用户名: 密码: 验证码:
ZK60镁合金温热塑性变形与抗冲击性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金材料在不久的将来,用量将超过铝合金材料,成为武器装备中应用最广的金属结构材料。ZK60镁合金具有最高的强度、良好的塑性及耐蚀性,是目前应用最多的变形镁合金之一。本文系统研究了ZK60合金的塑性变形特性,成形后的一系列力学性能和抗冲击能力,进而评价其在装甲防护方面的价值,以指导镁合金在军事工业上的工程应用。主要研究内容和结论如下:
     1.ZK60镁合金的热模拟分析表明,ZK60合金的加工性不如AZ80镁合金。通过实验发现,在高于300℃,低于1S-1的应变率条件下ZK60合金的热成形性好。
     2.对ZK60合金进行了等温平面压缩实验,发现由于难熔化合物的存在,均匀化后ZK60合金不仅消除了铸态的网状组织,且仍保持了晶粒细化效果,这种晶粒细化效果一直延续到后面的热变形、热处理过程中,使ZK60合金在热加工后具有较好的力学性能。
     3.在平面压缩态、平面压缩+T5态、平面压缩+T6态下,ZK60合金抗拉强度在应变量为2.07时都达到极值点,而延伸率出现极值时对应的应变大小有所不同。
     4.正挤压变形参数(变形温度、应变量)相同时,正挤压后ZK60合金的抗拉强度平均高于热压缩后ZK60合金抗拉强度78MPa,正挤压后ZK60合金的延伸率平均低于热压缩后ZK60合金延伸率4.2%。同热压缩+T5实验结果一致,正挤压+T5态ZK60合金,具有较好的力学性能。但应变3.40以后,力学性能达到极值。
     5.对不同热加工态ZK60合金进行了Hopkinson低速冲击(<100m/s)实验研究,发现应变率愈大,ZK60合金的动态真应力——应变曲线上愈出现明显的屈服点和屈服平台阶段;应变率愈大,断裂时对应的应变越大,且σ-ε曲线最后断裂下降部分越长,表明在高应变率下,合金具有好的塑性,且裂纹扩展速度较慢。
     6.对不同热加工态ZK60合金进行了弹丸高速冲击(500m/s)变形镁合金靶板实验研究,主要结果如下:
     (1)高速弹击实验后,在靶材弹孔背面,出现了白亮的剪切唇,说明ZK60合金靶材具有较好的塑性,在高速弹击情况下,吸能性较好,具有较好的抗弹性。
     (2)热变形+T5态ZK60镁合金靶板抗弹性较好,弹坑周围几乎不出现裂纹;热变形+T6态镁合金靶板抗弹性较差,弹坑周围都出现了明显的纵向裂纹;热变形态镁合金弹坑形貌有的出现裂纹,有的不出现裂纹,比较光滑。
     (3)经过线性回归分析,建立了弹坑深度与靶板材料力学性能之间的关系式:y=13.1-0.03x,其中:y值越小,靶板材料抗弹性越好。关系式说明了只有在Rm、Rp0.2、A都达到最理想状态下,材料就可获得优异的抗弹性。
In the near future, the quantities of magnesium alloy material will be much more than aluminum alloy to become the most widely used metal structure material in weapon equipment. Mg alloy has the highest strength, good plasticity and stain resistance to be one of the most used wrought Mg alloys.
     In this paper, plastic deformation properties, mechanical properties and thermal-shock resistance of ZK60alloy were systematically studied and then its value on armor protective aspect was evaluated in order to lay a theoretical foundation for its use, which could direct its engineering application in the military industry.
     The main research contents and conclusions are as follows:
     1. Gleeble thermal simulation analysis shows that the machinability of ZK60alloy is not so well as AZ80Mg alloy. And the thermal formability of ZK60alloy is good when the temperature is above300℃and the strain rates is1s-1.
     2. The results of hot compression experiment show that with Zr insoluble compounds existing, after homogenization, ZK60alloy not only eliminates its as-cast network structure, but also keeps grain refining effect, which would continue to later thermal deformation and heat treatment and make hot-worked ZK60alloy have good mechanical properties.
     3. Not only in hot compressed state and hot compressed+T5state but also in hot compressed+T6state, tensile strength of ZK60alloy all reach the peak with the strain rate of2.07. However the strain rate is different when elongation appears extremum.
     4. The influence of extrusion process parameters on microstructure and properties of ZK60alloy under large deformation is studied in forward extrusion+aging experiments. The results of forward extrusion show that when strain rate is larger (3.40,3.80), the mechanical properties reach a constant level. Later, with strain rate increasing gradually, the waste of die and energy could not be avoided and the properties decrease.
     5. When deformation parameters (temperature, strain) are same, the average tensile strength of forward extrusion state ZK60alloy is78MPa more than hot compressed state ZK60alloy, and the average elongation of forward extrusion state ZK60alloy is4.2%less than hot compressed state ZK60alloy. Besides, forward extrusion+T5state ZK60alloy has better mechanical properties as well as the results of hot compressed+T5experiment.
     6. ZK60alloy is experimented with Hopkinson low velocity impact test (<100m/s). The results show that the larger is strain state, the more obvious is yield point and yield platform of dynamically true stress-strain curve. Besides, the fracture part is longer with the increasing of strain state, especially when the strain state is2600s-1.
     7. The impact process and failure characteristic of ZK60alloy under high speed impact by steel bullet have been studied. The main results are as follows:
     (1) Shear ship appears in the shot hole back of target plate. This states that ZK60alloy has better defensible performance.
     (2) The defensible performance of hot deformed+T5state ZK60alloy is better. The cracks hardly appear around the crater. The defensible performance of hot deformed+T6state ZK60alloy is less. The vertical cracks obviously appear around the crater. Some hot deformed Mg alloy has cracks. But some have not cracks and are smooth.
     (3) The relation between shear depth and mechanical properties of target plate material is established by linear regression equation:y=13.1-0.03x,(y=h; the less is value of y, the better is defensible performance of target plate material). The relation states that only when Rm, Rp0.2and A all could reach the most ideal state, the material can obtain excellent defensible performance.
引文
[1]康鸿跃,陈善华,马永平,王忠海.镁合金在军事装备中的应用[J].金属世界,2008,(1):61-64.
    [2]林水成.美国单兵负荷量问题研究[J].解放军医学情报,1991,5(6):314-315.
    [3]张津,章宗和.镁合金及应用[M].化学工业出版社,2004.
    [4]黎文献主编.有色金属材料工程概论[M].冶金工业出版社,2007.
    [5]唐全波,黄少东,伍太宾.镁合金在武器装备中的应用分析[J].兵器材料科学与工程,2007,(2):69-71.
    [6]许小忠,刘强,程军.镁合金在工业及国防中的应用[J].华北工业学院学报,2002,23(3):112-114.
    [7]黄少东,唐全波,赵祖德.用镁合金促进兵器装备轻量化[J].金属成形工艺,2002,20(5):8-10.
    [8]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [9]赵浩峰,池成忠.镁合金及其复合材料[M].北京:中国科学技术出版社,2002.
    [10]Polmear I J. Magnesium alloys and application[J]. Materials Science and Technology 2004,(1):1-14.
    [11]Aghion E,BronfinB. Magnesium alloys development towards the 21st century [J]. Materials Science Forum,2000,350-351:19-29.
    [12]周海涛,马春江,曾小勤等.变形镁合金材料的研究进展[J].材料导报,2003,17(11):16-18.
    [13]Yo Kojima, Shigeharu Kamado. Fundamental magnesium research in Japan[J]. Materials Science Forum,2005,488-489:9-16.
    [14]CHEN Xian-hua,HUANG Xiao-wang,PAN Fu-sheng. Effects of heat treatment on microstructure and mechanical properties of ZK60 Mg alloy [J]. Transactions of Nonferrous Metals Society of China,2011,(21):754-760.
    [15]林巍.ZK60镁合金热挤压变形组织及力学性能的研究[D].武汉理工大学硕士论文,2009.
    [16]曾荣昌,柯伟等.镁合金的最新进展及应用前景[J].金属学报,2001,7(7):673-685.
    [17]Polmear I J. Magnesium alloys and applications [J]. Materials Science and Technology, 1994,10:114.
    [18]吕新宇,王建国.提高MB15镁合金挤压型材力学性能的研究[J].轻合金加工技术,2000,28(6):22-24.
    [19]VOLKOVA E F. Effect of deformation and heat treatment on the structure and properties of magnesium alloys of the Mg-Zn-Zr system[J]. Metal Science and Heat Treatment,2006, 48(11-12):508-512.
    [20]张少卿.MB15镁合金的相组成及其微观形态[J].金属学报.1989,25(6):A346-A351.
    [21]第一机械工业部机械制造与工艺科学研究院材料研究所编著,金相图谱[M].下篇,有色金属部分,北京:机械工业出版社,1959.
    [22]高强,最新有色金属金相图谱大全[M].北京:冶金工业出版社,2005.
    [23]麻彦龙,左汝林,汤爱涛等.ZK60镁合金铸态显微组织分析[J].重庆大学学报,2004,27(8):52-55.
    [24]张先宏.镁合金热变形过程试验研究和数值模拟[D].上海交通大学博士论文,2003.
    [25]刘川林,曹洋,黄少东,唐全波,赵祖德.镁合金等温成形工艺的研究及应用[A].2002年材料科学与工程新进展(上)—2002年中国材料研讨会论文集[C].2002.
    [26]毛建军,潘复生,陈先华等.ZK60镁合金的热压缩变形行为[J].材料导报,2010,24(2):58-59.
    [27]刘晓霏,严巍.AZ31B镁合金塑性变形动态再结晶的实验研究[J].塑性工程学报,2005,12(3):10-13.
    [28]刘俊,吴立鸿,关绍康.AZ70镁合金热压缩变形特性[J].塑性工程报,2008,15(1):79-83.
    [29]陈振华,夏伟军,严红革.镁合金材料的塑性变形理论及其技术[J].化工进展,2004,23(2):35-39.
    [30]Toshiji Mukai,Masashi Yalnanoi,Hiroyuki Watanabe,et al.Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure[J].Scripta Materialia,2001,45(1):89-94.
    [31]YANG X, MIURA H, SAKAI T. Dynamic evolution of new grains in magnesium alloy AZ31 during hot deformation[J]. Materials Transactions,2003,44:197-203.
    [32]DING Han-lin, HE Yi-zhu, LIU Liu-fa, DING Wen-jiang.Cellular automata simulation of grain growth in three dimensions based on the lowest-energy principle [J]. Journal of Crystal Growth,2006,293:489-497.
    [33]Lan Jiang,John J Jonas,Alan A Luo,et al. Influence of{10-12}extension twinning on the flow behavior of AZ31 Mg alloy [J].Materials Science and Engineering: A,2007,445-446(1):302-309.
    [34]杨亚琴.镁合金温热特性研究[D].中北大学硕士论文,2006.
    [35]张娅,马春江,卢晨.变形镁合金的塑性变形机制与动态再结晶[J].轻合金加工技术,2003,31(7):35-39.
    [36]H Watanabe A H,Tsutsui B,T Mukai, M Kohzu,S Tanabe, K Higashi. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperature [J], Internation Journal of Plasticity,2001,17(3):387-397.
    [37]汪凌云,范永革,黄光杰等.镁合金AZ3IB的高温塑性变形及加工图[J].中国有色金属学报,2004,14(7):1065-1072,
    [38]Sivakesavam O,Rao I S,Prasad Y V R K. Processing map for hotworking of as-cast magnesium[J]. Materials Science and Technology,1993,9:805-810.
    [39]Frost H J, Ashby M F. Deformation mechanism maps[M].Oxford, New York:Pergamon Press,1982:48-49.
    [40]Galiyev A, Kaibyshev R, Gottstein G.. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia,2001,49(7):1199-1207.
    [41]MCQUEEN H J. Initiating nucleation of dynamic recrystallization, primarily in polycrystals[J]. Materials Science and Engineering:A,988,101:149-160.
    [42]H. Takuda, T. Morishita, T. Kinoshita, N. Shirakawa. Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperatures [J]. Journal of Materials Processing Technology,2005,64:1258-1262.
    [43]黄光杰,钱宝华.AZ31镁合金热变形特性研究[A].2007高技术新材料产业发展研讨会暨《材料导报》编委会年会论文集[C].2007.
    [44]周海涛,马春江,刘满平,尉胤红,丁文江.AZ61镁合金热变形行为的研究[A].2002年 材料科学与工程新进展(上)—-2002年中国材料研讨会论文集[C].2002.
    [45]刘六法,丁汉林,鎌土重晴,丁文江,,小岛阳.AZ91镁合金的热压缩行为(II)—元胞自动机模拟[J].中国有色金属学报,2008,18(2):243-249.
    [46]Wantanabe H, Tsutsui H, Wukai T, etal. Deformation mechanism in a coarse-grained Mg-Al-Zn alloy at elevated temperature [J], Internation Journal of Plasticity, 2001,17(3):387-397.
    [47]何燕,张立文,牛静,裴继斌.元胞自动机方法对动态再结晶过程的模拟[J].材料热处理学报,2005,4:120-124.
    [48]Doege E,Draker K. Sheet metal forming of magnesium wrought alloy formability and Process technology [J] Journal of Material Proeess Technology,2001,115(l):14-19.
    [49]T Laser,Ch Hartig,R Bormann,J Bohlen,et al.Dynamic recrystallization of Mg-3Al-Zn[J]. Proceedings of the 6th Intenational Conference Magnesium Alloys and Their Applications,2003:164-169.
    [50]Yasumasa Chino,Katsuya Kimura,Masataka Hakamada.et al. Mechanical anisotropy dueto twinning in an extruded AZ31 Mg alloy[J]. Materials Science and Engineering A,2008,485(1):311-317.
    [51]ZHOU Haitao, WANG Qudong, WEI Yinhong, etal. Flow stress and microstructurale volution in as rolled AZ91 alloy during hot deformation[J].Transactions of Nonferrous Metals Society of China,13(6):1265-1269.
    [52]赵新海,吴向红,赵国群,程联军,马新武.基于有限元的锻造毛坯形状优化设计——锻件变形均匀性和变形力的多目标优化[A].第十届全国塑性工程学术年会、第三届国际塑性加工先进技术研讨会论文集[C].2007.
    [54]吕炎,徐福昌等.镁合金上机匣等温精锻工艺的研究.哈尔滨工业大学学报,2000(4)32:127-129.
    [55]PerezPrado M T, Valledel J A, Contreras J M, Ruano O A. Microstructural evolution during large strain hot rolling of an AM60Mgalloy[J]. Scripta Materialia,2004,50(5):661-665.
    [56]PerezPrado M T, delValle J A, Ruano O A. Effect of sheet thickness on the microstructurale volution of an AZ61Mgalloy during large strain hot rolling[J]. Scripta Materialia,2004,50(5):667-671.
    [57]Mohri T,Mabuchi M,Nakamura M,etal. Microstructurale volution and superplasticity of rolled Mg29A121Zn[J]. Materials Science and Engineering A,2000,A290:139-144.
    [58]Hosokawa, ChinoYasumasa, Shimojima, Koji, etal. Mechanical properties and blow forming of rolled AZ31Mg alloy sheet[J].Materials Transactions,2003,44(4):484-489.
    [59]程永奇,傅定发等.等径角轧制ZK60镁合金板材的组织与性能[J].机械工程材料.2006,30(6):37-40.
    [60]Polmear I J. Light Alloys:Metallurgy of Light Metals[M].2nd ed. London:Edward Arnold,1989:210.
    [61]于翔,丁培道等.挤压变形对MB15镁合金及组织性能的影响[J].金属成形工艺,2004,24(1):41-45.
    [62]王忠堂,张士宏等.镁合金管材挤压工艺及力能参数实验研究[J].沈阳工业学院学报,2001,20(4):66-69.
    [63]郑从吉.ZK60变形镁合金的合金相研究[D].重庆大学硕士士论文,2009.
    [64]余琨,黎文献,王日初.热处理工艺对挤压变形ZK60镁合金组织与力学性能的影响[J].中国有色金属学报,2007,17(2):188-192.
    [65]何运斌,潘清林,覃银江等.热处理工艺对变形ZK60镁合金组织与性能的影响[J].金属热处理,2011.36(11):52-56.
    [66]吕新宇,王国军等.提高MB15合金挤压型材力学性能的研究.轻合金加工技术[J].2000,28(6):22-24.
    [67]许道奎,彭林,刘路.热处理条件对锻造ZK60-Y镁合金力学性能的影响[J].材料研究学报,2005,19(6):573-580.
    [68]He S M,Zeng X Q,Peng L M,et al. Precipitation in a Mg-10Gd-3Y-0.4Zr(wt.%)alloy during isothermal ageing at 250℃[J]. Journal of Alloys and Compounds,2006,421:309-313.
    [69]He S M, Zeng X Q, Peng L M, et al. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy[J]. Journal of Alloys and Compounds,2007,427:316-323.
    [7O]El-Magd E, Abouridouane M. Characterization, modelling and simulation of deformation and fracture behavior of the light-weight wrought alloys under high strain rate loading[J]. International Journal of Impact Engineering,2006,32:741-758.
    [71]刘长海.AZ30合金动态力学性能研究[D].辽宁工程技术大学,2005.
    [72]Ishikawa K, Watanabe H, Mukai T. High strain rate deformation behavior of an AZ91 magnesium alloy at elevated temperature[J]. Materials Letters,2005,59:1511-1515.
    [73]B.Li.Mordike,T.Ebert. Magnesium Properties-application-potential [J]. Materials Science and Engineering A,2001,302:37-45.
    [74]Yokoyama T. Impact tensile stress-strain characteristics of wrought magnesium alloys [J]. Strain,2003,39 (4):167-175.
    [75]Oh-ishi K,Hashi Y,Sadakata A,et al. Microstructural control of an Al-Mg-Si alloy using equal-channel-angular pressing [J]. Materials Science Forum,2002,396-402 (2):333-338.
    [76]Mukai T, Yamanoi M, Higashi K. Ductility enhancement in magnesium alloys under dynamic loading [J]. Materials Science Forum,2000,350-351:97-102.
    [77]李保成,张星,马丹.镁合金冲击性能研究[J].新技术新工艺,2005(7):54-55.
    [78]谭成文.破片特征参数预测中的若干参数研究[D].北京理工大学博士论文,2004.
    [79]王敬丰,凌闯,梁浩,赵亮,潘复生.镁合金动态力学性能的研究现状及发展方向[J].材料导报,2010,24(4):80-82.
    [80]Kainer KU. Magnesium [M]. Wiley-VCH Verlag GmbH & Co.2005.402-408.
    [81]孙葆森.AZ31B-H24镁合金和5083-H131铝合金抗弹性能的比较[J].兵器材料科学与工程,2010,(5):74.
    [82]才鸿年,谭成文,王富耻等.装甲用镁合金抗弹性能表征体系探讨[J].中国工程科学,2006,8(2):30-33.
    [83]范亚夫,陈捷,宁俊生等.变形镁合金材料抗弹性能实验研究[C].江西:第八届全国爆炸力学学术会议论文集,2007:150-157.
    [84]Meyers M A,Murrl E. Shock-Wave and high~stain~rate phenomena in materials[M].New York and London:PlenumPress,1992.
    [85]El-Magd E, Abouridouane M. Influence of strain rate and temperature on the compressive ductility of Al, Mg and Ti alloys [J]. Journal De Physique. Ⅳ:JP,2003,110(1):15-20.
    [86]RAJ R. Development of a processing map for use in warm-forming and hot forming processes[J]. Metallurgy Transaction A,1989,12:1089-1097.
    [87]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,1999:8.
    [88]PRASAD Y V R K, RAO K P, HORT N, KAINER K U. Hot working parameters and mechanisms in as-cast Mg-3Sn-1Ca alloy[J]. Materials Letters,2008,62(26):4207-4209.
    [89]邓子玉,高丹,杨玲玲.AZ80镁合金高温塑性研究[J].特种铸造及有色合金,2008,28(2):109-111.
    [90]SIVAKESAVAM O, PRASAD Y V R K. Hot deformation behavior of as-cast Mg-2Zn-1Mn alloy in compression a study with processing map[J]. Materials Science and Engineering A,2003,362:118-124.
    [91]PRASAD Y V R K. Processing maps:A status report[J]. Journal of Engineering and Performance,2003,12:638-645.
    [92]PRASAD Y V R K, SASIDHARA S. Hot working guide:A compendium of processing maps[M]. ASM International, Metals Park, OH,1997.
    [93]黄光胜,汪凌云,陈华等.2618铝合金的热变形和加工图[J].中国有色金属学报.2005,15(5:763-767.
    [94]陈军.TC4和BT16两相钛合金高温变形行为研究[D].湖南:中南工业大学,2000.
    [95]曾卫东,周义刚,周军.加工图理论研究进展[J].稀有金属材料与工程.2006,35(5):673-677.
    [96]周军.曾卫东.舒滢.周义刚.应用热加工图研究TC17合金片状组织球化规律[J].稀有金属材料与工程,2006,35(2):265-269.
    [97]SRINIVASAN N, PRASAD Y V R K, RAO P R. Hot deformation behaviour of Mg-3Al alloy-A study using processing map[J]. Materials Science and Engineering A,2008,476(1/2): 146-156.
    [98]刘娟,崔振山,李从心.镁合金ZK60的三维加工图及失稳分析[J].中国有色金属学报,2008,18(6):1020-1026.
    [99]史学斌.AZ91D镁合金热压缩变形行为研究[D].太原理工大学硕士学位论文,2008.
    [100]张宪宏.镁合金热变形过程试验研究和数值模拟[D].上海交通大学,2004.
    [101]余锟,黎文献.Mg-Al-Zn系变形镁合金轧制及热处理后组织及性能[J].金属热处理,2002(5):8-11.
    [102]许道奎,彭林等.热处理条件对锻造ZK60-Y镁合金力学性能的影响叨.材料研究学报,2005,19(6):73-80.
    [103]彭建,张丁非等.ZK60镁合金铸坯均匀化退火研究[J].工程材料,2004(8):32-35.
    [104]王子田,杨亚琴,李保成,韩保杰.热变形对ZK60镁合金组织及性能的影响[J].热加工工艺,2012,41(20):8-10.
    [105]Zitian Wang,Yaqin Yang,Baocheng Li,Yanhui Zhang, Zhimin Zhang. Effect of hot-deformation on microstructure and mechanical properties of AZ80 magnesium alloy[J]. Materials Science and Engineering A,2013,(582):36-40.
    [106]余锟,黎文献.Mg-Al-Zn系变形镁合金轧制及热处理后组织及性能[J].金属热处理,2002(5):8-11.
    [107]郝艳君,陈立佳等.挤压态ZK60镁合金的高温力学性能及其超塑性[J].沈阳工业大学学报,2004,26(3):261-264.
    [108]Ma Chunjiang, Liu Manping. Tensile properties of extruded ZK60-/RE alloys [J]. Materials Science and Engineering A,2003,349:207-212.
    [109]王子田,杨亚琴,李保成.形变热处理对ZK60镁合金组织性能的影响[J].热加工工艺,2012,41(22):183-185.
    [110]张宝红,张治民挤压和T5处理对铸态ZK60镁合金组织性能的影响[J].热加工工艺,2009,38(11):79-81.
    [111]梁浩,潘复生等.3种镁合金高应变率压缩性能的比较[J].材料导报,2010,24:539-542.
    [112]孙兵兵.某船体钢弹板侵彻行为研究[D].哈尔滨工程大学硕士学位论文,2002.
    [113]Songwon Seo, Oakkey Min, Hyunmo Yang. Constitutive equation for Ti-6Al-4V at high temperatures measured using the SHPB technique [J].International Journal of Impact Engineering,31(2005):735-754.
    [114]毛萍莉,刘正,王长义,王峰.镁合金高速冲击载荷下的变形行为研究进展[J].材料导报,2012,26:95-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700