用户名: 密码: 验证码:
Mg-Sm-Gd-Zn-Zr系镁合金的组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金中添加稀土元素是最有效的强化元素,开展Mg-RE合金的开发,提高合金的室温和高温力学性能,有利于镁合金得到广泛的应用。WE系稀土耐热镁合金(Mg-Y-Nd-Zr)由于其优良的室温高温力学性能、高温抗蠕变性能和耐腐蚀性能在航空航天和汽车工业上得到越来越广泛的应用。Sm和Gd在镁中的最大固溶度和析出强化效果分别比同组的Nd和Y大,用Sm和Gd分别替换WE系镁合金中的Nd和Y元素可能有更优良的综合力学性能。本文研究同时添加元素Sm、Gd和Zn到镁基体中,开发出一种新型耐热镁合金,研究了热处理工艺对新开发设计的Mg-Sm系耐热镁合金组织和性能的影响。
     采用光学显微镜、X射线衍射仪、扫描电子显微镜、透射电子显微镜和电子背散射衍射等分析手段,以及硬度测试和拉伸试验,研究了不同Zn和Gd含量对铸造Mg-3Sm-xGd(x=0.5,1.5)-yZn(y=0,0.3,0.6)-0.5Zr合金组织与力学性能的影响,得到优化的合金化学成分:Mg-3Sm-1.5Gd-0.3Zn-0.5Zr合金。合金铸态组织由镁基体和晶界处共晶相(Mg,Zn)3(Sm,Gd)i组成,(Mg,Zn)3(Sm,Gd)i相为FCC结构,晶格参数为a=0.727nm。合金经T6处理后,屈服强度达到185MPa,抗拉强度为282MPa,延伸率为6.1%。合金表现出优异的力学性能是由于合金中的析出相产生的析出强化效应,合金时效后为在棱柱面析出了片状的强化相,相的长轴垂直于基面,能形成对位错基面滑移的阻碍,依靠析出相与基体的共格强化和Orowan机制的联合作用使合金的强度提高。
     Mg-3Sm-1.5Gd-0.3Zn-0.5Zr合金在200℃的析出序列可描述为:Mgssss→β"(D019)→β'(bct)→β1(fcc)→β(fcc)。
     β”相(D019超点阵六方结构),晶格常数a=2aMg=0.64nm, c=CMg=0.52nm,其惯习面为{1010},与基体的取向关系:[2110] β"//[2110]α,(0110)β"//(0110) α; β'相具有底心正交结构,晶格常数为a=0.64nm, b=2.2nm, c=0.52nm。β’相与基体的取向关系为:[001]β'‖[0001]α (020)β'‖(1010)α; β1相为面心立方结构,晶格常数为a=0.74nm,它与基体的取向关系为:(220)β1//(0002)α,(111)β1//(2110)α。平衡相β也是面心立方结构,只是晶格常数不同,a=2.23nm;在时效过程中有一种基面沉淀相析出,作者定义为γ相,通过晶体结构分析,Y相为密排六方结构,晶格常数a=0.55nm,c=0.52nm,与基体的取向关系为(1100)γ//(1120)α,[0001]γ//[0001]α。
     在时效初期,β”相最先析出,随时效时间的延长,β”相减少,β’开始形核并长大引起合金的硬度值增大并达到峰值。在过时效阶段,基体中析出平衡相p。
     Mg-3Sm-1.5Gd-0.3Zn-0.5Zr合金通过热模拟变形研究,合金在高温等温压缩过程的真应力-真应变曲线属于动态再结晶型,当变形温度一定时,随着应变速率的加快,合金的峰值流变应力和它对应的应变值均提高;当应变速率一定时,变形温度的升高能降低峰值流变应力。Mg-3Sm-1.5Gd-0.3Zn-0.5Zr合金的材料常数结果为:变形激活能Q=246.2987KJ/mol,应力指数n=6.189,应力水平参数为α=0.01309MPa-1,结构因子A=4.486x1016s-1. Mg-3Sm-1.5Gd-0.3Zn-0.5Zr合金在热变形条件下流变应力σ、应变速率ε、变形温度T与参数Z满足下面的关系式:
     ε=4.486x1016[sinh(0.01309σ)]6.189exp(-246.2987x103/RT) Mg-3Sm-1.5Gd-0.3Zn-0.5Zr合金挤压变形后的组织为完全再结晶组织,形成的动态再结晶晶粒尺寸细小。合金的强度和塑性得到明显的提高,室温屈服强度、抗拉强度和延伸率分别为225MPa、302MPa和30.8%。挤压态合金直接在200℃时效有较强的时效硬化现象,峰时效时合金中析出了强化相p’,合金的力学性能有所提高,屈服强度达到267MPa,比挤压态合金提高了18.7%。
     Mg-3Sm-1.5Gd-0.3Zn-0.5Zr合金具有优良的耐蚀性能和抗蠕变性能,在5%氯化钠水溶液浸泡72h后的腐蚀失重速率为0.32mg/cm2day。在200℃,100MPa条件下具有优良的抗蠕变性,其稳定蠕变速率为2.63×10-9s-1,100h后的蠕变量小于0.1%。
Rare earth elements(RE) is the most effective strengthening elements in magnesium alloy, develop the Mg-RE series alloys, improve the mechanical properties at room temperature and high temperature can make the magnesium alloy widely used. The WE series alloys(Mg-Y-Nd-Zr) become more and more attractive for aerospace and automotive industries because of their high room temperature mechanical properties, excellent high temperature creep resistance and good corrosion resistance. Sm and Gd maximum solubility and precipitation hardening effect in magnesium are stronger compared with the same group of Nd and Y, thus replace Nd and Y by Sm and Gd in WE series alloy may have better mechanical properties. In this paper, adding elements Sm, Gd and Zn to the magnesium matrix, developed a new heat-resistant magnesium alloy, study the effect of heat treatment on Mg-Sm alloy microstructure and properties.
     Study the effect of Zn and Gd on microstructure and mechanical properties of Mg-3Sm-xGd(x=0.5,1.5)-yZn(y=0,0.3,0.6)-0.5Zr alloy-0.5Zr) alloy by Using optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and electron backscatter diffraction equipment. The optimized alloy chemical composition ratio is Mg-3Sm-1.5Gd-0.3Zn-0.5Zr. The alloy was mainly composed α-Mg and (Mg,Zn)3(Sm,Gd)1eutectic phase in as-cast state.(Mg,Zn)3(Sm,Gd)1has a FCC structure with lattice parameters a=0.727nm. After the solution treatment at510℃for4h and subsequent peak aged at200℃, alloy exhibited remarkable mechanical properties. The ultimate tensile strength, yield strength and elongation of the alloy were282MPa,185MPa and6.1%at room temperature. These good mechanical properties were mainly attributed to the fine microstructure and fine metastable phase precipitates in the matrix during aging process.
     The decomposition of a-Mg supersaturated solid solution in Mg-3Sm-1.5Gd-0.3Zn-0.5Zr alloy during isothermal aging at200℃is as follows: Mgssss→β"(D019)→β'(bct)→β1(fcc)→β(fcc).
     At the beginning of aging process, β" precipitates, with the aging time prolonged, β'appears and reached the peak hardness.
     During hot deformation, the true stress-strain curves of alloy is belong to dynamic recrystallization. Flow stress decreases with the temperature increase and strain rate decrease. The material constants of alloy are figured out as:Q=246.2987KJ/mol, n=6.189, α=0.01309MPa-1, A=4.486×1016s-1. The following relationship between the flow stress, strain rate, deformation temperature and Z parameters was derived:
     ε=4.486×1016[sinh(0.01309σ)]6.189exp(-246.2987×103/RT)
     Extruded Mg-3Sm-1.5Gd-0.3Zn-0.5Zr alloy is fully recrystallized structure, grain size are small. The strength and ductility of the extruded alloy has been significantly improved, the yield strength, ultimate tensile strength and elongation are225MPa,302MPa and30.8%at room temperature, respectively. the extruded alloy directly at200℃aging, there is a strong age hardening phenomenon, precipitates strengthening phase β', thus increased the mechanical properties of the alloy.the yield strength reached267MPa, more than18.7%higher than as-extruded alloy.
     β" phase has D019structure (a=2aMg=0.64nm and c=cMg=0.52nm) with an orientation relationship of [2110]β"//[2110]α,(0110)β"//(0110)α.β'phase is known to have a base-centred orthorhombic unit cell a=0.64nm, b=2.223nm, c=0.521nm, an orientation relationship with the matrix in this paper was [001]β',||[0001]α,(020)β',||(1010)α.β1phase has a fcc structure with lattice parameters a=0.74nm. β phase also has a fcc structure, lattice parameters a=2.23nm. γ phase habiting on the basal plane of the Mg matrix, hexagonal, a=0.55nm, c=0.52nm and orientation relationship is (1100)γ'//(1120)α,[0001]γ'//[0001]α.
     Mg-3Sm-1.5Gd-0.3Zn-0.5Zr alloy has excellent corrosion resistance and creep resistance, at a5%sodium chloride solution after72h immersion corrosion weight loss rate is0.32mg/cm2day. The steady creep rate is2.63×10-9s-1at200℃,100MPa conditions, the creep amount is less than0.1%after100h.
引文
[1]陈振华,镁合金[M],北京:化学工业出版社,2004
    [2]宁兴龙.最轻的金属结构材料--镁锂合金[J].稀有金属快报,2002,10:17-18.
    [3]杨光昱,郝启堂,介万奇.镁锂系合金的研究现状[J].铸造技术,2004,25(1):19-21.
    [4]Kulekci M K. Magnesium and its alloys applications in automotive industry [J]. The International Journal of Advanced Manufacturing Technology,2008,39(9-10):851-865.
    [5]Luo A A. Recent magnesium alloy development for elevated temperature applications[J]. International Materials Reviews,2004,49(1):13-30.
    [6]Luo A, Pekguleryuz M O. Cast magnesium alloys for elevated temperature applications[J]. Journal of Materials Science,1994,29(20):5259-5271.
    [7]Friedrich H E, Mordike B L. Magnesium technology[M]. Berlin [etc.]: Springer,2006.
    [8]Wang Y M, Wang F H, Xu M J, et al. Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for biomedical application[J]. Applied Surface Science,2009,255(22):9124-9131.
    [9]Rzychon T, Kielbus A. Microstructure of WE43 casting magnesium alloy s[J]. Journal of Achievements in Materials and Manufacturing Engineering,2007,21(1):31-34.
    [10]Polmear I J. Magnesium alloys and applications[J]. Materials science and technology,1994,10(1):1-16.
    [11]Dahle A K, Lee Y C, Nave M D, et al. Development of the as-cast microstructure in magnesium-aluminium alloys[J]. Journal of light metals, 2001,1(1):61-72.
    [12]Zhao L M, Zhang Z D. Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg-Al joints[J]. Scripta Materialia,2008,58(4):283-286.
    [13]Song G, StJohn D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ[J]. Journal of Light Metals, 2002,2(1):1-16.
    [14]Lee S, Lee S H, Kim D H. Effect of Y, Sr, and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys[J]. Metallurgical and materials transactions A,1998, 29(4):1221-1235.
    [15]张景怀,唐定骧,张洪杰,等.稀土元素在镁合金中的作用及其应用[J].稀有金属,2008,32(5):659-667.
    [16]范才河,陈刚,严红革,等.稀土在镁及镁合金中的作用[J].材料导报,2005,19(7):61-63.
    [17]Ryspaev T, Trojanovd Z, Padalka O, et al. Microstructure of superplastic QE22 and EZ33 magnesium alloys[J]. Materials Letters,2008,62(24): 4041-4043.
    [18]刘光华,稀土固体材料学[M],北京:机械工业出版社,1997第一版
    [19]刘光华,稀土材料与应用技术[M],北京:化学工业出版社,2005
    [20]Haughton J L, Schofield T H. Alloys of Magnesium. Part V.-The Constitution of the Magnesium Rich Alloys of Magnesium and Cerium[J]. J. Inst. Met,1937,60:339-344.
    [21]郭旭涛,李培杰.稀土耐热镁合金发展现状及展望[J].铸造,2002,51(2):68-71.
    [22]Nuttall P A, Pike T J, Noble B. Metallography of Dilute Mg-Nd-Zn Alloys[J]. Metallography,1980,13(1):3-20.
    [23]赵志远,陈深传,乔冬福.Mg-Nd-Zr系ZM6合金热强性能的改进[J].航空材料,1983,1:004.
    [24]李永祚.锌对ZM6镁稀土合金组织结构及其性能的影响[J].稀土,1981,1:35-40.
    [25]黄伯杰,聂邦盛,贾延杰,等.Mg-Nd-Zn-Zr耐热高强铸造镁合金[J].特种铸造及有色合金,2002(S 1).
    [26]赵志远.镁—钇—锌—锆系铸造合金热强性能的研究[J].特种铸造及有色合金,1984,2:009.
    [27]Zhiping L, Shaoqing Z, Liqi L, et al. Effects of heat treatments on the properties and microstructures of extruded Mg-Nd-Zr alloy [J].稀土学报(英文版),1994,4.
    [28]Penghuai F, Liming P, Haiyan J, et al. Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2 Zn-0.4 Zr (wt.%) alloy[J]. Materials Science and Engineering:A,2008,486(1):183-192.
    [29]Mizer D, Peters B C. A study of precipitation at elevated temperatures in a Mg-8.7 pct Y alloy[J]. Metallurgical and Materials Transactions B,1972, 3(12):3262-3264.
    [30]Zhang M X, Kelly P M. Morphology and crystallography of Mg 24Y5 precipitate in Mg-Y alloy[J]. Scripta Materialia,2003,48(4):379-384.
    [31]申泽骥,李玉胜.新型铸造镁合金开发现状[J].铸造,2003,52(3):153-156.
    [32]陈远望.国外镁金属研究现状[J].世界有色金属,2003,2:46-49.
    [33]张春香,王利国,吴立鸿,等.主要耐热镁合金系的研究进展[J].材料科学与工程学报,2008,26(4):657-660.
    [34]ROKHLIN L L. Magnesium Alloys Containing Rare2eart h Metals[M]. London:Taylor and Francis,2003.
    [35]Drits M E, Sviderskaya Z A, Rokhlin L L, et al. Effect of alloying on the properties of Mg-Gd alloys[J]. Metal Science and Heat Treatment,1979, 21(11):887-889.
    [36]ANTHONY ANYANWUI, Kamado S, Kojima Y. Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys[J]. Materials transactions-JIM,2001,42(7):1206-1211.
    [37]S.M.He, X. Q. Zeng. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy[J] Journal of Alloys and Compounds,2007,427:316-323.
    [38]He S M, Zeng X Q, Peng L M, et al. Precipitation in a Mg-10Gd-3 Y-0.4 Zr (wt.%) alloy during isothermal ageing at 250 C[J]. Journal of Alloys and Compounds,2006,421(1):309-313.
    [39]Zheng K Y, Dong J, Zeng X Q, et al. Precipitation and its effect on the mechanical properties of a cast Mg-Gd-Nd-Zr alloy [J]. Materials Science and Engineering:A,2008,489(1):44-54.
    [40]Peng Q, Dong H, Wang L, et al. Microstructure and mechanical property of Mg-8.31 Gd-1.12 Dy-0.38 Zr alloy[J]. Materials Science and Engineering: A,2008,477(1):193-197.
    [41]Von Buch F, Lietzau J, Mordike B L, et al. Development of Mg-Sc-Mn alloys[J]. Materials Science and Engineering:A,1999,263(1):1-7.
    [42]Mordike B L. Development of highly creep resistant magnesium alloys[J]. Journal of Materials Processing Technology,2001,117(3):391-394.
    [43]Mordike B L, Ebert T. Magnesium:Properties-applications-potential[J]. Materials Science and Engineering:A,2001,302(1):37-45.
    [44]Rokhlin L L. Magnesium alloys containing rare earth metals:structure and properties[M]. Crc Press,2003.
    [45]Randman D, Corteen J, Rainforth W M, et al. New Recrystallisation Behaviour Seen in Magnesium Alloy Elektron 675[C]//Materials Science Forum.2012,715:171-172.
    [46]Hazell P J, Appleby-Thomas G J, Wielewski E, et al. The influence of microstructure on the shock and spall behaviour of the magnesium alloy, Elektron 675[J]. Acta Materialia,2012,60(17):6042-6050.
    [47]Riontino G, Lussana D, Massazza M, et al. DSC investigation on WE43 and Elektron 21 Mg alloys[J]. Journal of materials science,2006,41(10): 3167-3169.
    [48]Hamdy A S, Doench I, Mohwald H. The Effect of Vanadia Surface Treatment on the Corrosion Inhibition Characteristics of an Advanced Magnesium Elektron 21 alloy in Chloride Media[J]. International Journal of Electrochemical Science,2012,7(9).
    [49]Kielbus A. Microstructure and mechanical properties of Elektron 21 alloy after heat treatment[J]. Journal of Achievements in Materials and Manufacturing Engineering,2007,20(92007):127-130.
    [50]Peng Q M, Wu Y M, Fang D Q, et al. Microstructures and properties of Mg-7Gd alloy containing Y[J]. Journal of Alloys and Compounds,2007, 430(1):252-256.
    [51]Yang Z, Li J P, Guo Y C, et al. Precipitation process and effect on mechanical properties of Mg-9Gd-3Y-0.6 Zn-0.5 Zr alloy[J]. Materials Science and Engineering:A,2007,454:274-280.
    [52]张新明,肖阳,陈健美,等.挤压温度对Mg-9Gd-4Y-0.6 Zr合金组织与力学性能的影响[J].中国有色金属学报,2006,16(3):518-523.
    [53]肖阳,张新明.Mg-9Gd-4Y-0.6 Zr合金的二次时效[J].中国有色金属学报,2011,2:006.
    [54]陈部湘,张新明,邓运来,等.时效对Mg-9Gd-4Y-0.6 Zr挤压合金组织与性能的影响[J].湖南有色金属,2007,23(1):35-37.
    [55]Negishi Y, Iwasawa S, Kamado S, et al. Aging characteristics and tensile properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr alloys[J]. Journal of Japan Institute of Light Metals(Japan),1994,44(10):555-561.
    [56]Lyon P, Syed I, Heaney S. Elektron 21-an aerospace magnesium alloy for sand cast and investment cast applications[J]. Advanced Engineering Materials,2007,9(9):793-798.
    [57]Bobby Kannan M, Dietzel W, Blawert C, et al. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31 A) compared with AZ80[J]. Materials Science and Engineering:A, 2008,480(1):529-539.
    [58]Cho K, Sano T, Doherty K, et al. Magnesium technology and manufacturing for ultra lightweight armored ground vehicles[R]. ARMY RESEARCH LAB ABERDEEN PROVING GROUND MD,2009.
    [59]张菊梅,蒋百灵,王志虎,等.镁合金强韧化的研究现状及发展[J].热加工工艺,2006,35(8):65-67.
    [60]Akhtar A, Teghtsoonian E. Solid solution strengthening of magnesium single crystals-ii the effect of solute on the ease of prismatic slip[J]. Acta Metallurgica, 1969,17(11):1351-1356.
    [61]Akhtar A, Teghtsoonian E. Substitutional solution hardening of magnesium single crystals[J]. Philosophical Magazine,1972,25(4):897-916.
    [62]Ardell A J. Precipitation hardening[J]. Metallurgical Transactions A,1985, 16(12):2131-2165.
    [63]Gjestland H, Nussbaum G, Rugazzoni G. Mechanical Properties and Formability of Rapidly Solidified AZ 91 Based Alloys [J]. Light Met. Age, 1989,47(7):18-21.
    [64]Han B Q, Dunand D C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids[J], Materials Science and Engineering:A,2000,277(1):297-304.
    [65]陈振华,变形镁合金[M],北京:化学工业出版社,2005
    [66]Partridge P G. The crystallography and deformation modes of hexagonal close-packed metals [J]. International Materials Reviews,1967,12(1): 169-194.
    [67]Christian J W, Mahajan S. Deformation twinning[J], Progress in Materials Science,1995,39(1):1-157.
    [68]Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals [J]. Metallurgical Transactions A,1981,12(3):409-418.
    [69]Al-Samman T, Gottstein G. Room temperature formability of a magnesium AZ31 alloy:Examining the role of texture on the deformation mechanisms[J]. Materials Science and Engineering:A,2008,488(1): 406-414.
    [70]Reed-Hill R E, Robertson W D. Additional modes of deformation twinning in magnesium[J]. Acta Metallurgica,1957,5(12):717-727.
    [71]Reed-Hill R E, Robertson W D. The crystallographic characteristics of fracture in magnesium single crystals[J]. Acta Metallurgica,1957,5(12): 728-737.
    [72]Tan J C, Tan M J. Superplasticity and grain boundary sliding characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet[J]. Materials Science and Engineering:A,2003,339(1):81-89.
    [73]Tikhova N M, Blokhina V A, Antipova A P, et al. Effect of prolonged heating on the properties of magnesium alloys ML9 and ML10[J]. Metal Science and Heat Treatment,1971,13(10):887-890.
    [74]Blokhina V A, Solov'eva G G, Tikhova N M. Structure of the ML10 alloy after prolonged heating[J]. Metal Science and Heat Treatment,1968,9(7): 553-554.
    [75]http://www.gie-harmony.fr/media/2031/tagnite4.pdf
    [76]蒋太富,刘静安.镁及镁合金材料的应用及市场开拓前景[J].铝加工,2007,174(2):5-10.
    [77]刘静安,徐河.镁合金材料的应用及其加工技术的发展[J].轻合金加工技术,2007,35(8):1-5.
    [78]丁文江,付彭怀,彭立明,等.先进镁合金材料及其在航空航天领域中的应用[J].航天器环境工程,2011,28(2):103-109.
    [79]Drits M E, Rokhlin L L, Abrukina N P. Mechanical properties of binary alloys of the Mg-Sm system[J]. Metal Science and Heat Treatment,1985, 27(7):508-510.
    [80]Drits M E, Rokhlin L L, Sirchenko N P. Phase Equilibria in the System Mg--Sm--Y[J]. Izv. V. U. Z. Tsvetn. Metall.,1983 (60):78-82.
    [81]Rokhlin L L, Dobatkin S V, Dobatkina T V, et al. Study of aged Mg-Sm alloys subjected to severe plastic deformation[J]. Russian Metallurgy (Metally),2006,2006(1):80-85.
    [82]Dobatkin S V, Rokhlin L L, Popov M V, et al. Behavior during annealing of ageing alloys of the Mg-Sm system subjected to rapid plastic deformation[J]. Metal Science and Heat Treatment,2009,51(5):218-222,
    [83]朱蓓蓓,孙扬善,贾迪,等.Mg-Sm系合金的显微组织及力学性能[J].东南大学学报:自然科学版,2009,39(3):610-614.
    [84]Li D, Wang Q, Ding W. Characterization of phases in Mg-4Y-4Sm-0.5 Zr alloy processed by heat treatment[J]. Materials Science and Engineering:A, 2006,428(1):295-300.
    [85]Li D, Wang Q, Ding W. Effects of heat treatments on Microstructure and mechanical properties of Mg-4Y-4Sm-0.5 Zr alloy[J]. Materials Science and Engineering:A,2007,448(1):165-170.
    [86]Wang Q, Li D, Blandin J J, et al. Microstructure and creep behavior of the extruded Mg-4Y-4Sm-0.5 Zr alloy[J]. Materials Science and Engineering: A,2009,516(1):189-192.
    [87]Sugiyama K, Yasuda K, Horikawa Y, et al. Crystal structure of μ7-MgZnSm[J]. Journal of alloys and compounds,1999,285(1):172-178.
    [88]Zheng J, Wang Q, Jin Z, et al. The microstructure, mechanical properties and creep behavior of Mg-3Sm-0.5 Zn-0.4 Zr (wt.%) alloy produced by different casting technologies[J]. Journal of Alloys and Compounds,2010, 496(1):351-356.
    [89]Zheng J, Wang Q, Jin Z, et al. Effect of Sm on the microstructure, mechanical properties and creep behavior of Mg-0.5 Zn-0.4 Zr based alloys[J]. Materials Science and Engineering:A,2010,527(7):1677-1685.
    [90]Zhang Z, Peng L, Zeng X, et al. Characterization of phases in a Mg-6Gd-4Sm-0.4 Zr (wt.%) alloy during solution treatment[J]. Materials Characterization,2009,60(6):555-559.
    [91]Zhao Y, Wang Q D, Gu J H, et al. Microstructure and mechanical properties of Mg-Gd-Sm-Zr alloy[C]Materials science forum.2007,546:159-162.
    [92]Rokhlin L L, Dobatkina T V, Luk'yanova E A, et al. Phase equilibria in solid Mg-Rich Mg-Sm-Tb alloys[J]. Russian Metallurgy (Metally),2010,2010(7): 663-668.
    [93]Nie J F, Gao X, Zhu S M. Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn[J]. Scripta Materialia,2005, 53(9):1049-1053.
    [94]Nie J F, Oh-Ishi K, Gao X, et al. Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy[J]. Acta Materialia,2008,56(20): 6061-6076.
    [95]Honma T, Ohkubo T, Kamado S, et al. Effect of Zn additions on the age-hardening of Mg-2.0 Gd-1.2 Y-0.2 Zr alloys[J]. Acta Materialia,2007, 55(12):4137-4150.
    [96]Rokhlin L L, Dobatkina T V, Nikitina N I. Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups[C]Materials Science Forum.2003,419:291-296.
    [97]Honma T, Ohkubo T, Hono K, et al. Chemistry of nanoscale precipitates in Mg-2.1 Gd-0.6 Y-0.2 Zr (at.%) alloy investigated by the atom probe technique[J]. Materials Science and Engineering:A,2005,395(1):301-306.
    [98]Zhang S, Yuan G Y, Lu C, et al. The relationship between (Mg,Zn)(3)RE phase and 14H-LPSO phase in Mg-Gd-Y-Zn-Zr alloys solidified at different cooling rates[J]. Journal of Alloys and Compounds,2011,509(8): 3515-3521.
    [99]Fu P H, Peng L M, Jiang H Y, et al. Zr-Containing Precipitates in Mg-3wt% Nd-0.2 wt% Zn-0.4 wt% Zr Alloy during Solution Treatment at 540° C[C]//Materials science forum.2007,546:97-100.
    [100]Gill L R, Lorimer G W, Lyon P. The Effect of Zinc and Gadolinium on the Precipitation Sequence and Quench Sensitivity of Four Mg-Nd-Gd alloys[J]. Advanced Engineering Materials,2007,9(9):784-792.
    [101]Liu X B, Chen R S, Han E H. Effects of ageing treatment on microstructures and properties of Mg-Gd-Y-Zr alloys with and without Zn additions[J]. Journal of Alloys and Compounds,2008,465(1):232-238.
    [102]章桢彦.Mg (-Gd)-Sm-Zr合金的微观组织,力学性能和析出相变研究[D].上海交通大学,2009.
    [103]Su Z, Liu C, Wan Y. Microstructures and mechanical properties of high performance Mg-4Y-2.4 Nd-0.2 Zn-0.4 Zr alloy[J]. Materials & Design, 2013,45:466-472.
    [104]Nie J F, Gao X, Zhu S M. Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn[J]. Scripta Materialia,2005, 53(9):1049-1053.
    [105]Ping D H, Hono K, Nie J F. Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy [J]. Scripta materialia,2003, 48(8):1017-1022.
    [106]Nie J F, Muddle B C. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy[J]. Acta Materialia,2000,48(8):1691-1703.
    [107]L.L. Rokhlin. Magnesium Alloys Containing Rare Earth Metals[M]. Taylor & Francis 2003
    [108]何上明.Mg-Gd-Y-Zr (-Ca)合金的微观组织演变,性能和断裂行为研究[D].上海:上海交通大学学位论文,2007.
    [109]Song Y L, Liu Y H, Yu S R, et al. Effect of neodymium on microstructure and corrosion resistance of AZ91 magnesium alloy [J]. Journal of materials science,2007,42(12):4435-4440.
    [110]Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J]. Scripta Materialia,2003,48(8): 1009-1015.
    [111]Lorimer G, Azari-Khosroshaki R, Ahmed M. In:Proceedings of the International Conference on Solid-Solid Phase Transformations. The Japan Institute of Metals1999:185-92.
    [112]Lefebvre W, Kopp V, Pareige C. Nano-precipitates made of atomic pillars revealed by single atom detection in a Mg-Nd alloy [J]. Applied Physics Letters,2012,100(14):141906.
    [113]Magnesium alloys and their applications[M]. Weinheim, Germany: Wiley-VCH,2000.
    [114]Apps P J, Karimzadeh H, King J F, et al. Precipitation reactions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium[J]. Scripta materialia,2003,48(8):1023-1028.
    [115]Bamberger M. Structural refinement of cast magnesium alloys[J]. Materials Science and technology,2001,17(1):15-24.
    [116]Avedesian M M, Baker H. ASM specialty handbook:magnesium and magnesium alloys[J]. ASM international,1999,274.
    [117]Zheng K Y, Dong J, Zeng X Q, et al. Precipitation and its effect on the mechanical properties of a cast Mg-Gd-Nd-Zr alloy[J]. Materials Science and Engineering:A,2008,489(1):44-54.
    [118]Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys[J]. Acta Materialia,1996,44(11):4611-4618.
    [119]Nie J F. Precipitation and hardening in magnesium alloys[J]. Metallurgical and Materials Transactions A,2012,43(11):3891-3939.
    [120]Humphreys J, Hatherly M. Hot deformation and dynamic restoration[J]. Recrystallization and Related Annealing Phenomena,2004,416.
    [121]Poirier J P,关德林.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989.
    [122]Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures[J]. Journal of Materials Processing Technology,1998,80:513-516.
    [123]Davenport S B, Silk N J, Sparks C N, et al. Development of constitutive equations for modelling of hot rolling[J]. Materials Science and Technology, 2000,16(5):539-546.
    [124]Watanabe H, Mukai T, Ishikawa K, et al. Realization of high-strain-rate superplasticity at low temperatures in a Mg-Zn-Zr alloy [J]. Materials Science and Engineering:A,2001,307(1):119-128.
    [125]Mohri T, Mabuchi M, Saito N, et al. Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment[J]. Materials Science and Engineering:A,1998,257(2):287-294.
    [126]Liu K, Rokhlin L L, Elkin F M, et al. Effect of ageing treatment on the microstructures and mechanical properties of the extruded Mg-7Y-4Gd-1.5 Zn-0.4 Zr alloy [J]. Materials Science and Engineering:A,2010,527(3): 828-834.
    [127]Liu K, Zhang J, Rokhlin L L, et al. Microstructures and mechanical properties of extruded Mg-8Gd-0.4 Zr alloys containing Zn[J]. Materials Science and Engineering:A,2009,505(1):13-19.
    [128]Zhang X M, Xiao Y, Chen J M, et al. Influence of extrusion temperature on microstructures and mechanical properties of Mg-9 Gd-4 Y-0.6 Zr alloy [J]. Chinese Journal of Nonferrous Metals,2006,16(3):518-523.
    [129]Li J P, Yang Z, Liu T, et al. Microstructures of extruded Mg-12Gd-1Zn-0.5 Zr and Mg-12Gd-4Y-1Zn-0.5 Zr alloys[J]. Scripta materialia,2007,56(2): 137-140.
    [130]Zhang X, Li L, Deng Y, et al. Superplasticity and microstructure in Mg-Gd-Y-Zr alloy prepared by extrusion[J]. Journal of Alloys and Compounds,2009,481(1):296-300.
    [131]ANTHONY ANYANWU I, Kamado S, Kojima Y. Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys[J]. Materials transactions-JIM,2001,42(7):1206-1211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700