用户名: 密码: 验证码:
旋转电磁效应对海水水质及紫铜腐蚀行为的影响机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从传统旋转电机的功能新应用角度出发,以旋转电机温升反问题的旋转电磁效应为切入点,研究了旋转电磁效应所涉及热效应、交变磁场效应和交变磁记忆效应对海水水质的影响规律,以及紫铜腐蚀形貌的演变规律和腐蚀产物物相成分的演化规律,分析了旋转电磁效应对紫铜电化学腐蚀行为的影响机理。
     热效应对3.5%NaCl溶液的水质影响实验中,随着温度的变化,溶液的水质参数,如电导率、溶解氧浓度以及pH值均发生变化。通过对不同峰值温度的3.5%NaCl溶液进行测试分析得知,随着温度的升高,电导率持续减小,且在升温与降温过程中均发生突变,溶解氧浓度先减小后增大,pH值持续增大,但其增幅不超过0.6。温度通过对CO2和O2在溶液中的溶解度的影响,使溶液的水质参数发生变化。
     通过电化学腐蚀实验研究了热效应对紫铜电化学腐蚀行为的影响。极化曲线测试结果表明,紫铜在50℃的溶液中腐蚀电位最高,在30℃的溶液中腐蚀电流最小,且在30℃的溶液中钝化最明显。阻抗谱测试结果表明,等效电路由电阻Rs、常相角元件Qdl和电阻Rpo并联、常相角元件Qox和电阻Rox并联共三个单元的串联组成。实验结果表明,仅在30℃的溶液中有缓蚀效果,缓蚀效率为4.06%。通过扫描电镜照片可以看出,溶液温度为30℃时,紫铜表面生成了明显的钝化膜,而在其它温度溶液中未出现明显的钝化膜。XRD成分分析表明,紫铜表面的腐蚀产物主要有Cu2O和CuCl,其中以致钝产物CuCl为主。
     旋转电磁效应对3.5%NaCl溶液的水质影响实验结果表明,旋转电磁处理实验阶段,随着处理时间的增加,溶液的电导率先迅速减小然后增大,溶解氧浓度先减小然后稳定,pH值持续增大,温度先升高然后稳定,且对于不同电磁交变频率处理,水质的变化趋势一致;磁记忆性实验阶段,电导率持续增大,溶解氧浓度也有增大的趋势,pH值基本保持不变,温度先降低然后稳定。旋转电磁效应对水质的影响是热效应和交变磁场效应的耦合作用,热效应改变了CO2和O2在3.5%NaCl溶液中的溶解度,同时交变磁场效应使水分子因极性而定向排列,上述两方面综合作用使溶液的电导率、溶解氧浓度以及pH值发生变化。热效应对水质的影响没有记忆性,而交变磁场效应对水质的影响具有记忆性。
     通过电化学腐蚀实验研究了旋转电磁效应对紫铜电化学腐蚀行为的影响,结果表明,旋转电磁处理实验阶段和磁记忆性实验阶段均具有良好的缓蚀效果。极化曲线测试结果表明,旋转电磁处理实验阶段,交变磁场对提高紫铜在3.5%NaCl溶液中的腐蚀电位没有明显的作用,但可以显著减小紫铜的腐蚀电流,且极化曲线存在较宽的钝化区。交变磁场效应的最佳缓蚀参数是交变频率50Hz处理3h,缓蚀效率为83.60%。磁记忆性实验阶段,紫铜的腐蚀电位和腐蚀电流的变化趋势与旋转电磁处理实验阶段一致,表现出明显的记忆性。磁记忆效应的最佳缓蚀参数是交变频率200Hz处理12h后磁记忆12h,缓蚀效率为83.56%。阻抗谱分析表明,等效电路与热效应时相同,由电阻Rs、常相角元件Qdl和电阻Rpo并联、常相角元件Qox和电阻Rox并联共三个单元的串联组成,但构成元件的参数发生了较大变化。通过扫描电镜照片可以看出,紫铜的腐蚀产物形貌相比热效应时要均匀致密。XRD成分分析表明,紫铜表面的腐蚀产物与热效应时相同,主要有Cu2O和CuCl,其中以致钝产物CuCl为主。
The influence of thermal effect, rotating electromagnetic field effect and rotatingelectromagnetic memory effect on seawater quality and corrosion of copper wereresearched in this paper from the view of new function application of traditionalrotation motor. And influence mechanism of effect of rotating electromagnetic effecton corrosion of copper was also analyzed.
     In the experiment that how the thermal effect influenced the water quality of3.5%NaCl solution, water quality parameters of solution such as conductivity, dissolvedoxygen and pH change when the temperature changes. Water quality of different peaktemperature of3.5%NaCl solution was tested and analyzed. From the results, it can beseen that the conductivity and pH decreases all the way, dissolved oxygen decreasesfirst and then increases with the temperature increasing and mutation of conductivityocuurred in healting and cooling. Because of the solubility of CO2and O2affected bytemperature, water quality parameters of3.5%NaCl solution change.
     The influence of thermal effect on copper electrochemical corrosion behavior wasinvestigated by using electrochemical test. From polarization curve, it could be seenthat the corrosion potential of copper was maximum in50℃solution and corrosioncurrent was minimum in30℃solution. And the passivation happening in30℃wasthe most obviously. From AC impedance spectroscopy, it could be seen that theequivalent circuit diagram was composed by three units in series, and the three unitswere resistance Rs, constant phase angle element Qdland resistor Rpoin parallel andconstant phase angle element Qoxand resistor Roxin parallel respectively. Thecorrosion inhibition efficiency only appeared in30℃and anticorrosion efficient was4.06%. From SEM images, there was passive film only formed in30℃. Fromcomponent analysis, the corrosion products of copper were composed by Cu2O andCuCl. And it was dominated by passive product CuCl.
     In the experiment that how the rotating electromagnetic effect influenced thewater quality of3.5%NaCl solution, conductivity decreased quickly and thenincreased, dissolved oxygen decreased all the way, pH increased all the way andtemperature increased firstly and then reached stable value with the treatment timeincreasing in stage of rotating electromagnetic treatment experiments. Conductivityincreased all the way, dissolved oxygen had increasing trend, pH kept invariant andtemperature decreased always in stage of magnetic memory experiments. Because of the solubility of CO2and O2affected by thermal effect and directional arrangement ofwater molecules influenced by alternating magnetic field effect, water qualityparameters of3.5%NaCl solution changed. The thermal effect on water quality onlyaffected temperature, but rotating electromagnetic field effect on water quality showsmemory.
     The influence of rotating electromagnetic field effect on copper electrochemicalcorrosion behavior was investigated by using electrochemical test. The results showthat there is good corrosion inhibition efficiency in stage of rotating electromagneticfield effect processing experiments and rotating electromagnetic memory experiments.From polarization curves, it can be seen that in3.5%NaCl solution the corrosionpotential of copper doesn’t change obviously, but the corrosion current decreases andthere has a wide passivation region in stage of rotating electromagnetic field effectprocessing experiments. The best corrosion inhibition parameter is50Hz treats3hours,and the anticorrosion efficient is83.60%. The changing trend of corrosion potentialand current of copper in stage of magnetic memory experiments is consistent withrotating electromagnetic field effect processing experiments, and it shows obviousmemorablity. The best corrosion inhibition parameter is memorizing12h after200Hztreats12h, and the anticorrosion efficient is83.56%. From AC impedance spectroscopy,it can be seen that the equivalent circuit diagram is composed by three units in series,and the three units are resistance Rs, constant phase angle element Qdland resistor Rpoin parallel and constant phase angle element Qoxand resistor Roxin parallel respectively,but the parameters of elements are different. From SEM images, the specimen ofcopper is compact compared with the specimen in thermal effect experiments. Fromcomponent analysis, it can be seen that the corrosion products of copper are same withthermal effect experiments which are composed by Cu2O and CuCl, and it isdominated by passive product CuCl.
引文
[1]杜娟. TUP紫铜及B10铜镍合金流动海水冲刷腐蚀行为研究[D].青岛:中国海洋大学,2007:11-28.
    [2]朱小龙,林乐耘,徐杰.铜合金在海水环境中的腐蚀规律及主要影响因素[J].中国有色金属学报,1998, S1:215-222.
    [3]黄桂桥,王相润,林乐耘,严宇民.青岛海域铜合金脱成分腐蚀特征研究[J].腐蚀科学与防护技术,1995,03:237-240.
    [4]孙丽红.模拟海水介质中黄铜复合缓蚀剂的研究[D].重庆:重庆大学,2010:8-16.
    [5]汪鸣.海水淡化用铜管的市场需求前景看好[J].中国金属通报,2006,(41):7-9.
    [6] Gopi D, Govindaraju K M, Collins Arun Prakash V, et al. A study on newbenzotriazole derivatives as inhibitors on copper corrosion in ground water [J].Corrosion Science,2009,51(10):2259-2265.
    [7] Chen Z, Huang L, Zhang G, et al. Benzotriazole as a volatile corrosion inhibitorduring the early stage of copper corrosion under adsorbed thin electrolyte layers[J]. Corrosion Science,2012,65(0):214-222.
    [8] Guo S F, Zhang H J, Liu Z, et al. Corrosion resistances of amorphous andcrystalline Zr-based alloys in simulated seawater [J]. ElectrochemistryCommunications,2012,24(0):39-42.
    [9] Hammouti B, Dafali A, Touzani R, et al. Inhibition of copper corrosion bybipyrazole compound in aerated3%NaCl [J]. Journal of Saudi Chemical Society,2012,16(4):413-418.
    [10] Huynh N, Bottle S E, Notoya T, et al. Studies on alkyl esters ofcarboxybenzotriazole as inhibitors for copper corrosion [J]. Corrosion Science,2002,44(6):1257-1276.
    [11] Jiang Y F, Bao Y F, Zhang G W. Corrosion protection of composite coatingcombining ceramic layer, copper layer and benzotriazole layer on magnesiumalloy [J]. Transactions of Nonferrous Metals Society of China,2010,20Supplement2(0):693-696.
    [12] Liu X, Jiang Z, Guo Y, et al. Fabrication of super-hydrophobic nano-sizedcopper films by electroless plating [J]. Thin Solid Films,2010,518(14):3731-3734.
    [13] Kang Z, Ye Q, Sang J, et al. Fabrication of super-hydrophobic surface on coppersurface by polymer plating [J]. Journal of Materials Processing Technology,2009,209(9):4543-4547.
    [14] Song J, Zou Y, Kuo C, et al. Orientation dependence of the electrochemicalcorrosion properties of electrodeposited Cu foils [J]. Corrosion Science,2013,74(0):223-231.
    [15] Rajasekaran N, Mohan S. Preparation, corrosion and structural properties ofCu–Ni multilayers from sulphate/citrate bath [J]. Corrosion Science,2009,51(9):2139-2143.
    [16]王东莉,梁政,姚洪成,黄军.电磁水处理技术研究进展[J].石油矿场机械,2007,1:9-11.
    [17]奴尔江.水的电、磁处理[J].中国给水排水,1998,02:39-41.
    [18]李冠成,康永林,李明,卢佃清,邵礼堂.水在电场、磁场作用下物理性质变化及其影响[J].现代物理知识,2001,02:30-31.
    [19]陈磊,柴凤,程树康.新型旋转电磁热机对水媒质磁化作用机理初探[D].微电机,2009,9:65-68.
    [20]陈磊.旋转式机电热换能器及其对水媒质磁化作用的研究[D].哈尔滨:哈尔滨工业大学,2011:22-29.
    [21]李楠.旋转电磁场对NaCl溶液活度影响的研究[D].哈尔滨:哈尔滨工业大学,2009:10-14.
    [22] Li J N, Zhang P, Guo B. Effects of rotating electromagnetic on flow corrosion ofcopper in seawater [J]. Transactions of Nonferrous Metals Society of China,2011,21: s489-s493.
    [23]张鹏.基于旋转电磁效应的循环水系统抑垢缓蚀机制研究[D].哈尔滨:哈尔滨工业大学,2008:25-33.
    [24]尹兵.海洋环境下铜镍合金的微生物附着腐蚀与防护研究[D].青岛:中国海洋大学,2012:12-21.
    [25]朱小龙,林乐耘,徐杰. Cu-Ni合金海水蚀产物膜研究进展[J].材料科学与工艺,1997,5(2):21-24.
    [26]杜娟,王洪仁,杜敏. B10铜镍合金流动海水冲刷腐蚀电化学行为[J].腐蚀科学与防护技术,2008(01):12-18.
    [27]曾凡伟. B30铜镍合金人工海水中的冲刷腐蚀行为研究[D].哈尔滨:哈尔滨工程大学,2012:11-15.
    [28] Barcia O E, Mattos O R, Pebere N. Mass-transport study for theelectrodissolution of copper in IM hydrochloric acid solution by impedance [J]. JElchem. So.,1993,140(10):2825.
    [29] Alfantazi A M, Ahmed T M, Tromans D. Corrosion behavior of copper alloys inchloride [J]. Materials&Design,2009,30:2425-2430.
    [30] Cristiani P, Perboni G, Debenedetti A. Effect of chlorination on the corrosion ofCu/Ni70/30condenser tubing[J]. Electrochimica Acta,2008,54(1):100-107.
    [31]翁瑞,火时中.铝在海水中蚀孔生长的特点[J].中国腐蚀与防护学报,1987,7(4):286-291.
    [32] Melchers, R E. Temperature effect on seawater immersion corrosion of90:10copper-nickel alloy [J]. Corrosion,2001,57(5):440-444.
    [33] Frabcis R. The effects of chlorine on the properties of films on copper alloys inseawater [J]. Corrosion Science,1986,26(3):205-212.
    [34]迟长云,李宁,薛建军,李相波,许立坤.温度对B30铜镍合金在海水中电化学行为的影响[J].腐蚀与防护,2009,11:772-774,777.
    [35]孙婷婷,薛建军,李宁,刘峰.温度对B10铜镍合金在模拟海水中的电化学行为影响[C].2009中国功能材料科技与产业高层论坛论文集,2009:3.
    [36] Kwok C T, Man H C, Leung L K. Effect of temperature, pH and sulphide on thecapitation erosion behavior of super duplex stainless steel [J]. Wear,1997,211(1):84-93.
    [37]韩亚军.海水源热泵中常用金属在海水中腐蚀规律研究[D].青岛:中国海洋大学,2012:14-25.
    [38] Esielstein L E, Syrett B C, Wing S S, et al. The Accelerated Corrosion of Cu-NiAlloys in Sulfide-Polluted Sea Water: Mechanism No.2[J]. Corrosion Science,1983,23(3):223-239.
    [39] Macdonald D D, Syrett C B, Wing S S. The Corrosion of Cu-Ni Alloys706and715in Flowing Sea Water.Ⅱ-Effect of Dissolved Sulfide [J]. Corrosion,1979,35(8):367-378.
    [40]范文涛. Fe3Al基金属间化合物在海水中腐蚀行为的研究[D].青岛:中国海洋大学,2008:8-12.
    [41]王光雍.自然环境的腐蚀与防护:大气·海水·土壤[M].北京:化学工业出版社,1997.120-124.
    [42] Drogowska M, Brossard L, Menard H. Copper dissolussion in NaHCO+NaClaqueous [J]. Journal of the Electrochemical Society,1992,139(1):39-47.
    [43]王志武,原素芳. HA177-2黄铜腐蚀速度与Cl-浓度的关系[J].材料保护,2004,(10):50-52.
    [44]迟长云. B30铜镍合金在海水中的腐蚀电化学性能研究[D].南京:南京航空航天大学,2009:12-17.
    [45]陈海燕.铜镍合金在NaCl溶液中点蚀行为的研究[J].材料保护,2007,40(6):17-19.
    [46] Alper M, Kockar H, Safak M, et al. Comparison of Ni-Cu Alloy FilmsElectrodeposited at Low and High pH Levels [J]. Journal of Alloys andCompounds,2008,453(1-2):15-19.
    [47]武扬,高克玮,乔利杰.不同pH值下HAl77-2黄铜应力腐蚀敏感性与腐蚀引起拉应力的对应性[J].金属学报,2002,38(9):925-931.
    [48]顾爱玲.黄铜表面钝化处理与耐环境腐蚀研究[D].武汉:华中科技大学,2005:8-19.
    [49]胡飞,郭光伟.铸造黄铜件表面的精饰处理[J].材料保护,2001,34(4):27.
    [50]刘艳荣,周婉秋,赵强,武士威,辛士刚.镀锌板表面无铬钝化的研究进展[J].电镀与精饰.2010,04:22-26.
    [51] Tang P T, Bech-Nielson G, Moller. Molybdate based alternatives to chromateas a passivation treatment for zinc [J]. Plating and Surface Finishing,1994,81(11):20.
    [52] Tang P T, Bech-Nielson G, Moller. Molybdate based passivation of zinc [J].Trans IMF,1997,75(4):144.
    [53]牟世辉.镀锌层钼酸盐钝化工艺研究[J].电镀与精饰,2009,04:12-16.
    [54]卢锦堂,孔纲,陈锦虹,许乔瑜,宋进兵.热镀Zn层钼酸盐钝化工艺[J].腐蚀科学与防护技术,2001,01:46-48,41.
    [55]廖秀娟,魏明坤.环保型镀锌层钝化工艺研究概况[J].电镀与涂饰,2008,04:7-10.
    [56] Sakurai H, Kishikawa S, Yamamoto T, Itoh T. Solution and process for blackchromating [J]. EP,0805222.1996–05–01.
    [57]李广超,孟庆华,李亮.镀锌层几种无铬钝化膜耐蚀性能的比较[J].中国化学会,2011:1.
    [58]卢琳,李晓刚,宫丽,卢燕平.镀锌层无铬(Ⅵ)钝化的现状与发展趋向[J].轧钢,2007,05:41-45.
    [59] Davó B, Damborenea J J. Use of rare earth salts as electrochemical corrosioninhibitors for an Al–Li–Cu (8090) alloy in3.56%NaCl [J]. Electrochimica Acta,2004,49(27):4957-4965.
    [60]李锋,刘俊,陈颢.铜及其合金表面钝化新工艺的研究[J].电镀与涂饰,2005,02:15-17.
    [61]韩宝军,徐洲.稀土Ce在紫铜缓蚀剂中的应用研究[J].表面技术,2005,04:18-20.
    [62]谭明韩.苯并三氮唑(BTA)钝化膜对铜的缓蚀作用探讨[J].科技资讯,2009,09:10-11.
    [63]张万友,王冰,廖强强,周国定. BTA系列Cu缓蚀剂的电化学行为[J].腐蚀科学与防护技术,2001,05:263-266.
    [64]胡钢,吕国诚,许淳淳,吴小红. BTA和钼酸钠对青铜的协同缓蚀作用研究[J].腐蚀科学与防护技术,2008,01:25-28.
    [65]余相仁.铜表面烷基羧酸自组装膜制备及耐蚀性能研究[D].大连:大连理工大学,2011:17-25.
    [66]李桂燕.烷基硫醇自组装膜腐蚀防护性能的电化学研究[D].济南:山东大学,2006:10-20.
    [67]崔晓莉,江志裕.自组装膜技术在金属防腐蚀中的应用研究[J].腐蚀与防护,2001,08:335-338.
    [68]张静.铜及其合金光亮防锈表面处理技术的研究[D].无锡:江南大学,2008:8-14.
    [69]杨生荣,任嗣利,张俊彦,张绪寿.自组装单分子膜的结构及其自组装机理[J].高等学校化学学报,2001,03:470-476.
    [70]马洪芳.钢、铁表面缓蚀功能膜的研究[D].济南:山东大学,2006:20-27.
    [71]杨学耕,陈慎豪,马厚义,全贞兰,李德刚.金属表面自组装缓蚀功能分子膜[J].化学进展,2003,15(2):123-127.
    [72] Laibinis E P, Whitesides M G, Allara L D, Tao Y T. Comparison of the Structuresand Wetting ProPerties of Self-assembled Monolayers of n-alkanethiols on theCoinage Metal Surfaees,Cu,Ag,Au. J. Am [J]. Chem. Soc.,1991,113:7152-7167.
    [73] Laibinis E P, Whitesides M G. Self-assembled Monolayers of n-alkanethiolateson Copper are Barrier Films That Protect the Metal Against Oxidation by Air [J].J. Am. Chem. Soe,1992,114:9022-9028.
    [74] Thompson R W, Pemberton E J. Characterization of octadecylsilane and stearicacid layers on Al2O3surfaces by Raman Spectroscopy [J]. Langmuir,1995,11:1720-1725.
    [75] Shustak G, Domb A J, Mandler D. Preparation and Characterization ofn-Alkanoic Acid Self-Assembled Monolayers Adsorbed on316L Stainless Steel[J]. Langmuir,2004,20(18):7499-7506.
    [76] Gauthier S, Aimé J P, Bouhacina T, Attias A J, Desbat B. Study of Grafted SilaneMolecules on Silica Surface with an Atomic Force Microscope [J]. Langmuir,1996,12(21),5126-5137.
    [77] Sinapi F, Forget L, Delhalle J, Mekhalif Z. Self-assembly of (3-mereapto-propyl)trimethoxy-silane on polyerystalline zinc substrates towards corrosion protection[J]. Applied Surface Science,2003,212-213:464-471.
    [78] Wang D H, Ni Y H, Huo Q. Self-assembled monolayer and multilayer thin filmson aluminum2024-T3substrates and their corrosion resistance study [J]. ThinSolid Films,2005,471(1-2):177-185.
    [79]刘金彪.聚苯胺改性环氧树脂涂层的制备及其防腐蚀性能研究[D].上海:华东理工大学,2013:14-17.
    [80]张雪.碳钢环氧基防腐涂层的性能研究[D].沈阳:沈阳工业大学,2009:73-74.
    [81] Reinhard G, Simon P, Rammelt U. Application of corrosion inhibitors inwater-borne coatings [J]. Progress in Organic Coatings,1992,20(3-4):383-392.
    [82] Duran B, Bereket G, Duran M. Electrochemical synthesis and characterization ofpoly(m-phenylenediamine) films on copper for corrosion [J]. Progress in OrganicCoatings,2012,73:162-168.
    [83] Duran B, Bereket G, Turhan M C, Virtanen S. Poly(N-methyl aniline) thin filmson copper: Synthesis, characterization and corrosion protection [J]. Thin SolidFilms,2011,519(18):5868-5874.
    [84]姚春根.太钢电厂2号机凝气器铜管硫酸亚铁预膜失败原因分析[J].山西电力,2004,(1):18-19.
    [85]杨吉春,左立杰,赵丙新,聂亚丽.稀土对X70管线钢腐蚀行为的影响[J].特殊钢,2012,05:49-50.
    [86] MAO X Y, FANG F, JIANG J Q, TAN R S. Effect of rare earths on corrosionresistance of Cu-30Ni alloys in simulated seawater [J]. Journal of Rare Earths,2009,27:1037-1041.
    [87]谈荣生,孙连超.稀土在纯铜和铜合金中的应用和研究现状[J].中国稀土学报,1995,(13):456.
    [88]刘瑞斌.咪唑啉类缓蚀剂的合成与缓蚀性能研究[D].大连:大连理工大学,2004:8-23.
    [89]屈钧娥.缓蚀剂界面行为与缓蚀机理的电化学及AFM研究[D].武汉:华中科技大学,2005:11-16.
    [90] Otmacic H, Telegdi J. Protective properties of an inhibitor layer formed oncopper in neutral chloride solution [J]. Journal of Applied Electrochemistry,2004,34(5):545-550.
    [91] Es-Salah K, Keddam M. Takenouti H. Aminotriazole as corrosion inhibitor ofCu-30Ni alloy in3%NaCl in presence of ammoniac [J]. Electrochimca Acta,2004,49:2771-2778.
    [92] Tremont R, Cabrera C R. Electrochemical and surface analysis study of coppercorrosion protection by1-propanethiol and propyltrimethoxysilane: Acomparision with3-mercaptopropyltrimethoxysilane [J]. Journal of AppliedElectrochemistry,2002,32(7):783-793.
    [93] Dafali A, Hammouti B. Corrosion inhibition of copper in3percent NaClsolution by new bipyrazolic derivatives [J]. Anti-Corrosion Methods andMaterials,2002,49(2):96-104.
    [94] Singh M M, Rastogi R B. Thiosemicarbazide, phenylisothiocyanate and theircondensation product as corrosion inhibitors of copper in aqueous chloridesolutions [J]. Materials Chemistry and Physics,2003,80(1):283-293.
    [95] Khiati Z, Othman A A, Sanchez-Moreno M, Bernard M C, Joiret S, Sutter E MM, Vivier V. Corrosion inhibition of copper in neutral chloride media by a novelderivative of1,2,4-triazole [J]. Corrosion Science,2011,53:3092-3099.
    [96]扈显奇.海水中铜缓蚀剂研究[J].四川化工与腐蚀控制,1999,2(3):4-8.
    [97] Lyublinskii Y E. Northern Technologies International. Synergism in eorrosionprotection systems with inhibitors [J]. NACE International,2001,3:11-16.
    [98]王维珍.海水缓蚀剂和阴极保护协同效应优化研究[D].青岛:中国海洋大学,2006:11-19.
    [99] Li W H, Hu L C, Zhang S T, Hou B R. Effects of two fungicides on the corrosionresistance of copper in3.5%NaCl solution under various conditions [J].Corrosion Science,2011,53:735-745.
    [100] Gece G. Drugs: A review of promising novel corrosion inhibitors [J]. CorrosionScience,2011,53(12):3873-3898.
    [101]克拉辛.磁化水.毛钜凡等译[M].北京:计量出版社,1982,49-50.
    [102] Viswat E, Hermans L K F, Beenakker J J M. Experiments on the influence ofmagnetic fields on the viscosity of water and a water-NaCl solution [J]. PhysicalFluids,1982,25:1794-1796.
    [103]张宝铭,刘有昌.水的磁化处理研究.工业水处理[M].1994,14(4):10-11,22.
    [104] Coey J M D, Cass S. Magnetic water treatment [J]. Journal of Magnetism andMagnetic Materials,2000,209(1-3):71-74.
    [105]韩海波.旋转电磁效应对海水结构和动力学性质影响机制的研究[D].哈尔滨:哈尔滨工业大学,2009:9-15,47.
    [106]贾克欣.几种电磁水处理器的作用机理及其应用[J].给水排水,1999(10):25-26.
    [107]张军,李书光,胡松青.磁处理技术应用与研究进展[J].青岛大学学报,2002,15(4):71-74.
    [108] Zhang P, Cheng S K, Guo B. Effect of rotating-electromagnetic field on scalingin hard water. International Conference on Energy and Environment Technology[J]. Energy and Environment Technology,2009. ICEET '09. InternationalConference.2009,1:614-617.
    [109]徐楠,谢发勤,吴向清.磁场在油田污水管道防腐蚀方面的应用探索[J].材料导报,2005,19(5):61-64.
    [110]吕战鹏,杨武,黄德伦,赵国珍.磁场对铜在含三价铁离子硫酸溶液中的腐蚀行为的影响[J].中国腐蚀与防护学报,2001,21(3):129-136.
    [111] Khaled K F. Studies of the corrosion inhibition of copper in sodium chloridesolutions using chemical and electrochemical measurements [J]. MaterialsChemistry and physics,2011,125(3):427-433.
    [112]龙萍.热海水环境下铝/锌牺牲阳极电化学性能的研究[D].哈尔滨:哈尔滨工程大学,2006:12-15.
    [113]范云,王宗信.阴极保护方案的合理选择[J].石油化工腐蚀与防护,2003,06:43-45.
    [114] Solmaz R, ahin E A, D ner A, Karda G. The investigation of synergisticinhibition effect of rhodanine and iodidie ion on the corrosion of copper insulphuric acid solution [J]. Corrosion Science,2011,53(10):3231-3240.
    [115] Benson R F, Carpenter R K, Martin B B. Using magnetic fields to prevent scale[J]. Chem Tech,1997,27(4):34-38.
    [116] Srebrenik S, Nadiv R F, Lin I J. Magnetic treatment of water-A theoreticalquantum model [J]. Magn Electric Sep,1993,(5):71-91.
    [117]刘芳玲,蒋佩琳.磁场处理条件与水的表面张力关系的研究[J].四川师范大学学报,1997,20(5):127-131.
    [118] Jeffrey G A, Saenger W. Hydrogen bondingin biological structures [J]. NewYork: Springer-verlag,1991,1-5,8-9.
    [119] Cho Y I, Choi B F. Electronic Anti-fouling Technology to Mitigate PrecipitationFouling in Plate-and-frame Heat Exchangers [J]. Int. J. Heat Mass Transfer,1998,41(17):2265-2571.
    [120] Cho Y I, Choi B G. Validation of an Electronic Anti-fouling Technology in aSingle tube [J]. International Journal of Heat and MassTransfer,1999,42:1491-1499.
    [121] Cho Y I, Liu R. Control of Fouling in a Spirally ribbed Water Chilled Tube withElectronic Anti-fouling Technology [J]. International Journal of Heat and MassTransfer,1999,42:3037-3046.
    [122] Liu R, Cho Y I. Combined Use of an Electronic Anti-fouling Technology andBrush Punching for Scale Removal in a Water-cooled Plain Tube [J].Experimental Heat Transfer,1999,12:203-213.
    [123] Lee R H. A Study of Physical Water Treatment Technology to Mitigate theMineral Fouling in a Heat Exchanger [D]. Michigan USA: Drexel University,2002.
    [124] Kobe S, Dra i G, McGuiness P J, et al. The influence of the magnetic field onthe crystallization form of calcium carbonate and the testing of a magneticwater-treatment device [J]. Journal of Magnetism and Magnetic Materials,2001,236(1-2):71-76.
    [125] Higashitani K, Kage A, Katamura S, Imai K, Hatade S. Effect of a magnetic fieldon the formation of CaCO3particles [J]. Journal of Colloid and Interface Science,1993,156(1):90-95.
    [126] Gabrielli C. Magnetic Water Treatment for Scale Prevention [J]. Wat. Res,2001,35(13):3249-3259.
    [127]耿殿雨.原油与水的磁致胶体效应[J].磁能应用技术,1990,(1):12-16.
    [128] Hu J, Dong C F, Li X G, Xiao K. Effects of Applied Magnetic Field onCorrosion of Beryllium Copper in NaCl Solution [J]. J. Mater. Sci. Technol.,2010,26(4):355-361.
    [129] Sueptitz R, Tschulik K, Uhlemann M, Gebert A, Schultz L. Impact of magneticfield gradients on the free corrosion of iron [J]. Electrochimica Acta,2010,55:5200-5203.
    [130] Sueptitz R, Tschulik K, Uhlemann M, Schultz L, Gebert A. Effect of highgradient magnetic fields on the anodic behaviour and localized corrosion of ironin sulphuric acid solutions [J]. Corrosion Science,2011,53:3222–3230.
    [131] Lu Z P, Shoji T, Wu Y. Anomalous surface morphology of iron generated afteranodic dissolution under magnetic fields [J]. Corrosion Science,2010,52:2680–2686.
    [132] Chouchanea S, Levesqueb A, Zabinskic P, Rehamniaa R, Chopartbt J P.Electrochemical corrosion behavior in NaCl medium of zinc-nickel alloyselectrodeposited under applied magnetic field [J]. Journal of Alloys andCompounds,2010,506:575-580.
    [133] Rucinskiene A, Biculsius G, Gudaviciute L, Juzeliunas E. Magnetic field effecton stainless steel corrosion in FeCl3solution [J]. Electrochem. Commun.,2002,4(1):86-91.
    [134] Chiba A, Kawazu K, Nakano O, Tamura T, Yoshihara S, Sato E. The effects ofmagnetic fields on the corrosion of aluminum foil in sodium chloride solutions[J]. Corrossion. Science,1994,36(3):539-543.
    [135] Vorkopic L Z, Drazic D M. The dissolution of iron under cathodic polarization[J]. Corrossion. Science,1979,19(7):643-651.
    [136] Kelly E J. Magnetic field effects on electrochemical reactions occurring atmetal/flowing-electrolyte interfaces [J]. Electrochem. Soc.,1977,124:987.
    [137] Zhang P, Guo B, Jin Y P, Cheng S K. Corrosion characteristics of copper inmagnetized sea water [J]. Trans. Nonferrous Met. Soc. China,2007,17:189-193.
    [138] LI J N, Zhang P, Guo B. Effects of rotating electromagnetic on flow corrosion ofcopper in seawater [J]. Trans. Nonferrous Met. Soc. China,2011,21:489-493.
    [139]刘卫国,刘建东,赵陈龙.水的磁处理防腐蚀机理研究[J].腐蚀与防护,2006,04:196-198.
    [140] Gu Z H, Chen J, Fahidy T Z. The magnetic field effect on the preoscillatoryformation kinetics of anodic oxide layers [J]. Electrochim Acta, l993,18(7):2631-2634.
    [141] Guo B, Zhang P, Jin Y P, Cheng S K. Effects of alternating magnetic field on thecorrosion rate and corrosion products of copper [J]. RARE METALS,2008,27(3):324-328.
    [142]孙跃,胡津.金属腐蚀与控制[M].哈尔滨:哈尔滨工业大学出版社,2003:9,206.
    [143]胡华伟. MED海水淡化系统中CO2化学解吸理论研究[D].大连:大连理工大学,2012.
    [144]陈昭威.磁场处理水的机理的探讨[J].物理,1992,21(2):109-112.
    [145] GB/T27503-2011,电导率仪的试验溶液氯化钠溶液制备方法[S].北京:中国标准出版社,2011.
    [146]王树春,韩中凡,姚凤英.磁化水中杂质储存能量实验研究[J].中华物理医学杂质,1988,10(1):27-29.
    [147]周仲壁,刘新民,杨经国,余学君.磁化水受激布里渊散射(SBS)的实验研究[J].物理,1984,13(2):91-93.
    [148]张敬贵,徐凤仪.此处理水的渗透压和离子形态测定[J].中华物理医学杂质,1988,11(3):182.
    [149]张鹏.新型海水淡化电滤离子膜及旋转电磁效应-膜耦合脱盐工艺研究[D].哈尔滨:哈尔滨工业大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700