用户名: 密码: 验证码:
GH690合金热变形行为及管材热挤压机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GH690合金是一种铬含量30%左右的镍基变形高温合金,在不同温度的水溶液中均具有优良的耐应力腐蚀和抗晶间腐蚀的性能,非常适用于制造核工业中蒸汽发生器的传热管。目前国内核工业中蒸汽发生器使用的传热管仍然需要进口,随着近年来需求量的不断增加,迫切需要深入开展国产化研究。本文通过高温等温压缩试验研究了GH690合金的高温塑性变形行为。通过OM、EBSD、TEM和回归分析等方法,研究了GH690合金高温塑性变形过程中的应变、应变速率、变形温度和流变应力的相互关系、组织演变规律及GH690合金动态再结晶规律等;通过GH690合金管材热挤压变形的热—力耦合模拟和管材热挤压工艺试验,分析了GH690合金管材热挤压过程中的温度场、应变场和应力场,研究了GH690合金管材热挤压变形特性,并获得了GH690合金管材热挤压成形极限图。结果表明:
     (1)GH690合金在950-1200℃,0.001-10s-1条件下热变形时属于正应变速率敏感材料。采用Zener-Hollomon参数的双曲正弦函数可以较好地描述GH690合金高温变形时的流变行为。
     (2)在应变ε=0.7,ε≤10s-1时,GH690合金获得完全动态再结晶组织的温度随应变速率的增大而升高;在已获得完全动态再结晶组织后,随着变形程度的继续增加,动态再结晶晶粒尺寸变化不大。
     (3)GH690合金在950-1200℃,0.001-10s-1条件下进行热变形时发生了动态再结晶,其动态再结晶机制主要为应变诱导晶界弓弯形核的非连续动态再结晶(DDRX)机制;同时,GH690合金在晶内形变带处也发生了动态再结晶。
     (4)在GH690合金管材热挤压过程中,在管材的内表面附近容易出现混晶组织。其主要原因是由于挤压时坯料的温降太大。为避免出现混晶组织,需提高挤压速度,从而减少挤压时间,减小挤压管坯的温降。另外在挤压管材外表面会容易因拉应力而产生裂纹。坯料和工模具的摩擦是产生拉应力的主因,为减轻或解决挤压管材的表面裂纹,需要开发出更好的高温润滑剂,降低摩擦系数。
     (5)建立了GH690合金管材挤压成形极限图。GH690合金管材的热挤压成形性能由挤压比、挤压温度和挤压速度决定,取决于GH690合金在具体挤压条件下的流变应力水平。增大挤压比将大大减小GH690合金管材的许可挤压成形条件范围。为提高生产效率和避免在管材内壁出现混晶组织,挤压宜选择在靠近极限温度曲线附近的较高温度和较高挤压速度的变形条件区域内进行。
GH690is a nickel-based wrought superalloy of high chromium content (around30wt%). Not only does it possess the good intergranular corrosion resistance of other nickel-based alloys, like Inconel-600, for example, but also appears to be less vulnerable to stress corrosion cracking. Therefore, it is suitable for manufacturing the heat exchanger tubes of steam generator in the nuclear power plant industries. At present, the heat exchanger tubes of steam generator in the Chinese nuclear power plant industries are mainly depending on import. Along with the imminence requirement for the localization of alloy GH690nuclear heat exchanger tube in recent years, it is necessary to deeply develop the basic research of the hot deformation behavior of alloy GH690. The deformation behaviors at high temperatures for alloy GH690have been investigated in this thesis by isothermal compression testing. The interdependences of strain, strain rate, deformation temperature and flow stress for the alloy at the temperatures and the strain rates of interest have been studied with the aids of OM. EBSD, TEM and regression analysis. Microstructure evolution and dynamic recrystallization of the alloy have also been discussed. The temperature field, strain field and stress field of the extrusion process of GH690alloy tube have been investigated by numerical simulation and extrusion experiment, and extrusion limit diagrams of the alloy GH690tubes have been constructed. The results are as follows:
     (1) At the investigated condition with a temperature of950℃to1250℃and a constant strain rate of0.001s-1to Is-1, the flow stress and deformed microstructure were greatly affected by strain rate and deformation temperature. The flow stress increased with the increase of strain rate and decreased with the increase of deformation temperature; it indicated that GH690alloy was a kind of positive strain rate sensitive material. The flow stress of alloy GH690during high temperature deformation could be expressed by a Zener-Hollomon parameter in the hyperbolic sine function.
     (2) At the investigated condition with a nominal strain of0.7and a constant strain rate ranging from0.001s-1to Is-1, the temperature needed for fully dynamic recrystallization increases with the increase of strain rate. There is almost no change in the size of the DRX grains with the increasing strain when the microstructure has totally turned to be dynamic recrystallization grains.
     (3) A discontinuous dynamic recrystallization (DDRX) with nucleation mechanism of bulging of the original grain boundaries is the operating nucleation mechamism of DRX of GH690alloy. A continuous dynamic recrystallization (CDRX) with subgrain rotation, which can only be considered as an assistant nucleation mechanism of DRX, occurrs simultaneously with the DDRX.
     (4) Mixed grain structure are easy to appear in the internal wall of the GH690alloy extruded tube because of the large temperature drop of billet. To avoid the appearance of mixed grain structure, it is needed to increase extrusion speed, thereby reducing extrusion time and the temperature drop of billet. In addition, it is found that cracks appear easily on outer surface of GH690alloy extruded tube because of tensile stress. The friction between billet and extrusion die is the primary cause of producing tensile stress. In order to lessen or avoid the cracks, it need to develop a better high-temperature lubricant to decrease friction coefficient.
     (5) Extrusion limit diagrams of alloy GH690were developed. The extrudability of the GH690alloy tubes depends on the extrusion variables, such as extrusion ratio, extrusion temperature and extrusion speed. The increase of extrusion ratio decreases the available scale of extrusion temperature and extrusion speed. In order to improve production efficiency and avoid appearing mixed grain structure, it should be selected extrusion condition at high temperature and high extrusion speed which near to incipient meltingline.
引文
[1]谢锡善,董建新,胡尧和,等.铁镍基高温耐蚀合金的研究与发展[J].世界钢铁,2009,(1):50-55
    [2]乔培鹏.镍基690合金蒸汽发生器传热管耐腐蚀性研究[D].上海:上海交通大学,2010
    [3]夏爽.690合金中晶界特征分布及其演化机理的研究[D].上海:上海大学,2007
    [4]Krystyna S., Nilsson J.O., Norring K.. Structure, chemistry, and stress corrosion cracking of grain boundaries in alloys 600 and 690 [J]. Metallurgical and Materials Transactions A,1996,27(2):327-341
    [5]张钱珍.Ti含量对Incone1690合金组织和性能的影响[D].昆明:昆明理工大学,2008
    [6]Sedriks A.J., Floreen S., Mcllree A.R.. The effect of nickel contant on the stress corrosion resistance of Fe-Cr-Ni alloys in an elevated temperature caustic environment [J]. Corrosion,1976,32 (4):157-158
    [7]Mcllree A.R., Micheis H.T. Stress corrosion behavior of Fe-Cr-Ni and other alloys in high temperature caustic solution [J]. Corrosion,1977,33(2):61-66
    [8]Sedriks A.J., Schult J.W., Cordovi M.A.. Inconel alloy 690—a new corrosion resistant material [J]. Boshoku Gijutsu (Corros. Eng.),1979,28(2):82-95.
    [9]Nagano H., Yamanaka K., Kobayashi K.,et al. Development and manufacturing systean of alloy 690 for PWR steam generator tubing [J]. Sumitomo Metals,1988,40(4):17-28
    [10]Crum J.R.. Stress-Corrosion-Cracking testing of Inconel alloys 600 and 690 in high-temperature caustic [J]. Corrosion,1986,42(6):368-372.
    [11]Airey G.P., Vaia A.R., Aspden R.G.. A stress corrosion cracking envalution of Inconel 690 for steam generator tubing applications [J]. Nucl. Technol,1981,55(2):436-48.
    [12]Crum J.R.. Stress corrosion cracking testing of Inconel 600 and 690 under high-tempareture caustic conditions [J]. Corrosion,1986,42 (6):368-372
    [13]Nagano H, Yamanaka K, Kobayashi K. Development and manufacturing system of alloy 690 tubing for PWR steam generators [J]. Sumitomo Search,1989 (40):57-70
    [14]Liu K., Zhang B., Zhang S., et al. Effect of sulfur and magnesium on hot ductility and pitting corrosion for Inconel 690 Alloy [A]. Seventh International Symposium on Environmental Degradation of Materials in Nuclear Power Systems. Water Reactors, 1995:171-175
    [15]Ghanem, Wafaa A.R.. Hot corrosion of Fe-Cr-Ni-Al-Si alloys in molten carbonate [J]. Steel Research,1993,64(6):317-321
    [16]张红斌,李守军,胡尧和,等.国外关于蒸汽发生器传热管用Inconel690合金研究现状[J].特钢技术,2003,(4):2-9
    [17]Kai J.J., Yu G.P., Tsai C.H.. The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of Inconel alloy 690 [J]. Metallurgical Transactions A,1989,20:2057-2067
    [18]Symons D.M.. The effect of carbide precipitation on the hydrogen-enhanced fracture behavior of alloy 690 [J]. Metallurgical and Materials Transactions A,1998,29A: 1265-1277
    [19]朱红,董建新,张麦仓,等.固溶处理对Inconel690合金组织影响[J].北京科技大学学报,2002,24(5):511-514
    [20]焦少阳,郑磊,董建新,等.690合金晶界碳化物和贫铬区演化动力学模拟及工艺优化[J].机械工程学报,2010,46(14):53-59
    [21]李强,周邦新.690合金的显微组织研究[J].金属学报,2001,37(1):8-12
    [22]徐颖,孙宝德,王浩伟,等.热处理对690合金抗腐蚀性能影响综述[J].核动力工程,1995,16(05):459-462
    [23]邱绍宇,苏兴万,文燕,等.热处理对690合金腐蚀性能影响的实验研究[J].核动力工程,1995,16(4):336-340
    [24]Tan L., Sridharan K., Allen T.R., et al. Microstructure tailoring for property improvements by grain boundary engineering [J]. Journal of Nuclear Materials,2008, 374(1-2):270-280
    [25]王怀柳.GH690合金热挤压工艺的研究[J].特钢技术,2008,14(55):31-34
    [26]袁鸽成,张新民.新型Al-Sn-Si合金高温塑性变形流变应力的研究[J].实验力学.
    2001,16(1):34-38
    [27]Wang Y., Lin D.L.. A Correlation Between Tensile Flow Stress and Zener-Hollomon Factor in TiAl Alloy at High Temperatures [J]. Journal of Materials Science.2000, (19):1185-1188
    [28]罗丰华,尹志民,左铁镛.CuZn(Cr,Zr)合金的热变形行为[J].中国有色金属学报.2000,2:12-16
    [29]Sellars C.M., Tegart W.J.. Physical Metallurgy of Thermo-mechanical Processing of Steels and Other Metals [J]. Science Review Methods.1966, (63):731-735.
    [30]Zen E.R., Hollomon J.H.. Effect of Strain-Rate up on The Plastic Flow of Steel [J].Journa of Applied Physics.1994,15(1):22-28
    [31]赵同春,张麦仓,董建新.60Si2MnA弹簧钢的热变形行为[J].钢铁研究学报.2002,(4):28-31
    [32]洪权,张振棋.Ti-6A1-2Zr-1Mo-1V合金的热变形行为[J].航空材料学报.2001,(3):10-11
    [33]Rao K.P., Hawbolt E.B.. Development of Constitutive Relationship using Compression Testing of a Medium Carbon Steel [J]. Journal of Materials Engineering Technology.1992,114(1):116-123
    [34]Pu Z.J., Wu K.H., Shi J.,et al. Development of Constitutive Relationship for Hot Deformation of Boron Micro-alloying Ti-Al-Cr-V Alloys [J]. Materials Science and Engineering A.1995(192):780-787
    [35]葛列里克S.S..金属和合金的再结晶[M].仝健民等译.北京:机械工业出版社,1985:193-196
    [36]Lee E.U., Kranzlein H.H., Underwood E.E.. Dynamic recovery in aluminum[J]. Materials Science and Engineering,1971,7(6):348-356
    [37]Furuhara T., Poorganji B., Abe H., et al. Dynamic recovery and recrystallization in titanium alloys by hot deformation [J]. Journal of Metals,2007,59(1):64-67
    [38]Jiang S. Y., Zhang Y. Q., Zhao Y. N.. Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation [J].2013,22(1):140-147
    [39]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社.1994:201-207
    [40]Luton M.J., Sellars CM.. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation [J]. Acta Met,1969,17(8):1033-1043
    [41]Sakai T., Jonas J.J.. Flow stress and substructural change during transient dynamic recrystallization of niekel [J]. ActaMet.1984,2(7):659-665
    [42]Sah J.R., Richardson M.J., Sellars CM.. Grain size effects during dynamic recrystallization of niekel [J]. MetalSeience,1975,8(10):325-331
    [43]王岩.6相对GH4169合金高温变形及再结晶行为的影响[D].哈尔滨:哈尔滨工业大学,2008
    [44]Wang Y., Shao W.Z., Zhen L., et al. Flow behavior and microstructures of superalloy
    718 during high temperature deformation[J]. Materials Science and Engineering a, 2008, 497:479-482
    [45]Wang Y., Shao W.Z., Zhen L. Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718[J]. Materials Science and Engineering A, 2008,486:321-324
    [46]Blum W., Zhu Q., Merkel R., et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083) [J]. Materials Science and Engineering A.1996,205 (1-2): 23-30
    [47]Valerie R., Gregory O.. Mechanisms of grain boundary engineering [J]. Acta Materialia,2006 (54):1777-1783
    [48]Thomson C.B., Randle V.. A study of twinning in Nickel[J]. ScriPta materialia,1996, 35(3):385-390
    [49]Randle V., Davies H.. Evolution of microstructure and properties in alphabrass after iterative proeessing [J]. Metall Mat Trans A,2002,33(6):1853-1857
    [50]Kaibyshev R., Gajnutdinova N., Valitov V.. Continuous dynamic recrystallization in a Ni-20%Cr alloy in a wide temperature range [A]. Proceedings of the First Joint International Conference on Recrystallization and Grain Growth,eds.G.Gottstein,D.A. Molodov, Springer-Verlag,2001:949-954
    [51]Poelt P., Sommitsch C., Mitsche S., et al. Dynamic recrystallization of Ni-base alloys-experimental results and comparisons with simulations [J]. Materials Science and Engineering A.2006,420:306-314
    [52]Wang X., Brunger E., Gottstein G.. Microstructure characterization and dynamic recrystallization in an Alloy 800H [J]. Materials Science and Engineering A.2000,290: 180-185
    [53]Frommert M., Brunger E., Wang X., et al. Mechanisms of dynamic recrystallization in austenitic steel alloy 800H [A]. Proceedings of the First Joint International Conference on Recrystallization and Grain Growth, eds.G. Gottstein, D.A.Molodov, Springer-Verlag, 2001:937-942
    [54]张莉,李升军.DEFORM在金属塑性成形中的应用[M].北京:机械工业出版社.2009:10-12
    [55]张凯峰,魏艳红,魏尊杰,等.材料热加工过程的数值模拟[M].哈尔滨:哈尔滨工业大学出版社.2001:1-2
    [56]王新,王迎新,曾小勤等.数值模拟方法建立AZ31B镁合金管材的挤压极限图[J].锻压技术,2007,32(1):99-101
    [57]Lapovok R.Y., Barnett M.R., Davies C.H.. Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation [J]. Journal of Materials Processing Technology, 2004,146(3):408-414.
    [58]李传民,王向丽,闫华军.DEFORM503金属成形有限元分析实例指导[M].北京:机械工业出版社.2007:2-6
    [59]王广春.金属体积成形工艺及数值模拟技术[M].北京:机械工业出版社.2010:12-15
    [60]胡建军,李小平.DEFORM-3D塑性成形CAE应用教程[M].北京:北京大学出版社.2011:7-9
    [61]王彬.Inconel 690合金高速热变形机理及管材热挤压工艺研究[D].沈阳:中国科学院金属研究所,2013
    [62]尹向前,米绪军,高宝东,等.TiNiNb合金热变形流变行为的研究[J].稀有金属,2009,33(6):921-924
    [63]毛柏平,郭胜利,沈健.Ti-5523钛合金热变形流变行为的研究[J].稀有金属,2008,32(5):674-678
    [64]Sellars C.M.. Modelling microstructural development during hot rolling [J]. Material Science and Technology,1990,16(11):1072-1081
    [65]Poirier J.P.,关德林.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989:24-26
    [66]沈健,李德峰.铝锂合金高温塑性变形流变应力研究[J].稀有金属材料与工程,1997,26(5):26-29
    [67]Jonas J.J., Sellars C.M.. Strength and structure under hot-working conditions [J]. Metallurgical Reviews,1969,14:1-24
    [68]Chen X.M., Lin Y.C, Wen D.X., et al. Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation [J]. Materials and Design,2014,57: 568-577
    [69]Souza R.C, Silva E.S., Jorge A.M., et al. Dynamic recovery and dynamic recrystallization competition on a Nb-and N-bearing austenitic stainless steel biomaterial: Influence of strain rate and temperature [J]. Materials Science and Engineering:A,2013, 582:96-107
    [70]Cao Y., Di H. S., Zhang Jing-qi, et al. An electron backscattered diffraction study on the dynamic recrystallization behavior of a nickel-chromium alloy (800H) during hot deformation [J]. Materials Science and Engineering:A,2013,585:71-85
    [71]Jiang S. Y., Zhang Y. Q., Zhao Y. N..Dynamic recovery and dynamic recrystallization of NiTi shape memory alloy under hot compression deformation [J]. Transactions of Nonferrous Metals Society of China,2013,23(1):140-147
    [72]Poliak E.I.. A one-parmenter approach to determining the critical conditions for the initiation of dynamic recrystallization.Acta. Material [J],1996,44(1):127-136
    [73]Shaban M.. Determination of critical conditions for dynamic recrystallization of a microalloyed steel. Materials Science and Engineering A [J],2010,527:4320-4325
    [74]吴瑞恒,朱洪涛,张鸿冰,等.0.95C-18W-4Cr-1V高速钢动态再结晶的数学模型[J].上海交通大学学报,2001,35(3):339-342
    [75]张斌,张鸿冰.35CrMo结构钢的热变形行为[J].金属学报,2004,40(10):1109-1114
    [76]吴晋彬,刘国权,王浩,等.SCM435钢热变形动态再结晶动力学模型参数的确定[J].北京科技大学学报,2010,32(10):1282-1286
    [77]李红,罗海文,杨才福,等.奥氏体不锈钢的再结晶动力学[J].钢铁研究学报,2008,20(9):32-35
    [78]张鸿冰,张斌,柳建韬.钢中动态再结晶力学测定及其数学模型[J].上海交通大学学报,2003,37(7):105-108
    [79]何运斌,潘清林,覃银江,等.ZK60镁合金热变形过程中的动态再结晶动力学[J].中国有色金属学报,2011,21(6):1205-1213
    [80]张传滨,刘洁,张进学,等.核电用304不锈钢动态再结晶数学模型的建立[J].铸造设备与工艺,2011,(1):16-19
    [81]何宜柱,陈大宏,雷廷权.形变Z因子与动态再结晶晶粒尺寸间的理论模型[J].钢铁研究学报,2002,12(1):26-30
    [82]Brunger E., Wang X., Gottstein G.. Nucleation mechaniams of dynamic recrystallization in austenitic steel 800H [J]. Scripta Mater,1998,38(12):1843-1849
    [83]Belyakov A., Miura H., Sakai T.. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel [J]. Mater Sci Eng A,1998,255:139-147
    [84]Wusatowska-Sarnek A.M., Miura H., Sakai T.. Nucleation and microtexture development under dynamic recrystallization of copper [J]. Mater Sci Eng A,2002,323: 177-186
    [85]Valle J.A., Prado M., Ruano O.A.. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy[J]. Materials Science and Engineering A,2003,355:68-78
    [86]Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater,2003,51:2685-2699
    [87]Li D. F., Guo Q. M., Guo S. L.. The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy [J]. Materials and Design,2010,32:696-705
    [88]谭险峰,周庆,刘霞.基于Deform-3D的等通道转角挤压变形过程的计算机模拟[J].热加工工艺,2009,38(9):65-68
    [89]王斌,何柏林,江民华.DEFORM-3D有限元软件在冷挤压工艺模拟中的应用[J].锻造技术,2013,34(4):474-476
    [90]郭建亭.高温合金材料学(下册)[M].北京:科学出版社,2010:567-568
    [91]谢建新,刘静安.金属挤压理论与技术[M].北京:冶金工业出版社,2001,105-106
    [92]沈健.2091铝锂合金高温塑性变形行为研究[D].长沙:中南工业大学,1996
    [93]张水忠.挤压工艺及模具设计[M].北京:化学工业出版社,2009:182-184
    [94]韩修柱,徐文臣,单德彬.稀土增强型Mg-10Gd-8Y-1.5Nd-0.5Zr合金挤压工艺研究[J].材料科学与工艺,2013,21(4):421-425
    [95]吴铉礼.HSn70-1合金挤压工艺及其挤制品常见缺陷研究[J].有色冶金设计与研究,2009,30(4):34-37
    [96]Lapovok R.Y., Barnett M.R., Davies C.H.. Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation [J]. Journal of Materials Processing Technology, 2004,146(3):408-414
    [97]王新,王迎新,曾小勤.数值模拟方法建立AZ31B镁合金管材的挤压极限图[J].锻压技术,2007,32(1):99-101
    [98]Donati L., Tomesani L.. The effect of die design on the production and seam weld quality of extruded aluminum profiles [J] Journal of Materials Processing Technology, 2005,164:1025-1031
    [99]吾志岗.GH625镍基合金热变形力学行为,微观组织及加工图研究[D].北京:北京有色金属研究总院,2010
    [100]张士宏,王忠堂,许沂,等.高温合金GH4169管材热挤压工艺及组织分析[J].金属成形工艺,2003,21(5):42-44
    [101]王忠堂,王本贤,张士宏.GH1140管材热挤压工艺及组织性能研究[J].沈阳理工大学学报,2005,24(3):4-6
    [102]Hansson S., Jansson T.. Sensitivity analysis of a finite element model for the simulation of stainless steel tube extrusion [J]. Journal of Materials Processing Technology, 2010,210,(10):1386-1396
    [103]Anderson M.J., McGuire K., Zante R.C., et al. Identifying the dominant failure mode in the hot extrusion tooling used to forge nickel based superalloy[J]. Journal of Materials Processing Technology,2013,213(1):111-119
    [104]王宝顺,林奔,罗坤杰,等.玻璃润滑剂在钢热挤压工艺中的应用[J].世界钢铁,2010,(3):44-50
    [105]王宝顺,林奔,张麦仓,等.G3镍基耐蚀合金管材热挤压工艺润滑行为研究Ⅰ.玻璃润滑膜厚度模型建立及应用[J].金属学报.2011,47(03):367-373
    [106]林奔,王宝顺,张麦仓,等.G3镍基耐蚀合金管材热挤压工艺润滑行为研究Ⅱ.玻璃润滑剂黏度-成分计算方法及应用[J].金属学报.2011,47(03):374-379
    [107]余永宁.金属学原理[M].北京:冶金工业出版社,2000:468-469
    [108]Yang J. Y., Chen R.G., Fan X. A., et al. Microstructure control and thermoelectric properties improvement to n-type bismuth telluride based materials by hot extrusion [J]. Journal of Alloys and Compounds,2007,429(1):156-162
    [109]Kulikov O.L., Hornung K..A simple geometrical solution to the surface fracturing problem in extrusion processes [J]. Journal of Non-Newtonian Fluid Mechanics,2001, 98,(2):107-115
    [110]Duan X. J., Velay X., Sheppard T.. Application of finite element method in the hot extrusion of aluminium alloys [J]. Materials Science and Engineering:A,2004,369(1): 66-75
    [111]Mamoru M., Kohei K., Kenji H.. Effect of hot extrusion on mechanical properties of a Mg Si Al alloy [J]. Materials Letters,1994,19(5):247-250
    [112]Saanouni K., Mariage J.F., Cherouat A., et al. Numerical prediction of discontinuous central bursting in axisymmetric forward extrusion by continuum damage mechanics [J]. Computers and Structures,2004,82(27):2309-2332
    [113]Sliwa R., Zasadzinski J.. Surface cracking of bars in the metal-extrusion process: Part I [J]. Journal of Mechanical Working Technology,1987,14(3):325-341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700