J]. Nutrition and Cancer,1989,12(1):61-68.
    [141] Dekoj T, Lee S, Desai S, et al. G2/M cell-cycle arrest and apoptosis by n-3fatty acids in a pancreaticcancer model[J]. Journal of Surgical Research,2007,139(1):106-112.
    [142] Giros A, Grzybowski M, Sohn V R, et al. Regulation of colorectal cancer cell apoptosis by the n-3polyunsaturated fatty acids docosahexaenoic and eicosapentaenoic[J]. Cancer Prevention Research,2009,2(8):732-742.
    [143] Kang K S, Wang P, Yamabe N, et al. Docosahexaenoic acid induces apoptosis in MCF-7Cells invitro and in vivo via reactive oxygen species formation and Caspase8activation[J]. PloS one,2010,5(4).
    [144] Kuan C, Walker T H, Luo P G, et al. Long-chain polyunsaturated fatty acids promote paclitaxelcytotoxicity via inhibition of the MDR1gene in the human colon cancer Caco-2cell line[J]. Journal ofthe American College of Nutrition,2011,30(4):265-273.
    [145] Begin M E, Das U N, Ells G, et al. Selective killing of human cancer cells by polyunsaturated fattyacids[J]. Prostaglandins, Leukotrienes, and Medicine,1985,19(2):177-186.
    [146] Kerr J, Winterford C M, Harmon B V. Apoptosis-its significance in cancer and cancer-therapy[J].Cancer,1994,73(8):2013-2026.
    [147] Chien A L T, Pihie A H L. Styrylpyrone derivative induces apoptosis through the up-regulation ofbax in the human breast cancer cell line MCF-7[J]. Journal of Biochemistry and Molecular Biology,2003,36(3):269-274.
    [148]李娜,高俊岩,刘敏.细胞凋亡和肿瘤的关系研究进展[J].当代医学,2009,(16):13-14.
    [149] Arur S, Uche U E, Rezaul K, et al. Annexin I is an endogenous ligand that mediates apoptotic cellengulfment[J]. Developmental Cell,2003,4(4):587-598.
    [150] McCourt M, Wang J H, Sookhai S, et al. Taurolidine inhibits tumor cell growth in vitro and invivo[J]. Annals of Surgical Oncology,2000,7(9):685-691.
    [151] Sun Y, Song C, Viemstein H, et al. Apoptos is of human breast cancer cells induced bymicroencapsulated betulinic acid from sour jujube fruits through the mitochondria transductionpathway[J]. Food Chemistry,2013,138(2-3):1998-2007.
    [152] Kachhap S K, Dange P P, Santani R H, et al. Effect of omega-3fatty acid (docosahexanoic acid) onBRCA1gene expression and growth in MCF-7cell line[J]. Cancer Biotherapy andRadiopharmaceuticals,2001,16(3):257-263.
    [153] Sauer L A, Dauchy R T, Blask D E, et al. Eicosapentaenoic acid suppresses cell proliferation inMCF-7human breast cancer xenografts in nude rats via a pertussis toxin-sensitive signal transductionpathway[J]. Journal of Nutrition,2005,135(9):2124-2129.
    [154] Schley P D, Robinson L E, Field C J. Eicosapentaenoic acid and docosahexaenoic acid induceapoptosis in MDA-MB-231and MCF-7human breast cancer cells[J]. Faseb Journal,2003,17(5):A1373.
    [155] Hossain Z, Hosokawa M, Takahashi K. Growth inhibition and induction of apoptosis of colon cancercell lines by applying marine phospholipid[J]. Nutrition and Cancer-an International Journal,2009,61:123-130.
    [156] Boselli E, Pacetti D, Lucci P, et al. Characterization of phospholipid molecular species in the edibleparts of bony fish and shellfish[J]. Journal of Agricultural and Food Chemistry,2012,60(12):3234-3245.
    [157] Aronson W J, Glaspy J A, Reddy S T, et al. Modulation of omega-3/omega-6polyunsaturated ratioswith dietary fish oils in men with prostate cancer[J]. Urology,2001,58(2):283-288.
    [158] Wyllie A H. Glucocorticoid-induced thymocyte apoptosis is associated with endogenousendonuclease activation[J]. Nature,1980,284(5756):555-556.
    [159] Kerr J F, Wyllie A H, Currie A R. Apoptos is: a basic biological phenomenon with wide-rangingimplications in tissue kinetics[J]. British Journal of Cancer,1972,26(4):239-257.
    [160] Aouida M, Mekid H, Belhadj O, et al. Mitochondria-independent morphological and biochemicalapoptotic alterations promoted by the anti-tumor agent bleomycin in Saccharomyces cerevisiae[J].Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire,2007,85(1):49-55.
    [161] Hartwell L H, Kastan M B. Cell-cycle control and cancer[J]. Science,1994,266(5192):1821-1828.
    [162]唐莉莉.番茄红素对前列腺癌的作用及其机制研究[D]:[博士论文].复旦大学,2001.
    [163] Sala-Vila A, Folkes J, Calder P C. The effect of three lipid emuls ions differing in fatty acidcomposition on growth, apoptosis and cell cycle arrest in the HT-29colorectal cancer cell line[J].Clinical Nutrition,2010,29(4):519-524.
    [164] Lin C, Lu W, Wang C, et al. Capsaicin induces cell cycle arrest and apoptosis in human KB cancercells[J]. Bmc Complementary and Alternative Medicine,2013,13.
    [165] McDonald E R, El-Deiry W S. Cell cycle control as a basis for cancer drug development (review)[J].International Journal of Oncology,2000,16(5):871-886.
    [166]吕冬霞.细胞生物学技术[M].北京:中国科学出版社,2010
    [167] Park D K, Park H. Anti-proliferative properties of ethyl acetate extract of Phellinus linteus grown onginseng (Panax ginseng) on HT-29human colon carcinoma cells through inducing apoptosis[J]. FoodScience and Biotechnology,2012,21(3):683-690.
    [168] Isa N M, Abdul A B, Abdelwahab S I, et al. Boesenbergin A, a chalcone from Boesenbergia rotundainduces apoptosis via mitochondrial dysregulation and cytochrome c release in A549cells in vitro:Involvement of HSP70and Bcl2/Bax signalling pathways[J]. Journal of Functional Foods,2013,5(1):87-97.
    [169] Zhou Y, Zhang S, Liu C, et al. The protection of selenium on ROS mediated-apoptosis bymitochondria dysfunction in cadmium-induced LLC-PK1cells[J]. Toxicology in Vitro,2009,23(2):288-294.
    [170] Scherz-Shouval R, Shvets E, Fass E, et al. Reactive oxygen species are essential for autophagy andspecifically regulate the activity of Atg4[J]. Embo Journal,2007,26(7):1749-1760.
    [171] Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights disease through cellularself-digestion[J]. Nature,2008,451(7182):1069-1075.
    [172]高雅,邢皓,于爱鸣.自噬与肿瘤[J].中国科技信息,2012,(14):115-136.
    [173]赵新灿.姜黄素对氧化损伤的小鼠脑神经瘤细胞的保护作用研究[D]:[硕士论文].江南大学,2011.
    [174] Fauzi A N, Norazmi M N, Yaacob N S. Tualang honey induces apoptosis and disrupts themitochondrial membrane potential of human breast and cervical cancer cell lines[J]. Food andChemical Toxicology,2011,49(4):871-878.
    [175] Granci V, Cai F, Lecumberri E, et al. Colon cancer cell chemosensitisation by fish oil emulsioninvolves apoptotic mitochondria pathway[J]. The British journal of nutrition,2013,109(7):1188-1195.
    [176] Chen D Z, Auborn K. Fish oil constituent docosahexa-enoic acid selectively inhibits growth ofhuman papillomavirus immortalized keratinocytes[J]. Carcinogenesis,1999,20(2):249-254.
    [177] Sagar P S, Das U N. Cytotoxic action of cis-unsaturated fatty-acids on human cervical-carcinoma(HeLa) cells in-vitro[J]. Prostaglandins Leukotrienes and Essential Fatty Acids,1995,53(4):287-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700