用户名: 密码: 验证码:
核、火电装备结构钢高温成形断裂判据及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
韧性断裂是金属材料在塑性变形过程中发生剧烈塑性变形后,由于材料承载能力超过了其极限值而导致破裂的现象。在热成形过程中,材料在高温、大成形力作用下易发生韧性断裂,尤其以大型自由锻件的高温锻制最为典型。断裂的发生导致产品质量不合格、生产周期延长及生产成本剧增,从而阻碍了热加工制造的发展。因此预防热成形过程中开裂的发生是一亟待解决的问题。目前,国内外对于韧性断裂的研究主要集中在冷成形的断裂行为及断裂的预测模型,鲜有热成形的断裂行为及断裂判据的研究。本文以核、火电装备结构钢为主,研究了材料热成形过程中韧性断裂以及影响机制,提出了核、火电装备结构钢高温韧性断裂判据,并与大变形热力耦合有限元方法集成,预报了核、火电装备结构钢在热成形过程中裂纹的发生。通过镦粗试验及数值模拟,验证了高温韧性断裂判据的有效性和准确性。研究成果应用于大锻件生产中预测裂纹的发生,并可为在实际生产中制定合理的工艺参数提供指导。主要研究内容和成果如下:
     通过SA5083低合金钢、30Cr2Ni4MoV低压转子钢,X12CrMoWVNbN.10.1.1铁素体耐热钢和316LN奥氏体不锈钢四种常用于火电和核电装备结构钢的Gleeble热模拟高温拉伸实验及断口和显微组织的观察,获得了温度和应变速率对断裂应变的影响规律,建立了相应材料高温临界断裂应变模型,并提出了一种新的测量拉伸后断裂应变的等效体积法,以剔除非均匀颈缩变形的影响。所建立的临界断裂应变模型获得的预测值与实验值的吻合度较好。
     通过对SA5083低合金钢、30Cr2Ni4MoV低压转子钢,X12CrMoWVNbN.10.1.1铁素体耐热钢和316LN奥氏体不锈钢四种材料的高温断裂行为的研究,发现这四种材料的临界断裂应变随温度的变化曲线中都存在一个温度峰值。经不同温度下的微观组织观察,认为碳化物及第二相是诱发空洞缺陷的主要因素,解释了温度峰值与裂纹萌生的成因。
     针对预防材料在锻造成形过程中开裂的问题,基于临界断裂应变模型和损伤力学理论模型,提出了SA5083低合金钢、30Cr2Ni4MoV低压转子钢,X12CrMoWVNbN.10.1.1铁素体耐热钢和316LN奥氏体不锈钢的高温韧性断裂判据。判据认为当破坏累积值达到了临界值1时,断裂发生。考虑了应力三轴度、温度和应变速率对韧性断裂的影响。判据中参数物理意义明确,并易确定、便于工程计算。
     以SA5083低合金钢为例,比较和评价了工程中常用的五种非耦合韧性断裂判据(COCKCROFT&LATHAM判据、Normalized COCKCROFT&LATHAM判据、BROZZO判据、RICE&TRACEY判据和MCCLINTOCK判据)与提出的韧性断裂判据的准确性。结果表明,利用所建立的韧性断裂判据预测断裂临界压下率(裂纹开裂时试样被压下的高度与试样原始高度的比率)与试验结果吻合较好。相比于其它几种判据,具有更高的预测精度。
     通过高温拉伸实验和镦粗实验及数值模拟,验证了提出的高温韧性断裂判据的有效性和准确性。以30Cr2Ni4MoV低压转子钢和316LN奥氏体不锈钢为例进行颈缩实验的数值模拟,并与拉伸实验及实验后的断口形貌相对比。结果表明,裂纹萌生于颈缩中心处,这与扫描电镜下观察的微裂纹产生的位置相吻合;另外,以X12CrMoWVNbN.10.1.1铁素体耐热钢和316LN奥氏体不锈钢为例,设计了镦粗实验,并进行了与实验相一致的内嵌韧性断裂判据的数值模拟。数值模拟结果与实验结果吻合较好。
     将建立的韧性断裂判据应用于预测316LN奥氏体不锈钢直管锻坯和SA5083低合金钢蒸汽发生器椭圆封头在锻造过程中裂纹的发生,并分析了在多道次镦拔过程中,砧宽比、初始压下量、拔长初始温度和形变速度对开裂的影响,确定了最优的砧宽比、压下量及拔长初始温度等工艺参数。研究表明,建立的韧性断裂判据不仅能够预测在热成形过程中裂纹的发生,而且能够结合数值模拟分析和工艺优化,指导热锻成形工艺的制定,从而获得更好的成形质量。
Ductile fracture occurs when the loading capacity of the material is beyond its limit load afterextensive plastic deformation during metal forming, which results in material rupture. In general, thematerial failure caused by cracking during hot deformation is considered as ductile fracture,especially in large free forging processes at high temperature. The occurrence of rupture leads tounqualified products, long production cycle and high cost, which hinders the development ofmanufacture during hot forming. So, it is urgent to prevent cracking during hot formings. Presently,for ductile fracture during metal forming, the studies mainly focus on cold forming, while lessresearch on hot forming is conducted. In this paper, researches on the behaviors of ductile fractureand the influence factors of ductile fracture of materials used in the nuclear and thermal power werecarried out. And the ductile criteria of different materials at elevated temperature were put forward.In conjunction with the numerical simulations by integration the proposed ductile fracture criteria(DFC) and finite element method (FEM), the occurrences of cracks were predicted in the hot forgingprocesses. In order to validate the efficiency and accuracy of the criteria, the upsetting tests with thecorresponding simulations were conducted. The achieved results were applied in predicting the onsetof cracks, instructing the actual production and making the optimal process parameter s in forgingprocesses. The main research contents are as follows:
     Based on the Gleeble thermo mechanical simulation tests of four types of steels widely used inthe nuclear and thermal power―SA5083,30Cr2Ni4MoV, X12CrMoWVNbN.10.1.1and316LN andthe observations of the tensile fracture morphology and microscopic structure, the influences of thetemperature and strain rate on ductile fracture were investigated and the models of the criticalfracture strain of four steels were put forward. And a new measurement method was proposedaccording to the method of the equivalent volume. Using this method, the non uniform deformationwas converted into the uniform one. Subsequently, the predicted values of the critical fracture strainare in good agreement with the experimental results.
     Based on the characteristics of fracture behaviors at high temperature of SA5083,30Cr2Ni4MoV, X12CrMoWVNbN.10.1.1and316LN, it is found that there exists a peak temperaturein each curve of the critical strain and temperature. In order to investigate the influence of the peaktemperature on the occurrence of cracks, the microstructures at different temperatures were observed. The results show that the carbides and the second phase particles are the mainly influence factors,which induce the generation of voids and micro-crack.
     Based on the model of critical fracture strain at the elevated temperatures and the theory ofdamage mechanics, the ductile criteria of SA5083,30Cr2Ni4MoV, X12CrMoWVNbN.10.1.1and316LN were established by considering the influences of stress triaxiality, temperature and strain rateon ductile fracture. In the each criterion, the fracture occurs when the accumulative damage factor isgreater than or equal to1. the parameters in the criterion have clear physical meaning and are easy tobe determined.
     Taking SA5083steel as an example, the accuracy of five uncoupled ductile fracture criteria(COCKCROFT&LATHAM, Normalized COCKCROFT&LATHAM, BROZZO, RICE&TRACEYand MCCLINTOCK) often used in engineering and the proposed criterion was compared andevaluated. The result shows that there is the better agreement with the predicted critical heightreduction ratio and experimental one by using the new criterion, in which indicates the proposedcriterion has better predictive capability. In here, the critical height reduction ratio is defined as theratio of the height reduction to the original height of specimen when the cracks occur.
     By the tensile tests, upsetting tests at high temperatures and the corresponding numericalsimulations, the availability and accuracy of the proposed fracture criteria were verified. Taking30Cr2Ni4MoV and316LN steels as examples, the simulations of tensile test were carried out andcompared to the actual tests. The results show the cracks initiate and propagate from the centerregion of the necked specimen, which are consistent with the microscopic observation from thescanning electron microscope (SEM) pictures. Additionally, taking X12CrMoWVNbN.10.1.1and316LN steels as examples, the upsetting tests and the corresponding numerical simulations byimplanting the ductile criterion were performed. It was found that the experimental critical heightreduction ratio of each type of material is consistent with the predicted one, which indicates all of thecriteria of four types of steels can be used to predict the onset of ductile fracture at elevatedtemperatures.
     The new ductile fracture criteria of316LN and SA5083steel were used in predicting the onsetof cracks in the stretching process of main pipe of316LN billet and in the forging stretching processof the billet of SA5083steam generator head, respectively. By analyzing the influence of the anvilwidth ratio, the initial reduction, the initial temperature and the deformation speed on cracking inmulti stages forging stretching processes, the optimization parameters were determined. These results show that the new ductile fracture criteria not only predict the onset of cracks during hotforming, but also instruct the actual production and make the actual process parameter and the bestforging quality can be achieved through the numerical simulation analysis and the processingoptimization.
引文
ACHOURI M, GERMAIN G, SANTO P D, et al.2013. Numerical integration of an advancedGurson model for shear loading: application to the blanking process[J]. Comp. Mater. Sci.,72:62-67.
    AHN Y S, KIM H D, BYUN T S, et al.1999. Application of intercritical heat treatment to improvetoughness of SA508Cl.3reactor pressure vessel steel[J]. Nucl. Eng. and Des.,194(2-3):161-177.
    ALEXANDROV S, WANG P T, ROADMAN R.E.2005. A fracture criterion of aluminum alloys inhot metal forming[J]. J. Mater. Process. Technol.,160(2):257-265.
    ARGON A S, IM J, SAFOGLU R.1975. Cavity formation from inclusions in ductile fracture[J].Metall. Trans. A,6(4):825-837.
    ATKINS A G.1981. Possible explanation for unexpected departures in hydrostatic tension―fracturestrain relations[J]. Metal Sci.,15(2):81-83.
    ATKINS A G.1996. Fracture in Forming[J]. J. Mater. Process. Technol.,56(1-4):609-618.
    BAI, Y L, WIERZBICKI T.2008. A new model of metal plasticity and fracture with pressure a ndLode dependence[J]. Int. J. Plasticity,24(6):1071-1096.
    BAO Y B, WIERZBICKI T.2004. On fracture locus in the equivalent strain and stress triaxialityspace[J]. Int. J. Mech. Sci.,46(1):81-98.
    BAO Y B.2005. Dependence of ductile crack formation in tensile tests on stress triaxiality, stressand strain ratios[J]. Eng. Fract. Mech.,72(4):505-522.
    BECKER R, SMELSER R, RICHMOND O, et al.1989. The effect of void shape on void growth andductility in axisymmetric tension tests[J]. Metall. Mater. Trans. A,20(5):853-861.
    BEREMIN F M.1981. Cavity formation from inclusions in ductile fracture of A508steel[J]. Metall.Trans. A,12(5):723-731.
    BESSON J.2010. Continuum models of ductile fracture: a review[J]. Int. J. Damage Mech.,19(1):3-52.
    BHATTACHARYA S S, SATISHNARAYANA G V, PADMANABHAN K A.1995. A genericanalysis for high temperature power law deformation: the case of linear In(strain rate) In(stress)relationship[J]. J. Mater. Sci.,30(23):5850-5866.
    BONORA N, RUGGIERO A, ESPOSITO L, et al.2006. CDM modeling of ductile failure in ferriticsteel: assessment of the geometry transferability of model parameters[J]. Int. J. Plast icity,22(11):2015-2047.
    BOSE S C, SINGH K, RAY A K, et al.2008. Effect of thermal ageing on mechanical properties andmicrostructures of a standard G X12CrMoVWNbN10.1.1grade of cast steel for turbine casing[J].Mater. Sci. Eng. A,476(1-2):257-266.
    BOYER J C, SALLé E, STAUB C.2002. A shear stress dependent ductile damage model[J]. J. Mater.Process. Tech.,121(1):87-93.
    BRIDGMAN P W.1952. Studies in large plastic flow and fracture[M]. New York: McGraw Hill,9-117.
    BROCKS W, KLINGBEIL D, K NECKE G, et al.1995.―Application of the Gurson model toductile tearing resistance‖, Constraint effects in fracture theory and applications[C]. KIRK M,ADBAKKER, eds. American Society for Testing Materials, Philadelphia,2(1244):232-252.
    BROZZO P, DELUCA B, RENDINA R.1972. A new method for the prediction of formability limitsin metal sheets[C]. Sheet Metal Forming and Formability, Proceedings of the7th BiennialConference of the International Deep Drawing Research Group.
    BROWN A M, ASHBY M F.1980. On the power law creep equation[J]. Scripta Metall.,14:1297-1302.
    BUI H D.2006. Fracture mechanics: inverse problems and solutions[M]. Netherlands: Springer,10-197.
    B RVIK T, HOPPERSTAD O S, BERSTAD T.2003. On the influence of stress triaxiality andstrain rate on the behaviour of a structural steel―Part II: Numerical study[J]. Eur. J. Mech.A Solids,22(1):15-32.
    CHABOCHE J L.1987. Continuous damage mechanics: present state and future trend[J]. Nucl. Eng.Des.,105(1):19-33.
    CHENOT J L, BOUCHAD P O, FOURMENT L, et al.2011. Numerical simulation and optimizationof the forging process[C]. International cold forging congress,12th, ICFC, Stuttgart: Germany.
    CHI W M, KANVINDE A M, ASCE A M, et al.2006. Prediction of ductile fracture in steelconnections using SMCS criterion[J]. J. Struct. Eng.,132(2):171-181.
    迟露鑫,麻永林,邢淑清,等.2011.核压力容器SA5083钢高温性能试验分析[J].四川大学学报,43(2):202-206.
    陈斌,高芝晖,彭向和.1998.损伤弹塑性大变形本构方程[J].西南交通大学学报,33(1):35-40.
    程钧培.2001.我国超临界汽轮机研制的展望[J].上海汽轮机,1:10-16.
    陈劼实,周贤宾.2006.成形极限预测韧性断裂准则及屈服准则的影响[J].北京航空航天大学学报,32(8):969-973.
    CLAUSEN A H, B RVIK T, HOPPERSTAD O S, et al.2004. Flow and fracture characteristics ofaluminium alloy AA5083-H116as function of strain rate, temperature and triaxiality[J]. Mater.Sci. Eng. A,364(1-2):260-272.
    CLIFT S E, HARTLEY P, STURGESS C E N, et al.1990. Fracture prediction in plastic deformationprocesses[J]. Int. J. Mech. Sci.,32(1):1-17.
    COCKCROFT M G, LATHAM D J.1968. Ductility and the workability of metals[J]. J. Inst. Met.,96:33-39.
    CORDEBOIS J P, SIDOROFF F.1982. Anisotropic damage in elasticity and plasticity[J]. J. Mec. Th.Appl.,45-60.
    崔慧然,孙锋,梅林波,等.2010.低压汽轮机转子X12CrMoWVNbN.10.1.1钢的早期断裂分析[J].动力工程学报,30(4):298-303.
    崔约贤,王长利.1998.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社.
    DIETER G E.1986. Mechanical metallurgy[M],3rd ed. McGraw Hill, New York,295-307.
    DHAR S, DIXIT P M, SETHURAMAN R.2000. A continuum damage mechanics model for ductilefracture[J]. Int. J. Pres. Ves. Pip,77(6):335-344.
    DORMIEUX L, KONDO D.2010. An extension of Gurson model incorporating interface stresseseffects[J]. Int. J. Eng. Sci.,48(6):575-581.
    DUAN X W, ZHANG X Z, WEI X P, et al.2010. Application of ductile fracture criterion in hotforging damage of Mn18Cr18N steel[J]. Adv. Mater. Res.,139-141:510-515.
    董岚枫,钟约先,马庆贤,等.2008.大型水轮机主轴锻造过程裂纹缺陷的预防[J].清华大学学报,48(5):765-768.
    EDELSON B I, BALDWIN J W.1962. The effect of second phases on the mechanical properties ofalloys[J]. Trans. ASM.,55:230-250.FREUDENTHAL F A.1950. The Inelastic Behaviour of Solids[M]. New York: Wiley.
    房贵如.1998.材料热加工工艺模拟的研究现状及技术发展趋势[J].中国机械工程,9(11):71-72.
    GAO X S, ZHANG T T, HAYDEN M, et al.2009. Effects of the stress state on plasticity and ductilefailure of an aluminum5083alloy[J]. Int. J. Plasticity,25(12):2366-2382.
    GHAJAR R, MIRONE G, KESHAVARZ A.2013. Ductile failure of X100pipeline steel—experiments and fractography[J]. Mater. Design,43:513-525.
    GOODS S H, BROWN L M.1979. The nucleation of cavities by plastic deformation[J]. Acta Metall.,27(1):1-15.
    GOUVEIA B P P A, RODRIGUES J M C.2000. Ductile fracture in metalworking: experimental andtheoretical research[J]. J. Mater. Process. Technol.,101(1-3):52-63.
    GURSON A L.1977. Continuum theory of ductile rupture by void nucleation and growth: part―yield criteria and flow rules for porous ductile media[J]. J. Eng. Mater. Technol.,99:2-15.
    HANCOCK J W, MACKENZIE A C.1976. On the mechanisms of ductile failure in high strengthsteels subjected to multi axial stress states[J]. J. Mech. Phys. Solids,24(2-3):147-169.
    HANUS R.2004.―Advanced9-12%Cr cast steel grades, research foundry processdevelopment quality experience‖, Advances in materials technology for fossil power plants[C].VISWANATHAN R, GANDY D, COLEMAN K, Eds. Proceedings from the4th internationalconference, Hilton Head Island, South Carolia,638-651.
    HARTLEY P, PILLINGER I.2006. Numerical simulation of the forging process[J]. Comput.Methods Appl. M.,195(48-49):6676-6690.
    黄建科.2009.金属成形过程的细观损伤力学模型及韧性断裂准则研究[D].上海:上海交通大学博士学位论文.
    黄克智,邱信明,姜汉卿.1999a.应变梯度理论的新进展(一):偶应力理论和SG理论[J].机械强度,21(2):81-87.
    黄克智,邱信明,姜汉卿.1999b.应变梯度理论的新进展(二):基于细观机制的MSG应变梯度塑性理论[J].机械强度,21(3):161-165.
    胡平.2005.超(超)临界火电机组锅炉材料的发展[J].电力建设,26(6):26-29.
    HOPPERSTAD, O S, B RVIK T, LANGSETH M, et al.2003. On the influence of stress triaxialityand strain rate on the behavior of a structural steel―Part. Experiments[J]. Eur. J. Mech. A Solid,22(1):1-13.
    HORA P, TONG L C, BERISHA B, et al.2011. Damage dependent stress limit model for failureprediction in bulk forming processes[J]. Int. J. Mater. Form.,4(3):329-337
    JOHNSON G R, COOK W H.1985. Fracture characteristics of three metals subjected to variousstrains, strain rates, temperatures and pressures[J]. Eng. Fract. Mech.,21(1):31-48.
    JOHNSON G R, HOEGFELDT J M, LINDHOLM U S, et al.1983. Response of various metals tolarge torsional strains over a large range of strain rates―part2: Less ductile metals[J]. ASME. J.Eng. Mater. Technol,105(1):48-55.
    江雄心,万平荣,扶名福,等.2002.齿轮精锻的数值模拟与实验研究[J].塑性工程学报,9(1):62-65.
    KACHANOV L M.1958. On the time to failure under creep condition[J]. Lzv Akad Nauk USSR,Ocd. Techn Nauk,8:31-36.
    KIM J H, KIM N H, KIM Y J, et al.2012. Ductile fracture simulation of304stainless steel pipeswith two circumferential surface cracks[J]. Fatigue Fract. Eng. M.,36(10):1067-1080.
    KIM N H, OH C S, KIM Y J, et al.2011. Comparison of fracture strain based ductile failuresimulation with experimental results[J]. Int. J. Pres. Ves. Pip.,88(10):434-447.
    KO Y K, LEE J S, HUH H, et al.2007. Prediction of fracture in hub hole expanding process using anew ductile fracture criterion[J]. J. Mater. Process. Tech.,187(188):358-362.
    KOLPISHON E Y, MAL’GINOV A N, ROMASHKIN A N, et al.2010. Nonmetallic inclusions in achromium steel intended for the power engineering industry[J]. Russ. Metall.,2010(6):483-493.
    KOBAYASHI S, OH S I, ALTAN T.1989. Metal forming and the finite element method[M]. NewYork: Oxford University Press.
    KRAJCINOVIC D, FONSEKA G U.1981. The continuous damage theory of brittle materials[J]. J.Appl. Mech.,48(4):809-824.
    KWON D, ASARO R J.1990. A study of void nucleation, growth, and coalescence in spheroidized1518steel[J]. Metall. Mater. Trans. A,21(1):117-134.
    KWON D.1988. Interfacial decohesion around spheroidal carbide particles[J]. Scripta metall.,22(7):1161-1164.
    LAUTRIDOU J C.1981. Crack initiation and stable crack growth resistance in A508steels inrelation to inclusion distribution[J]. Eng. Fract. Mech.,15:55-71.
    LEE W S, LIN C F.1998. Plastic deformation and fracture behavior of Ti6Al4V alloy loaded withhigh strain rate under various temperatures[J]. Mat. Sci. Eng. A,241(1-2):48-59.
    LEE Y S, LEE S U, VANTYNE C J, et al.2011. Internal void closure during the forging of large castingots using a simulation approach[J]. J. Mater. Process. Tech.,211:1136-1145.
    LEMAITRE J.1985. A continuous damage mechanics model for ductile fracture[J]. J. Eng. Mater.Technol.,107:83-89.
    LEI L P, KIM J, KANG B S.2002. Bursting failure prediction in tube hydroforming processes byusing rigid plastic FEM combined with ductile fracture criterion[J]. Int. J. Mech. Sci.,44(7):1411-1428.
    LEROY G, EMBURY J, EDWARDS G, et al.1981. A model of ductile fracture based on thenucleation and growth of void[J]. Acta Metall.,29(8):1509-1520.
    LI Z H, BILBY B A, HOWARD I C.1994. A Study of the Internal Parameters of Ductile DamageTheory[J]. Fatigue Fract. Eng. Mater. Struct.,17(9):1075–1087.
    LI H, FU M W, LU J, YANG H.2011. Ductile fracture: Experiments and computations[J]. Inter. J.Plasticity,27(2):147–180.
    李灏.1992.损伤力学基础[M].济南:山东科学技术出版社.
    李灏,王军,彭柯.1985.材料形变失稳的各向异性损伤准则及其在成形极限中的应用[J].华中工学院学报,13(1):1-14.
    李园春,刘马宝,吴诗惇.1996.超塑自由胀形中空穴发展过程的有限元模拟[J].西北工业大学学报,14(3):339-342.
    李国琛.1990.论韧性材料的可膨胀塑性本构方程及分叉时塑性加载路径[J].中国科学A辑,12:1282-1289.
    刘鑫,钟约先,马庆贤,等.2009.核电汽轮机低压转子技术的发展[J].锻压装备与制造技术,44(3):13-17.
    LOU Y S, HUH H, LIM S L, et al.2012. New ductile fracture criterion for prediction of fractureforming limit diagrams of sheet metals[J]. Int. J. Solids Struct.,49(25):3605-3615.
    吕炎.1995.锻造工艺学[M].北京:机械工业出版社.
    吕炎.1999.锻件缺陷分析与对策[M].北京:机械工业出版社.
    刘建生,王仲仁,卢志永.2001.曲轴RR法镦锻成形的数值模拟与缺陷预测[J].中国机械工程,12(4):429-432.
    MACKERLE J.2004. Finite element analyses and simulations of manufacturing processes ofcomposites and their mechanical properties: a bibliography (1985-2003)[J]. Comput. Mater. Sci.,31(3-4):187-219.
    MAROPOULOS S, RIDLEY N.2004. Inclusions and fracture characteristics of HSLA steelforgings[J]. Mater. Sci. Eng. A,384(1-2):64-69.
    MCALLEN P, PHELAN P.2005. A method for the prediction of ductile fracture by central bursts inaxisymmetric extrusion[J]. P. I. Mech. Eng. C J. Mec.,219(3):237-250.
    MCCLINTOCK F A, KAPLAN S M, BERG C A.1966. Ductile fracture by hole growth in shearbands[J]. Int. J. Fract. Mech.,2(4):614-627.
    MCCLINTOCK F A.1968. A criterion for ductile fracture by the growth of holes[J]. Trans. ASME, J.Appl. Mech.,17:363-371.
    MICHAEL B, CHYRA O, ALBRECHT D, et al.2008. A ductile damage criterion at various stresstriaxialities[J]. Int. J. Plasticity,24(10):1731-1755.
    MIRZA M S, BARTON D C.1996. The effect of stress triaxiality and strain rate on the fracturecharacteristics of ductile metals[J]. J. Mater. Sci.,31:453-461.
    MURAKAMI S, OHNO N.1974. Finite creep deformation of thick-walled tubes[J]. Int. J. SolidsStruct.,10(11):1201-1219.
    NEEDLEMAN A, TVERGAARD V.1984. An analysis of ductile rupture in notched bars[J]. J. Mech.Phys. Solids,32(6):461-490.NGUYEN D T, PARK J G, KIM Y S.2010. Ductile fracture prediction in rotational incremental
    forming for magnesium alloy sheets using combined kinematic/isotropic hardening model[J].Metall. Mater. Trans. A,41(8):1983-1994.
    NGUYEN N T, KIM D Y, KIM H Y.2013. A continuous damage fracture model to predictformability of sheet metal[J]. Fatigue Fract. Enging. Mater. Struct.,36(3):202-216.
    NORRIS D M, REAUGH J E, MORAN B, et al.1978. A plastic mean stress criterion for ductilefracture[J]. J. Eng. Mater. Technol,100:279-286.
    OH C S, KIM N H, KIM Y J, et al.2011. A finite element ductile failure simulation method usingstress modified fracture strain model[J]. Eng. Fract. Mech.,78(1):124-137.
    OH C K, KIM Y J, BAEK J H, et al.2007. A phenomenological model of ductile fracture for APIX65steel[J]. Int. J. M ech. Sci.,49(12):1399-1412.
    OH S I, CHEN C C, KOBAYASHI S.1979. Ductile fracture in axisymmetric extrusion and drawing,Part Ⅱ, Workability in extrusion and drawing[J]. J. Eng. Ind.,101(1):36-44.
    OYANE M.1972. Criteria of ductile fracture strain[J]. Bull. JSME.15(90):1507-1513.OYANE M, SATO T, OKIMOTO K, et al.1980. Criteria for ductile fracture and their applications[J].J. Mech. Work. Tech.,4(1):65-81.
    OGAWA N, SHIOMI M, OSAKADA K.2002. Forming limit of magnesium alloy at elevatedtemperatures[J]. Int. J. Mach. Tool Manu.,42(5):607-614.
    PARDOEN T, HUTCHINSON J W.2000. An extended model for void growth and coalescence[J]. J.Mech. Phys. Solids,48(12):2467-2512.
    PARVIZIAN E, SCHNEIDT A, SVENDSEN B, MAHNKEN R.2010. Thermo mechanicallycoupled modeling and simulation of hot metal forming processes using adaptive remeshingmethod[J]. Gamm. Mitt.,33(1):95-115.
    POIRIER J P,关德林译.1989.晶体的高温塑性变形[M].大连:大连理工大学出版社.
    潘品李,钟约先,马庆贤,等.2012.核电主管道用钢316LN高温变形性能研究[J].中国机械工程,23(11):1354-1359.
    RABOTNOV Y N.1963. On the equation of state for creep[J]. Prog. Appl. Mech., the prageranniversary Volume:307-315.
    RAO A V, RAMAKRISHNAN N.2003. A comparative evaluation of the theoretical failure criteriafor workability in cold forging[J]. J. Mater. Process. Technol.,142(1):29-42.
    REDDY N V, DIXIT P M, LAL G K.2000. Ductile fracture criteria and its prediction inaxisymmetric drawing[J]. Int. J. Mach. Tool. Manu.,40(1):95-111.
    ROUSSELIER G.1987. Ductile fracture models and their potential in local approach of fracture[J].Nucl. Eng. Des.,105(1):97-111.
    RICE J R, TRACEY D M.1969. On the ductile enlargement of voids in triaxial stress fields[J]. J.Mech. Phys. Solids,17(3):201-217.
    SIKKA V K, WARD C T, THOMA K C.1981.―Modified9Cr1Mo steel―An improved alloy forsteam generator application‖, Ferritic steel for high temperature applications[C]. KHARE A K,Eds. Proceedings of ASM international conference, OH: ASM. Metals Park,65-84.
    SELLARS C M, MCTEGART W J.1966. On the mechanism of hot deformation[J]. Acta Metall.,14:1136-1138.
    SELLARS C, WHITEMAN J.1979. Recrystallization and grain growth in hot rolling[J]. Met. Sci.,3(4):187-194.
    STOCKER R L, ASHBY M F.1973. On the empirical constants in the dorn equation[J]. ScriptaMetall.,7(1):115-120.
    孙凤先,马庆贤.2010. AP1000主管道控制锻造工艺探索[J].大型铸锻件,4:30-32.
    孙明月,李殿中,李依依,等.2005.大型船用曲轴曲拐的弯锻过程模拟与实验研究[J].金属学报,41(12):1261-1266.
    陶凯,于慎君,韩璐,等.2012.汽轮机转子材料的研究发展[J].材料导报,26(1):83-87.
    THOMASON P F.1998. A view on ductile fracture modeling[J]. Fatigue Fract. Eng. Mater. Struct.,21(9):1105-1122.
    THOMASON P F.1990. Ductile fracture of metals [M]. Oxford: Pergamon Press.
    THOMPSON A W.1987. Modeling of local strains in ductile fracture[J]. Metall. Mater. Trans. A,18(11):1877-1886.
    TVERGAARD V.1981. Influence of voids on shear band instabilities under plane strainconditions[J]. Int. J. Fract.,17(4):389-407.
    NEEDLEMAN A, TVERGAARD V.1984, An analysis of ductile rupture in notched bars[J]. J. Mech.Phys. Solids,32(6):461-490.
    唐长国,朱金华,周惠久.1995.金属材料屈服强度的应变率效应和热激活理论[J].金属学报,31(6):248-253.
    WANG W R, ZHAO K, LIN Z Q, et al.2010. Evaluating interactions between the heavy forging
    process and the assisting manipulator combining FEM simulation and kinematics analysis[J]. Int. J.Adv. Manuf. Technol.,48(5-8):481-491.
    WEERTMAN J, VREELAND J T, JASSBY K M.1973.―Dislocation mechanics at high strain rates‖,Metallurgical effects at high strain rates[C]. ROHDE R W, BUTCHER B M, HOLLAND J R, et al.,eds. New York: Plenum Press;319-333.
    WILKINS M L, STREIT, R D, REAUGH J E.1980. Cumulative strain damage model of ductilefracture: Simulation and prediction of engineering fracture tests[R]. UCRL53058, California,Lawrence Livermore National Laboratory.
    WANG T J.1992. Unified CDM model and local criterion for ductile fracture―Ⅱ. ductile fracturelocal criterion based on the CDM model[J]. Eng. Fract. Mech.,42(1):185-193.
    WIERZBICKI T, BAO Y, LEE Y W, et al.2005. Calibration and evaluation of seven fracture models[J]. Inter. J. Mech. Sci.,47(4-5):719-743.
    WIERZBICKI T, MURAGISHI O.1999. Calibration of ductile fracture from compression andtension tests[R]. Impact&Crashworthiness Laboratory, MIT, Cambridge, MA.
    WIFI A S, ABBASI N E, HAMID A A.1995. A study of workability criteria in bulk formingprocesses [J]. Stud. Appl. Mech.,43:333-357.
    WU S C, LIANG H.1990. A kinetic equation for ductile damage at large plastic strain[J]. J. Mater.Process. Technol.,21(3):295-302.
    王自强,秦嘉亮.1989.含空洞非线性材料的本构势和空洞扩展率[J].固体力学学报,10(002):127-142.
    王在林,韩飞,刘继英,等.2012.韧性断裂准则在超高强钢辊弯成形工艺中的应用[J].塑性工程学报,19(4):16-20.
    王敏杰,谷丽瑶.2013.高速切削过程绝热剪切局部化断裂判据[J].机械工程学报,49(1):156-163.
    吴永炳.1984.“综合锻造法”—提高大锻件质量的新途径之一[J].大型铸锻件,2:42-44.
    吴卷,詹梅,蒋华兵,等.2011.一种改进的Lemaitre韧性断裂准则及其在旋压成形中的应用[J].航空学报,32(7):1309-1317.
    XIAO X.2008. On the measurement of true fracture strain of thermoplastics material s[J]. Polym.Test.,27(3):284-295.
    XU Z J, LI Y L, LI N, et al.2006. Effect of loading rate on mode dynamic fracture toughness ofhigh strength steels40Cr and30CrMnSiNi2A[J]. Acta Metall. Sin.,42(9):965-970.
    XUE L.2007. Damage accumulation and fracture initiation in uncracked ductile solids subject totriaxial loading[J]. Int. J. Solids Struct.,44(16):5163-5181.
    XUE Z Y, FALESKOG J, HUTCHINSON J W.2013. Tension-torsion fracture experiments part Ⅱ:simulations with the extend Gurson model and a ductile fracture criterion based on plastic strain[J].Int. J. Solids Struct.,50(25-26):4258-4269.
    辛向阳,刘方红,邓蜀宁.1999.大锻件锻造方法综述[J].大型铸锻件,1:42-48.
    YANG W, LI G F, HUANG C Bo, et al.2010. Stress corrosion cracking of nitrogen containing
    stainless steel316LN in high temperature water environments[J], J. Mech. Eng. China,23(6):677-683
    杨武.1994.核电设备耐蚀材料及其评价技术[J].机械工程材料,18(2):16-19.
    虞松,冯维明,王戎.2010.金属韧性断裂准则的实验研究[J].锻压技术,35(1):121-124.
    于忠奇.2003.基于Lemaitre损伤理论的韧性断裂准则建立及板料成形极限预测[D].哈尔滨:哈尔滨工业大学博士学位论文.
    余寿文,冯西桥.1997.损伤力学[M].北京:清华大学出版社.
    余心宏,翟妮芝,翟江波.2009.基于Oyane韧性断裂准则的板料成形极限预测[J].材料科学与工艺,17(5):738-740.
    俞汉清,陈金德.1999.金属塑性成形原理[M].北京:机械工业出版社,7-185.
    ZHAN M, GU C G, JIANG Z Q, et al.2009. Application of ductile fracture criteria in spin-formingand tub-bending processes[J]. Comp. Mater. Sci.,47(2):353-365.
    ZHANG L C, ZHANG C L, SHI T L.2010. Application of ductile fracture criterion in hot forgingdamage of Mn18Cr18N steel[J]. Adv. Mater. Res.,136-141:510-515.
    ZHANG J, TAN C W, REN Y, et al.2011. Adiabatic shear fracture in Ti6Al4V alloy[J]. Trans.Nonferrous Met. Soc. China,21(11):2396-2401.
    ZHANG X, ZENG W, SHU Y, et al.2009. Fracture criterion for predicting surface cracking of Ti40alloy in hot forming processes[J]. T. Nonferr. Metal. Soc. China,19(2):267-271.
    ZHANG X Z, ZHANG Y S, LI Y G, et al.2013. Cracking initiation mechanism of316LN stainlesssteel in the process[J], Mater. Sci. Eng. A,559(1):301-306.
    张义帅,张秀芝,田香菊,等.2011.316LN不锈钢锻造开裂锻件组织与断口分析[J].锻压技术,36(6):1-3.
    张士宏,宋鸿武,徐勇,等.2011.一种韧性断裂损伤力学建模方法及其应用[J].精密成形工程,3(6):27-32.
    ZIKRY M.2005.―Ductile fracture‖, Handbook of materials modeling: models[M]. YIP S, eds.Springer Dordrecht, Berlin, Hcidclberg, New York,1171-1181.
    郑长卿.1988.韧性断裂力学的初步研究及其应用[M].西安:西北工业大学出版社.
    郑长卿,雷登.1985.三轴应力状态与断裂应变的关系—建议一个新的延性断裂判据及相关的材料延性断裂参数[J].西北工业大学学报,3(1):21-28.
    周柏卓,聂景旭.1997.韧性裂纹扩展的损伤力学描述[J].航空动力学报,12(2):125-128.
    郑晓华,安红萍,刘建生.2011.大型椭圆封头拉伸成型有限元分析[J].太原科技大学学报,32(6):472-475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700