用户名: 密码: 验证码:
龙门机床进给系统热—力耦合动态建模分析及优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国航空航天、船舶与海洋工程、大型冶金机械、能源设备和汽车等制造业的蓬勃发展,对各种复杂零部件的加工需求日益增加,使龙门机床也迅速得到发展。进给系统作为龙门机床的重要组成部件,其动态性能对机床的加工精度影响较大,是机床设计领域的研究重点和难点。在龙门机床工作过程中,进给系统同时受热与力的作用而产生热—力耦合效应,进而影响到进给系统的变形和振动。已有的研究方法通常是分别针对进给系统的力学性能和热态性能进行分析设计,这使得进给系统动态性能的分析不够全面,也造成进给系统综合性能难以进一步提高。针对以上问题,本论文深入研究龙门机床进给系统的热—力耦合机理,提出基于热—力耦合的动态建模方法、动态分析方法及多目标优化设计方法。结合企业实际的龙门机床进给系统样机进行理论分析和实验对比,验证所提出方法的正确性和有效性。本论文的主要研究工作和成果如下:
     (1)根据龙门机床进给系统在工作过程中受力和热共同影响的特点,提出一种基于温度场和动力学性能耦合的动态建模方法。在探索龙门机床进给系统的热—力耦合机理的基础上,建立了龙门机床进给系统的热—力耦合动态模型,并采用中心差分法和矩阵迭代法进行模型求解。结合动态实验和理论分析对比,验证了所提出建模方法的正确性。
     (2)研究龙门机床进给系统的热—力耦合效应对动态性能的影响,提出一种多时间步有限元仿真和温度场实验相结合的热—力耦合动态分析方法。根据所提出的方法,对所研究的龙门机床进给系统进行热—力耦合瞬态和稳态分析后发现:在进给系统达到热稳态之前,随着温度的不断升高,热—力耦合效应使进给系统的振幅变大,导致振动加剧。研究表明,在对龙门机床进给系统进行分析设计时,需要考虑热—力耦合效应对动态性能的影响。
     (3)为了更加全面地分析龙门机床进给系统的动态性能,提出一种基于热—力耦合的结构参数影响动态性能的分析方法。在龙门机床进给系统达到热-力耦合稳态的情况下,采用所提出的方法研究其各种结构参数的变化对动态性能的影响规律,揭示对动态性能影响较大的结构参数。研究结果表明,拖板的质量和抗振性对龙门机床进给系统的动态性能影响较大。
     (4)综合考虑龙门机床进给系统工作过程中的热—力耦合效应与动态性能,提出了一种多目标优化设计方法。该方法采用正交试验法和二阶响应面法建立近似优化模型,将改进的粒子群算法和灰色关联分析法作为求解方法。将所提出的方法用于进给系统拖板的多目标优化设计,使拖板的质量减轻,并且第一阶固有频率得到较大提高,结合静动态实验验证了本论文提出的多目标优化设计方法的可行性和正确性。
With the booming of China’s aerospace, shipbuilding and marine engineering, large metallurgicalmachinery, energy equipment, automobile industry, etc., the demand of large and complexcomponents is increasing, which contributes to the development of gantry machine tools. As animportant component of gantry machine tool, the dynamic performance of feed system greatlyinfluences the machining accuracy of the gantry machine tool, which has become a research emphasisand difficulty in machine tool design area. The feed system is affected by the thermal-mechanicalcoupling effect from the joint action of heat and force during the working process of gantry machinetool, which leads to deformation and vibration of feed system. Nevertheless, existing methods used inanalyzing and designing of the feed system focus on improving the mechanical performance orthermal performance only, which makes it hard to improve the overall performance of feed system.To solve the above problems, on basis of studying gantry machine tool feed system’sthermal-mechanical coupling mechanism, some new methodologies were proposed in this paper,which are the thermal-mechanical coupling dynamic modeling method, dynamic analysis method andmulti-objective optimization design method for gantry machine tool feed system. The correctness andeffectiveness of the proposed methodologies were verified by comparing the results oftheoretical analysis and experiments on prototype of gantry machine tool’s feed system in a factory.The main research work and achievements are as follows
     (1) Through considering that the gantry machine tool feed system is affected by joint action ofheat and force during the working process, a dynamic modeling method was proposed, which is basedon the coupling effect of the temperature field and kinetic properties. By exploring thethermal-mechanical coupling mechanism of gantry machine tool feed system, a thermal-mechanicalcoupling dynamic model of the gantry machine tool feed system was established, which was solvedthrough using the central difference method and the matrix iterative method. The correctness of thegantry machine tool feed system’s dynamic modeling method was verified by comparing thetheoretical analysis results with experimental results.
     (2) Through studying the law of thermal–mechanical coupling effect on gantry machine tool feedsystem’s dynamic performance, and a thermal–mechanical coupling dynamic analysis method wasproposed by combining multi-step finite element simulation with temperature field experiment.According to the method proposed, thermal–mechanical coupling transient and steady-state analysison gantry machine tool feed system were conducted and conclusions obtained are as follows, before the whole feed system reaches thermal balance state, the vibration amplitude of the feed systemincreases with the temperature rising, which leads to the intensifying of vibration. Therefore, in theprocess of gantry machine tool feed system’s analysis and design, the influence ofthermal–mechanical coupling on dynamic performance must be considered.
     (3) In order to study the dynamic performance of gantry machine tool feed system more fully, aanalysis method of structural parameters affecting the dynamic performance dynamic was proposed,which is based on the thermal-mechanical coupling. During the thermal-mechanical coupling steadystate of gantry machine tool feed system, the above proposed method was introduced to study theimpact law of the various structural parameters on its dynamic performance, and identify thestructural parameters that have great influence on the dynamic performance. The study results showthat the carriage’s mass and anti-vibration performance has great influence on the dynamicperformance of gantry machine tool feed system.
     (4) A multi-objective optimization design method was proposed through considering the gantrymachine tool feed system’s thermal–mechanical coupling effect and dynamic performance. Themethod uses the orthogonal experimental method and the second-order response surface method toestablish the approximate optimization model. An improved particle swarm algorithm and greyrelational analysis method are taken as the solving method. After using the proposed method toconduct multi-objective optimization design for the feed system’s carriage, the carriage’s massdecreases, thermal–mechanical coupling performance is improved, and the first order naturalfrequencies increase greatly. Finally, the correctness of multi-objective optimization design methodproposed in this paper was verified by the static and dynamic experiments.
引文
[1]王延甲.飞速发展中的国产龙门机床[J].世界制造技术与装备市场,2008,(04):56-59.
    [2]李冬茹.我国数控机床技术发展与展望[J].世界制造技术与装备市场,2006,(l):34~38.
    [3]盛伯浩.盛伯浩.我国数控机床现况与技术发展策略[J].制造技术与机床,2006,(2):17~21
    [4] Q.J.Yang, D.N.Li,L.L.Kong, et al. Research on MFBD Modeling Method For a Gantry MachiningCenter Beam Components[J].Advanced Materials Research,2011,188:487-492.
    [5]张建润,卢熹,孙庆鸿,等.五坐标数控龙门加工中心动态优化设计[J].中国机械工程,2005,16(21):1949-1953.
    [6] J.C.Chang, J.S.S. Wu, J.P. Hung. Characterization of the dynamic behavior of a linear guide waymechanism[J].Structural Engineering and Mechanics,2007,25(1):1-10.
    [7] Jui Pin Hung. Load effect on the vibration characteristics of a stage with rolling guides[J].Journalof Mechanical Science and Technology,2009,23(l):92-102.
    [8]赵扬.基于有限元技术的龙门机床结构动静态特性分析与优化设计[D].长春:长春工业大学硕士学位论文,2012.
    [9] Guihua Han, Bingwei Gao, Junpeng Shao, et al. Structural analysis and optimization on crossbeamof heavy NC gantry moving boring&milling machine[C]. Proceedings of2011InternationalConference on Electronic and Mechanical Engineering and Information Technology, Harbin,Heilongjiang, China,2011:1586–1589.
    [10] Zhang Fengshou, Wang Dongyan, Liu Jianting, et al. Thermal deformation analysis for theguideway of large-type CNC lathe based on finite element method[J]. Applied Mechanics andMaterials,2011,58-60:198-204.
    [11] Shubo Xu, Jie Liu, Keke Sun, et al. Study on Modeling Simulation of Long-span GantryNC Machining Center Structure[C].Proceedings2010International Conference on DigitalManufacturing and Automation, ChangSha,China,2010:510-513.
    [12] George Younkin. Modeling machine tool feed servo drives using simulation techniques topredict performance[J].IEEE transactions on industry applications,1991,27(02):268-274.
    [13] Y. Altintas, A. Verl, C. Brecher, et al. Machine tool feed drives[J]. CIRPAnnals-Manufacturing Technology,2011,60:779-796.
    [14] N. Tounsi a, T. Bailey b, M.A. Elbestawi. Identification of acceleration deceleration profileof feed drive systems in CNC machines[J]. International Journal of Machine Tools&Manufacture,2003,43:440-451.
    [15] Kaan Erkorkmaz, Yusuf Altintas. High speed CNC system design. Part II: modeling andidentification of feed drives [J]. International Journal of Machine Tools&Manufacture,2001,41:1487–1509.
    [16] M. F. Zaeh, Th. Oertli. Finite Element Modeling of Ball Screw Feed Drive Systems[J].CIRP Annals-Manufacturing Technology,2004,53(01):289-292.
    [17] Okamura, K, Matsubara, T, Akada, K. Frequency response analysis of hydraulic feed systemof machine tool[J].Journal of the Japan Society of Precision Engineering,1971,37(10):743-748.
    [18] Okamura, K, Matsubara, T, Akada, K. Transient response analysis of hydraulic feed system ofmachine tool[J].Journal of the Japan Society of Precision Engineering,1971,37(09):666-671.
    [19] Dohyun Kim, Do Hyeon Son, Doyoung Jeon. Feed-system autotuning of a CNC machiningcenter: Rapid system identification and fine gain tuning based on optimal search[J].Precision Engineering,2012,36,339-348.
    [20] Dohyun Kim, Do Hyeon Son, Doyoung Jeon. A systematic approach to designhigh-performance feed drive systems[J].International Journal of Machine Tools&Manufacture,2005,45:1421-1435.
    [21] Ching YuanLin, Jui PinHung, Tzuo Liang Lo. Effect of preload of linear guides on dynamiccharacteristics of a vertical column-spindle system[J]. International Journal of MachineTools&Manufacture,2010,50(08):741-746.
    [22] Guo-Hua Feng, Yi-Lu Pan.Investigation of ball screw preload variation based on dynamicmodeling of a preload adjustable feed-drive system and spectrum analysis of ball-nutssensed vibration signals[J]. International Journal of Machine Tools&Manufacture,2012,52:85-96.
    [23]胡峰.数控机床进给系统动态特性辨识与状态监测方法研究[D].武汉:华中科技大学博士学位论文,2009.
    [24]丁文政,黄筱调,汪木兰.面向大型机床再制造的进给系统动态特性[J].机械工程学报,2011,47(03):135-140.
    [25] Baosheng Wang, Jianmin Zuo, Mulan Wang. Analysis and compensation of stiffness inmachine tool feed system[J].Journal of advanced manufacturing systems,2011,10(01):77-84.
    [26]蒋书运,祝书龙.带滚珠丝杠副的直线导轨结合部动态刚度特性[J].机械工程学报,2010,46(01):92-99.
    [27]姚延风,刘强,吴文镜.基于刚柔-机电耦合的机床直线电机进给系统动态性能仿真研究[J].振动与冲击,2011,30(01):191-196.
    [28]刘丽兰,刘宏昭,吴子英,等.低速下机床进给伺服系统稳定性研究[J].振动与冲击,2010,29(05):187-194.
    [29]张会端.机床进给系统的动力学分析[D].长春:吉林大学博士学位论文,2009.
    [30]刘衍,汪劲松,赵彤,等.滚珠丝杠传动系统的刚度模型[J].清华大学学报(自然科学版),2011,51(05):601-606.
    [31]许向荣.滚珠丝杠副直线导轨进给单元动态性能研究[D].济南:山东大学博士学位论文,2011.
    [32] Uhlmann Eckart, Hu Jiangmin. Thermal modelling of an HSC machining centre to predictthermal error of the feed system[J]. Production Engineering,2012,6(06):603-610.
    [33] K Erkorkmaz, J M Gorniak, D J Gordon.Precision machine tool X–Y stage utilizing aplanar air bearing arrangement[J].CIRP Annals-Manufacturing Technology,2010,59:425–428.
    [34] Chang C.W, Chu M.H, Chen Y.W, et al. Dynamic model based on genetic algorithms ofprediction for the thermal deformation of machine tools[J]. Materials Science Forum,2005,507:163-168.
    [35] Xia Junyong, Hu Youmin, Wu Bo and Shi Tielin. A Numerical Solution and Simulation of theThermal Dynamic Characteristic for Ball-screw[J]. Frontiers of Mechanical Engineering inChina,2008,3(1):28-36.
    [36] Suh J D,Lee D G. Composite machine tool structures for high speed milling machines[J]. CIRPAnnals-Manufacturing Technology,2002,51(1):285-288.
    [37] Tachiya H, Kaneko Y, Aramoto T, Shinjo H, Miyazaki Y. Approximation of thermal deformationbehaviour of a machine tool to improve its process precision[J]. Key Engineering Materials,2007,345:181-184.
    [38] Li Hongqi, Shin Yung C. Analysis of bearing conguration effects on high speed feed systemusing an integrated dynamic thermo-mechanical model [J]. International Journal of MachineTools&Manufacture,2004,44:347-364.
    [39] Otakar Horej. Thermo-mechanical model of ball screw with non-steady heatsources[C].1stInternational Conference on Thermal Issues in Emerging Technologies, Theory and Applications;Proceedings-ThETA1,2007,133-137.
    [40] E. Gomez-Acedo, A. Olarra, L. N. Lopez de la Calle.A method for thermal characterization andmodeling of large gantry-type machine tools[J].International Journal of advancedmanufacturing technology,2012,62:875–886.
    [41] Lee Sun-Kyu, Yoo Jae-Heung, Yang Moon-Su. Effect of thermal deformation on machinetool slide guide motion[J]. Tribology International,2003,36(01):41-47.
    [42] Yun Won Soo, Kim Soo Kwang, Cho Dong Woo.Thermal error analysis for a CNC lathefeed drive system [J]. International Journal of Machine Tools&Manufacture,1999,39:1087-1101.
    [43] Wu Cheng-Hsien, Kung Yu-Tai. Thermal analysis for the feed drive system of a CNCmachine center [J]. International Journal of Machine Tools&Manufacture,2003,43:1521–1528.
    [44] Shyh-chour Huang. Analysis of a model to forecast thermal deformation of ball screw feed drivesystems[J]. International Journal of Machine Tools and Manufacture,1995,35(08):1099-1104.
    [45]夏军勇,胡友民,吴波,等.基于一维传热的机床热动态特性分析[J]机械科学与技术,2008,27(10):1121-1126.
    [46] JIN Chao, WU Bo, HU Youmin. Wavelet Neural Network Based on NARMA-L2Model forPrediction of Thermal Characteristics in a Feed System [J]. Chinese Journal of MechanicalEngineering,2011,24(01):33-41.
    [47]阳红,殷国富,刘立新,等.基于热态信息链的龙门加工中心结构优化技术[J].计算机集成制造系统,2011,17(11):2405-2414.
    [48]阳红,殷国富,方辉,等.机床有限元热分析中对流换热系数的计算方法研究[J].四川大学学报(工程科学版),2011,43(4):241-248.
    [49]孙志礼,杨强,高沛,等.基于有限元法的机床导轨热特性研究[J].东北大学学报(自然科学版),2011,32(07):1000-1003.
    [50] X Min, S Jiang. A thermal model of a ball screw feed drive system for a machine tool[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science,2011,225,186-193.
    [51]夏军勇.热弹性效应和数控机床进给系统热动态特性的研究[D].武汉:华中科技大学博士学位论文,2008.
    [52] Xia Junyong, Wu Bo, Hu Youmin, Shi Tielin. Experimental research on factors influencingthermal dynamics characteristics of feed system [J]. Precision Engineering,2010,34(02):357-368.
    [53]夏军勇,胡友民,吴波,等.热弹性效应分析与机床进给系统热动态特性建模[J].].机械工程学报,2010,46(15):191-198.
    [54]尹益辉,郝志明,陈裕泽,等.不同材料参数薄板振动中的热力耦合效应[J].强激光与粒子束,2001,13(02):142-146.
    [55]宋少云,李世其.集成电控模块的热弹耦合振动分析[J].华中科技大学学报(自然科学版),2008,36(05):71-73.
    [56] Ramesh R, Mannan M A, Poo A N. Tracking and Contour Error Control in CNC Servo Systems[J]. International Journal of Machine Tools and Manufacture,2005,45(3):301-326.
    [57] Qin Wu, Zhi-Yuan Rui, Jian-Jun Yang. The stiffness analysis and modeling simulation of ballscrew feed system[J]. Advanced Materials Research,2010,97-101:2914-2920.
    [58]董亮,汤文成,刘立.滚珠丝杠进给系统混合建模及其振动时变性分析[J].振动与冲击,2013,32(20):196-202.
    [59]卢秉恒,赵万华,张俊,等.高速高加速度下的进给系统机电耦合[J].机械工程学报,2013,49(6):2-10.
    [60]王永强,张承瑞.滚珠丝杠进给系统仿真建模[J].振动与冲击,2013,32(3):46-49.
    [61]李庆兴.异型轧辊数控车床切削进给系统的设计理论及其关键技术研究[D].天津:河北工业大学博士学位论文,2009.
    [62]杨勇,张为民,杨涛.基于Kriging元模型的机床进给驱动系统动态特性优化[J].农业机械学报,2013,44(5):288-293.
    [63] Hull Hull, Partiek V. Optimal synthesis of compliant mechanisms using subdivision andcommercial FEA [J]. Journal of American Society of Mechanical Engineers,2006,128(2):337-348.
    [64] Parpala Radu Constantin. Virtual design of a machine tool feed drive system[J].UPB Scientific Bulletin, Series D: Mechanical Engineering,2009,71(04):131-140.
    [65] Pekarskii E.M, Vorobyeva, T.S.Automated design of the mechanical components of feeddrives[J].Soviet Engineering Research,1983,3(08):82-84.
    [66] Petrovic Petar B, Milacic Vladimir R, Dzelatovic Gvozden M. New feeding system for highspeed assembly of small parts[J]. CIRP Annals-Manufacturing Technology,2000,49(01):9-12.
    [67] Parpala R, Predincea N. Virtual design of a machine tools ball-screw feed drive[C].18thInternational DAAAM Symposium "Intelligent Manufacturing&Automation: Focus onCreativity, Responsibility, and Ethics of Engineers", Vienna, Austria,2007:545-546.
    [68] Zaeh M.F., Oertli Th., Milberg, J. Finite element modelling of ball screw feed drive systems [J].CIRP Annals-Manufacturing Technology,2004,52(02):289-292.
    [69] Levin A.I. An optimum design of feed drive for NC machine tools[J]. Soviet EngineeringResearch,1984,4(11):51-53.
    [70] Sencer B., Altintas Y., Croft E. Feed optimization for five-axis CNC machine tools with driveconstraints[J]. International Journal of Machine Tools&Manufacture,2008,48:733-745.
    [71] Choi Y.H, Choi E.Y., Jang S.H, et al. Vibration analysis and dynamic optimization of a rack andpinion typed feed drive system for a router machine[C]. ICMIT2005: Control Systems andRobotics, Chongqing, China,2005:432-438.
    [72] Chen Chin-Yin, Cheng Chi-Cheng. Integrated design for a mechatronic feed drive system ofmachine tools[C]. IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2005,(01):588-593.
    [73] Zhang Bolin, Chen Yanji, Li Zhiying, et al. High velocity feed unit driven by linear motor [J].Chinese Journal of Mechanical Engineering (English Edition),2000,13(04):266-272.
    [74]杨凌云.桥式龙门加工中心直线进给部件的动态特性分析与优化[D].南京:南京航空航天大学硕士学位论文,2012.
    [75]吴沁,芮执元,杨建军.考虑非线性弹性力的滚珠丝杠系统分岔与混沌特性分析[J].西安交通大学学报,2012,(01):70-75.
    [76]牟世刚,冯显英.高速滚珠丝杠副动态特性分析[J].湖南大学学报(自然科学版),2011,38(12):25-29.
    [77]倪向阳.龙门加工中心结构动力学建模与优化设计研究[D].南京:东南大学硕士学位论文,2005.
    [78]牟世刚.高速螺母驱动型滚珠丝杠副动力学特性研究[D].济南:山东大学博士学位论文,2013.
    [79]张建润,孙庆鸿,卢熹,等.高架桥式高速五坐标龙门加工中心动态仿真与结构优化[J].机械强度,2006,(S1):1-4.
    [70] Huang Qing, Chen Weifang, Ye Wenhua, et al.Optimization design for the large gantry machiningcenter crossbeam[J]. Applied Mechanics and Materials,2012,130-134:2284-2287.
    [81]李扬,杨庆东,刘国庆.龙门机床横梁的参数识别与动态特性分析[J].北京信息科技大学学报(自然科学版),2010,(01):66-69.
    [82]石彦华.GS5200龙门五面加工中心横梁部件动态特性分析[J].制造技术与机床,2009,(05):74-77.
    [83]王晓煜,贾振元,杨帆,等.龙门加工中心横梁部件的拓扑优化设计与分析[J].制造技术与机床,2009,(11):64-67.
    [84]陈生华,黄筱调,洪荣晶.基于Pro/MECHANICA的机床拖板有限元模态分析[J].组合机床与自动化加工技术,2005,(05):38-40.
    [85]丛明,房波,周资亮.车—车拉数控机床拖板有限元分析及优化设计[J].中国机械工程,2008,19(2):208-213.
    [86]姜文锐.大行程高精度微进给系统的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [87]张伯鹏,张年松.机床横梁重力变位的自演进补偿[J].清华大学学报(自然科学版),2006,46(02):191-193.
    [88]吴子英,刘宏昭,刘丽兰.考虑摩擦影响的重型车床横向进给伺服系统建模与分析[J].机械工程学报,2012,48(07):86-93.
    [89]马玉娥,孙秦.动态热力耦合精细积分解法研究[J].机械强度,2007,29(3):483-486.
    [90]王永强.滚珠丝杠进给系统自适应建模理论与方法研究[D].济南:山东大学博士学位论文,2013.
    [91]尹刚,张磊,刘春时,等.铣头可自动交换的高速龙门五轴加工中心设计研究[J].机械设计与制造,2011,(07):19-21.
    [92] Ming-ching Lin. Design and mechanics of the ball mechanism[D].Madison: DoctoralDissertation of University of wisconsin-madison,1989.
    [93] Nakazawa Hiromu, Tomita Yasushi.Study on high speed feed drive system for machine tools [J].Journal of the Japan Society for Precision Engineering,1991,57(03):538-543.
    [94] S.K. Kim, D.W. Cho. Real-time estimation of temperature distribution in a ball-screwsystem[J]. International Journal of Machine Tools and Manufacture,1997,37(4):451-464.
    [95]唐立.Dirichlet问题的概率数值方法[D].长沙:中南大学博士学位论文,2003.
    [96]钟佑明,秦树人,汤宝平.傅里叶变换与小波变换的统一数学模型[J].机械工程学报,2003,38(11):36-41.
    [97] Gleich S. Approach for Simulating Ball Screws in Thermal Finite Element Simulation[J].Journal of Machine Engineering,2007,(1):101-107.
    [98] Deping Liu, Jie Li, Yufeng Su, et al.Temperature Field Modeling and ThermalDeformation Analysis of Turning and Milling Machining Center[J]. Advanced MaterialsResearch,2011,189-193:1986-1990.
    [99]王勇.场路结合并考虑耦合的磁力机械分析与设计方法研究[D].合肥:合肥工业大学博士学位论文,2006.
    [100] Sutter G, Faure L, Molinari A, et al. An experimental technique for the measurement oftemperature fields for the orthogonal cutting in high speed machining[J].InternationalJournal of Machine Tools&Manufacture,2003,43(7):671-678.
    [101]夏军勇,吴波,胡友民,等.多变化热源下的滚珠丝杠热动态特性[J].中国机械工程,20008,19(08):955-958.
    [102]赵海涛.数控机床热误差模态分析、测点布置及建模研究[D].上海:上海交通大学博士学位论文,2006.
    [103] Deping Liu, Jie Li,Yufeng Su,et al. Temperature Field Modeling and ThermalDeformation Analysis of Turning and Milling Machining Center[J]. Advanced MaterialsResearch,2011,189-193:1986-1990.
    [104] Carvalho S.R, Lima e Silva S.M.M, Machado A.R, et al. Temperature determination atthe chip-tool interface using an inverse thermal model considering the tool and toolholder[J]. Journal of Materials Processing Technology,2006,179:97-104.
    [105]江军.二维三温辐射热传导方程的高效自适应算法研究[D].湘潭:湘潭大学博士学位论文,2006.
    [106] Karpat Yigit,Ozel Tugrul. Analytical and thermal modeling of high-speed machiningwith chamfered tools[J].Journal of Manufacturing Science and Engineering, Transactionsof the ASME,2008,130(01):11-15.
    [107]李露.磁力机械多场耦合及多学科优化设计[D].合肥:合肥工业大学博士学位论文,2010.
    [108] Yuzhong Cao.Modeling of high-speed machine-tool spindle systems[D]. Vancouver:Doctoral Dissertation of the University of British Columbia,2006.
    [109] Yang Q, Liu Y.R, Bao J.Q. Hamilton's principle of entropy production for creep and relaxationprocesses[J].Journal of Engineering Materials and Technology,2010,132(01):181-185.
    [110]宋少云.多场耦合问题的协同求解方法研究与应用[D].武汉:华中科技大学博士学位论文,2007.
    [111]费业泰,李桂华,卢荣胜,等.机械热变形理论及应用[M].北京:国防工业出版社,2009.
    [112]闻邦椿,韩清凯,姚良红.产品的结构性能及动态优化设计[M].北京:机械工业出版社,2008.
    [113] Amin Kamalzadeh. Precision Control of High Speed Ball Screw Drives D]. DoctoralDissertation of University of Waterloo,2008.
    [114] Chen Y, Tlusty J. Effect of Low-Friction Guideways and Lead-Screw Flexibility onDynamics of High-Speed Machines[J]. Annals of the CIRP,1995,44(1):353–356.
    [115] Altintas Y, Brecher C, Weck M, Witt S. Virtual Machine Tool[J]. Annals of the CIRP,2005,54(2):651–674.
    [116] Erkorkmaz K, Altintas Y. High Speed CNC System Design. Part II. Modeling andIdentification of Feed Drives[J].International Journal of Machine Tools and Manufacture,2001,41(10):1487–1509.
    [117] Kim M-S, Chung S-C. Integrated Design Methodology of Ball-Screw Driven Servomechanisms with Discrete Controllers. Part I. Modelling and Performance Analysis[J].Mechatronics,2006,16:491–502.
    [118] Chen J S. Computer-aided accuracy enhancement for multi-axis CNC machine tool[J].International Journal of Machine Tools and Manufacture,1995,35(4):593-605.
    [119]徐斌,高跃飞,余龙.MATLAB有限元结构动力学分析与工程应用[M].北京:清华大学出版社,2009.
    [120]刘鸿文,林建兴,曹曼玲.材料力学(第五版)[M].北京:高等教育出版社,2011.
    [121] Kim D I, Jung S C, Lee J E, et al. Parametric study on design of composite-foam-resinconcrete sandwich structures for precision machine tool structures[J].CompositeStructures,2006,75:408-414.
    [122]薛齐文,张雪珊.热力耦合反问题研究[J].机械工程学报,2010,46(18):157-161.
    [123]夏军勇,胡友民,吴波,等.考虑热弹性的滚珠丝杠热动态特性[J].华中科技大学学报(自然科学版),2008,36(03):1-4.
    [124] Yen Jia-Yush, Chang Hui-Man. Performance robustness and stiffness analysis on amachine tool servo design[J].International Journal of Machine Tools and Manufacture,2004,44(05):523-531.
    [125] Li Xiaopeng, Nie Huifan.Analysis on dynamic characteristics of CNC machine tool andexperiment with influence of rolling guide joint considered[J].Advanced MaterialsResearch,2012,443-444:745-750.
    [126] Dhupia Jaspreet S, Powalka Bartosz, Galip Ulsoy A,et al. Effect of a nonlinear joint onthe dynamic performance of a machine tool[J].Journal of Manufacturing Science andEngineering,2007,129(05):943-950.
    [127] M F Zaeh, T Baudisch. Simulation environment for designing the dynamic motionbehaviour of the mechatronic system[J]. Journal of Engineering Manufacture,2003,(07):1031-1034.
    [128] Mi Liang, Yin Guo-fu, Sun Ming-nan, et al. Effects of preloads on joints on dynamicstiffness of a whole machine tool structure[J]. Journal of Mechanical Science andTechnology,2012,26(02):495-508.
    [129]夏玲玲,袁军堂,汪振华.KVC1050N立式加工中心有限元分析与模态试验[J].机械设计与制造,2012,(01):18-20.
    [130] Wang Binglei,Zhao Junfeng, Zhou Shenjie. A micro scale Timoshenko beam modelbased on strain gradient elasticity theory[J]. European Journal of Mechanics,2010,29(04):591-599.
    [131] Lee Rong Shen,Ren Mei Ko. Development of virtual machine tool for simulation andevaluation[J]. Computer-Aided Design and Applications,2011,8(06):849-858.
    [132] Karpat Yigit, Ozel Tugru. Analytical and thermal modeling of high-speed machiningwith chamfered tools[J]. Journal of Manufacturing Science and Engineering,2008,130(01):11-15.
    [133] Cheng C.C, Kuo C.P., Wang F.C., et al. Moving follower rest design using vibrationabsorbers for ball screw grinding[J]. Journal of Sound and Vibration,2007,326(1-2):123-136.
    [134] Ting-Nung Shiau, Kuan-Hung Chen, Fu-Ching Wang,et al.The effect of dynamicbehavior on surface roughness of ball screw under the grinding force[J]. InternationalJournal of Advanced Manufacturing Technology,2011,52(5-8):507-520.
    [135] Shihao Liu, Wenhua Ye. Dynamic analysis on feed system of gantry machine tool consideringthermal–mechanical coupling[J]. Journal of the Chinese Society of Mechanical Engineers,2013,34(03):177-185.
    [136] Lei W.T, Paung I.M, Chen-Chi Yu.Total ballbar dynamic tests for five-axis CNC machinetools[J]. International Journal of Machine Tools&Manufacture,2009,49(06):488-499.
    [137] Ahmadi K, Ahmadian H. Modelling machine tool dynamics using a distributedparameter tool-holder joint interface[J]. International Journal of Machine Tools andManufacture,2007,47(12-13):1916-1928.
    [138] Zaghbani I, Songmene V. Estimation of machine-tool dynamic parameters duringmachining operation through operational modal analysis[J]. International Journal ofMachine Tools and Manufacture,2009,49(12-13):947-957.
    [139]文放,葛文杰.机器人运动稳定性判据概述[J].机械设计与制造,2008,(11):188-190.
    [140] Jamaali J, Mohammadi A, Keyvaani H. A Novel Nonlinear System Modeling andIdentification Method based on Modal Series[J]. Journal of Applied Sciences,2011,11(03):567-572.
    [141]杜贞斌.复杂非线性系统的稳定性和自适应重构控制[D].南京:南京航空航天大学博士学位论文,2006.
    [142]赵敏.约束非线性系统预测控制算法设计及稳定性分析[D].上海:上海交通大学博士学位论文,2009.
    [143]申晓宁.基于进化算法的多目标优化方法研究[D].南京:南京理工大学博士学位论文,2008.
    [144] Zhao Ming, Huang Zhengdong, Chen Liping. Multidisciplinary design optimization of tool headfor heavy duty CNC vertical turning mill [J]. Engineering Computations,2008,25(07):657-676.
    [145] Asokan P, Kumar R, Ravi, Jeyapaul R, et al. Development of multi-objectiveoptimization models for electrochemical machining process [J]. International Journal ofAdvanced Manufacturing Technology,2008,39(1-2):55-63.
    [146] Yuan Jin, Wang Kesheng, Yu Tao,et al. Reliable multi-objective optimization ofhigh-speed WEDM process based on Gaussian process regression[J]. InternationalJournal of Machine Tools and Manufacture,48(01):47-60.
    [147] Kim Min-Seok,Chung Sung-Chong. Integrated design methodology forhigh-precision/speed servo mechanisms[J].Transactions of the North AmericanManufacturing Research Institute of SME,2004,32:487-494.
    [148]刘世豪,叶文华,唐敦兵,等.基于正交试验法和灰色关联的机床主轴箱优化设计[J].振动与冲击,2011,30(07):127-132.
    [149]赵明.重型数控机床多学科设计优化若干关键技术研究[D].武汉:华中科技大学博士学位论文,2008.
    [150] Qian Z, Xue C, Pan S. FEA agent for multidisciplinary optimization[J].Structural andMultidisciplinary Optimization,2001,22(05):373-383.
    [151] Yang Xiaojing, Fu Zhongyu. Realization of CNC machine tool virtual prototype in UGintegrated environment[J]. Journal of Engineering Design,2007,14(03):204-209.
    [152] Gardenghi Melissa, Wiecek, Margaret M. Efficiency for multiobjectivemultidisciplinary optimization problems with quasiseparable subproblems[J].Optimization and Engineering,2012,13(02):293-318.
    [153]李初晔,王卫朝,马岩.基于参数灵敏度的结构性能优化[J].中国机械工程,2011,22(04):397-402.
    [154] Kankar P K, Harsha S P, Kumar P, et al. Fault diagnosis of a rotor bearing system usingresponse surface method[J].European Journal of Mechanics, A/Solids,2009,28(4):841-857.
    [155] Li Z Z, Shen Y D, Xu H L, et al. Optimal design of high temperature vacuum furnaceusing response surface method[J]. Journal of Mechanical Science and Technology,2008,22(11):2213-2217.
    [156] Hoyle Christopher, Chen Wei1, Ankenman Bruce, Wang Nanxin.Optimal experimental designof human appraisals for modeling consumer preferences in engineering design[J]. Journal ofMechanical Design,2009,131(07):81-89.
    [157] Subulan Kemal, Cakmakci Mehmet.A feasibility study using simulation-based optimization andTaguchi experimental design method for material handling-transfer system in the automobileindustry[J].International Journal of Advanced Manufacturing Technology,2011,(01):1-11.
    [158] Gladwin D, Stewart P,Stewart J,Chen R,Winward E.Improved decision support forengine-in-the-loop experimental design optimization[J]. Proceedings of the Institution ofMechanical Engineers, Part D: Journal of Automobile Engineering,2010,224:201-218.
    [159] Hambli R, Mkaddem A, Potiron A. Application of response surface method for FEMbending analysis[J].International Journal of Vehicle Design,2005,39(1-2):1-13.
    [160]李峰,叶正寅,高超.基于响应面法的新型排翼式飞艇的气动优化设计[J].力学学报,2011,(06):1068-1076.
    [151]胡龙飞,刘全坤,王成勇,等.基于响应面模型的铝合金壁板挤压成形优化设计[J].中国机械工程,2008,19(13):1630-1633.
    [162] Se-Ho Chun, Tae Jo Ko. Study on the response surface model of machining error in internallathe boring[J]. International Journal of Precision Engineering and Manufacturing,2011,12(02):177-182.
    [163] Wang B H, Jin Y, Luo Y G. Parametric optimization of EQ6110HEV hybrid electric bus basedon orthogonal experiment design[J]. International Journal of Automotive Technology,2010,11(01):119-125.
    [164]于颖,李永生,於孝春.粒子群算法在工程优化设计中的应用[J].机械工程学报,2008,44(12):226-230.
    [165] Kennedy J, Eberhart R. Particle swarm optimization.[C].IEEE International Conference onNeural Networks, Perth, Australia,1995.1942-1948.
    [166] He S, Prempain E, Wu Q H. An improved particle swarm optimizer for mechanical designoptimization problems[J].Engineering Optimization,2004,36(5):585-605.
    [167]李中凯,谭建荣,冯毅雄,等.基于拥挤距离排序的多目标粒子群优化算法及其应用[J].计算机集成制造系统,2008,14(7):1329-1333.
    [168] Fan C K, Tsai H Y, Lee Y H. The selection of life insurance sales representatives trainingprogram by using the AHP and GRA[J].The Journal of grey system,2008,20(02):149-160.
    [169] Shihao Liu, Wenhua Ye, Weifang Chen, et al Design Plan Optimum Seeking of Machine ToolBed Based on Grey Relational Analysis[J].The Journal of Grey System,2010,22(04):341-352.
    [170] Radhakrishnan Ramanujam, Nambi Muthukrishnan, Ramasamy Raju. Optimization of CuttingParameters for Turning Al-SiC(10p) MMC Using ANOVA and Grey Relational Analysis[J].International Journal of Precision Engineering and Manufacturing,2011,12(04):651-656.
    [171] Rao C J, Peng J, Li C F, Li W. Group Decision Making Model Based on Grey RelationalAnalysis [J].The Journal of grey system,2009,21(01):15-24.
    [172] Huang S J, Chiu N H,Chen L W. Integration of the grey relational analysis with geneticalgorithm for software effort estimation[J]. European Journal of Operational Research,2007,(2):1-11.
    [173]肖利利,陈蔚芳,叶文华,等.“箱中箱”结构立滑板的有限元分析及其优化设计[J].山东大学学报(工学版),2010,40(1):78-83.
    [174]戴磊,关振群,单菊林,等.机床结构三维参数化形状优化设计[J].机械工程学报,2008,44(05):152-161.
    [175] Kono Daisuke, Lorenzer Thomas, Weikert Sascha, et al. Evaluation of modelling approachesfor machine tool design[J]. Precision Engineering,2010,34(03):399-407
    [176]姜衡,管贻生,邱志成,等.基于响应面法的立式加工中心动静态多目标优化[J].机械工程学报,2011,47(11):125-132.
    [177]巫修海,马云芳,张建润.高速高精度卧式加工中心动态优化设计[J].振动与冲击,2009,28(10):74-77.
    [178] Shihao Liu, Wenhua Ye, Peihuang Lou, et al. Structural dynamic optimization for carriage ofgantry machining center using orthogonal experimental design and response surface method[J].Journal of the Chinese Society of Mechanical Engineers,2012,33(03):211-219.
    [179] Kiyoung Yi, Choi K.K, Kim N.H, et al. Design sensitivity analysis and optimization forminimizing springback of sheet-formed part[J].International Journal for Numerical Methods inEngineering,2007,71(12):1483-1511.
    [180] Park Sung Ryung,Yang, Seung Han.Analytical sensitivity analysis of geometric errors in athree-axis machine tool[J]. Transactions of the Korean Society of Mechanical Engineers,2012,36(02):165-171.
    [181] Qinshu He, Xinen Liu, Shifu Xiao. Application of Orthogonal Experimental Design onReliability and Sensitivity Analysis[J]. Advanced Materials Research,2011,211:651-655.
    [182]沈伋,韩丽川,沈益斌.基于粒子群算法的飞机总体参数优化[J].航空学报,2008,29(06):1538-1541.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700