用户名: 密码: 验证码:
航天器贮箱铝合金焊接接头强度特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于铝合金焊接结构在减轻结构重量、适应低温/腐蚀环境和提高结构设计制造的灵活性及效率等方面具备显著优势,因而成为航天运载工具中贮箱的重要结构形式。但由于焊接制造过程的特殊性,焊接接头强度受到局部力学性能不均匀、残余应力和焊缝余高引起的应力集中等焊接特有因素的复杂耦合影响,给焊接结构强度问题的分析计算带来很大困难。
     针对以上问题,本文以焊接接头局部力学性能特性为主线,分析研究了静态加载、预腐蚀和疲劳加载条件下焊接因素对接头强度的影响以及相应的强度评估方法。本文的主要研究内容包括以下五个方面。
     (1)焊接接头局部力学性能试验测量方法研究。根据微观组织形貌,确定局部力学性能在接头中变化的关键点;在局部拉伸试验中对关键点应力-应变数据进行了测量,获取了局部力学性能准确的离散性数据;归纳了焊接接头局部力学性能的离散特性。结果表明,焊接接头塑性力学性能在近焊缝的局部区域内发生着连续、非线性且大幅的变化,而该区域内弹性模量则较为一致,但弹性段范围各不相同;局部力学性能的不均匀性与焊缝余高之间的耦合作用对接头强度和断裂位置存在重要影响。
     (2)焊接接头强度数值分析方法研究。归纳总结了焊接接头局部区域内任意点之间在力学性能上的相关性和差异性;构建了描述该区域内任意点力学性能的数学模型;提出了兼顾计算精度和效率的有限元建模方法;对焊接接头拉伸试样进行了有限元分析和试验验证。结果表明,局部区域内任意点应力-塑性应变双对数曲线具有相同的斜率,曲线与坐标轴交点的纵坐标和屈服强度呈比例关系;所提出的数学模型,不仅提供了有限元分析所需数据,而且给出了一种仅需少量简单试验数据的局部力学性能估算方法;局部力学性能与其它因素的耦合作用是决定接头强度的关键因素,通过对耦合作用位置的细化和对其它区域的简化,可兼顾分析精度和效率。
     (3)焊接接头释放应变-残余应力关系研究。分析总结了局部力学性能不均匀影响残余应力计算结果的原因;通过数值分析方法,计算了考虑局部力学性能影响后的释放应变-残余应力数值关系;分析总结了局部力学性能对结果的影响。结果表明,接头局部区域力学性能与母材的差异,使得区域内释放应变-应力关系与母材存在区别,导致残余应力计算结果产生误差,其对残余拉应力极大值的影响最大;铝合金焊接接头中残余拉应力极值一般小于母材的屈服强度,但很可能已达到甚至超过所处位置材料的实际屈服强度。
     (4)贮箱焊接接头预腐蚀强度性能研究。针对长期贮存腐蚀性溶液的贮箱中的焊接接头在腐蚀后承受高强度拉伸载荷的特殊工况,通过铝合金焊接接头和母材试样的腐蚀试验,比较分析了焊接接头与母材之间在腐蚀性能上的差异;提出了结合局部力学试验、腐蚀试验和有限元方法的焊接接头预腐蚀强度预测方法;通过试验进行了验证;对接头中关键位置断裂应力随腐蚀时间的变化进行了数值分析。结果表明,焊接接头不同区域的腐蚀性能存在显著差异;腐蚀性能是影响接头预腐蚀强度的重要因素,随着腐蚀时间的增加腐蚀的影响逐渐增大;在腐蚀和局部力学性能的共同作用下,预腐蚀断裂的位置随着时间而发生变化。
     (5)贮箱焊接接头疲劳与断裂性能研究。针对重复使用的贮箱中的焊接接头承受交变载荷的特殊工况,根据疲劳危险部位的局部力学性能数据估算了该处疲劳性能参数;预测了疲劳寿命并通过疲劳试验进行了验证;分析了焊接和厚度效应对焊接薄板临界应力强度因子的影响;提出了一种通过断口处临界裂纹类型和尺寸来估算断口处临界应力强度因子的方法。结果表明,疲劳断裂部位的局部力学性能是影响估算结果的关键因素,采用断裂部位的局部拉伸性能数据估算得到的疲劳性能参数能够满足工程计算的要求;利用断口裂纹尺寸对临界应力强度因子的估算,考虑了焊接和厚度效应耦合影响且结果不受试验参数影响,可作为断口处断裂韧性的参考值,与焊接接头断裂韧性分区测量结果互为补充,应用于焊接结构的疲劳失效分析。
Aluminum alloy welded structure is an important structure form of aerospace tank, withadvantages in light-weight, adaptability of cryogenic/corrosion environment, high efficiency andflexibility in manufacturing process. Due to the particularity of welding process, the welded jointstrength affected by the coupling effect of welded specific factors such as uneven local properties,residual stress and stress concentration caused by weld reinforcement, which makes it difficult toanalyze the strength problem of welded structure.
     In allusion to these problems, the effects of welded specific factors on welded joint strengthunder static load, pre-corrosion and fatigue load, as well as the methods of strength evaluation, arestudied in this thesis following the local mechanical properties in the welded joint. The main contentsin this thesis are shown as follow:
     (1) Experimental research of welded joint’s local mechanical properties. The locations of thelocal mechanical properties’ key transitions in the joint are identified by observing and measuring thechanges in the microstructure in the welded area. By measuring the stress and strain of these keypoints during a local tensile test, the accurate but discrete data are acquired. The changing rules oflocal mechanical properties are summarized. The results show the plastic properties of the joint willundergo a substantial, continuous and non-linear change in the local area near the weld. The elasticmodulus is almost the same in the same area, but the elastic ranges are different. The welded jointstrength and fracture position are affected by the coupling effect of uneven local mechanicalproperties and weld reinforcement
     (2) Numerical analysis method research of welded joint strength. The correlation and differencebetween random positions in the welded joint local area are summarized. The mathematical model ofwelded joint mechanical properties is built. A finite element analysis modeling approach, which givesconsideration to both accuracy and efficiency, is put forward. The results of finite element analysis areverified by tests. The results show any position in the local area of welded joint has the same slope ofthe stress-plastic strain double logarithmic curve. The vertical coordinate of the curve and coordinateaxis’ intersection point is in a certain proportion to yield strength. The mathematical model of weldedjoint mechanical properties can not only provide material property data for finite element analysis, butalso can give a estimation method of local mechanical property, which only needs a few simple tests.The coupling effect of local mechanical properties and other factors is the key of joint’s strength. The computational accuracy and efficiency can be balanced by thinning mesh and material property of thecoupling effect position and simplified discretizing the other areas.
     (3) Research the relationships between release strain and residual stress of welded joint. Theeffect of welded joint uneven local mechanical property on residual stress computation is analyzedand summarized. The relationship between release strain and residual stress is calculated by numericalanalysis method, and the effect of local mechanical property is considered in the calculation. Theresults show the differences of mechanical property between welded joint’s local area and base metallead to the different relationships between release strain and stress, and finally cause the error of theresidual stress results, the maximum residual stress in particular. The maximum residual stress inaluminum alloys welded joint is normally less than the yield strength of base metal but most likelymeets or excess the actual yield strength of the exact position.
     (4) Pre-corrosion strength property research of tank’s welded joint. To the special condition ofwelded tank which has to bear high load after long-term storage of corrosive solutions, corrosion testsof welded joint specimens and base metal specimens are conducted to obtain the corrosion propertydata of the welded joints and base metal. The differences of corrosion properties between the weldedjoint and base metal are summarized. Based on the data of corrosion tests and welded joint localmechanical tests, a finite element method is used to predict the pre-corrosion strength, the results ofwhich are verified by pre-corrosion tensile tests. The stress of key positions in the joint which ischanging by time is analyzed by numerical method. The results show the major characteristic of awelded joint’s corrosion resistance is the existence of obvious differences of corrosive resistanceamong different local areas. The corrosion resistance is an important factor for the pre-corrosionstrength of welded joints, and its influence increases with time. The fracture position is transferredwith time by the coupling effect of corrosion and local material property.
     (5) Fatigue and fracture properties research of tank’s welded joint. To the special condition ofwelded tank which has to bear alternating load, the fatigue property parameters of fracture areestimated based on the local mechanical properties data of welded joint’s fracture position. Thefatigue life is predicted and verified by fatigue tests. The effect of welding and thickness to weldedjoint critical stress intensity factor is analyzed. A method for estimation of the critical stress intensityfactor based on critical crack size is put forward, which estimate the critical stress intensity factor bythe size and type of the crack at the fatigue fracture location. The results show the local mechanicalproperty of the fatigue fracture is the key factor of prediction. The prediction results based on localmechanical property can meet the engineering calculation requires. The estimation method that is applied to measure the factor based on the fracture crack size excludes influences of welding andthickness effects in a convenient way of measurement and calculation. The method can be adopted forwelded structures subjected to vibration loads for fatigue failure analysis and reference of fracturetoughness in engineering practice.
引文
[1]龙乐豪,王小军,容易.我国一次性运载火箭的发展展望[J].中国科学,2009,39(3):460-463.
    [2]刘欣,王国庆,李曙光,等.重型运载火箭制造技术发展展望[J].航天制造技术,2013,(1):1-6.
    [3]佟艳春,才满瑞.美国新一代重型运载火箭发展分析[J].国际太空,2012,(5):45-52.
    [4]张登成,唐硕.美国重复使用运载器的发展历史、现状及启示[J].导弹与航天运载技术,2003,265(5):20-27.
    [5]康开华,丁文华.英国未来的SKYLON可重复使用运载器[J].导弹与航天运载技术,2010,310(6):53-56.
    [6] Albert H B. Status of the U. S. air force hytech program[C].12th AIAA international space planesand hypersonic systems and technologies,2003:15-19.
    [7]方洪渊.焊接结构学[M].北京:机械工业出版社,2008.
    [8]周万盛,姚君山.铝及铝合金的焊接[M].北京:机械工业出版社,2005.
    [9] Gene Mathers. The welding of aluminum and its allays[M]. Cambridge woodhead publishinglimited cambrige,2002.
    [10]姚君山,周万盛,王国庆,等.航天贮箱结构材料及其焊接技术的发展[J].航天制造技术,2002,5:17-22.
    [11] Pickens J R. High strength Al-Cu-Li alloy for launch systems[C]. Aluminum-Lithium Alloy foraerospace applications workshop,1994:57-72.
    [12] Fridlyander I N, Dritz A M, Krymova T V. High-strength weldable1460alloy for cryogenicapplication[C].6th Al-Li conference.1991:1245-1249.
    [13] Sivatsan T S, Sudarshan T S. Welding of lightweight aluminum-lithium alloys[J]. WeldingJournal,1997,76(7):173-185.
    [14] Nunes A C, Bayless E O, Jones C S, et al. Variable polarity arc welding on the space shuttleexternal tank[J]. Welding Journal,1984,63(9):27-35.
    [15] Bosworth T J, Griffee C C. Welding of the space station common module prototype[C].68thAmerica welding society annual meeting and18th international AWS brazing conference,1987:178-180.
    [16]唐介正.美国航天飞机铝合金外贮箱的制造技术[J].航天工艺,1989,(2):27-35.
    [17]刘春飞.运载贮箱用2219类铝合金的电子束焊[J].航天制造技术,2002,(4):3-9.
    [18]刘春飞,张益坤.电子束焊接技术发展历史、现状及展望[J].航天制造技术,2003,(1)-(5).
    [19]张秉刚,吴林,冯吉才.国内外电子束焊接技术研究现状[J].焊接,2004,(2):5-8.
    [20] Dawes C J, Thomas W M. Friction stir process welds aluminum alloys[J]. Welding Journal,1996,75(9):55-57.
    [21] Irving Bob. Why aren’t airplane welded?[J]. Welding Journal,1997,76(1):31-41.
    [22] Kar-Erik Knipstim, Pekari Bertil. Friction stir welding process goes commercial. WeldingJournal,1997,76(9):55-57.
    [23]姚君山.航天贮箱先进焊接技术研究[D].北京:中国运载火箭技术研究院,2004
    [24]夏德顺,王国庆.搅拌摩擦焊接在运载火箭上的应用[J].导弹与航天运载技术,2002,(4):27-32.
    [25]熊焕.低温贮箱及铝锂合金的应用[J].导弹与航天运载技术,2001,(6):33-46.
    [26] Kallee S W, Nicholas E D, Thomas W M. Industrialization of friction stir welding for aerospacestructure[C]. Structures and technologies challenges for future launchers third Europeanconference,2001.
    [27] Brooker M J, Van Deudekom A J M, Kallee S W, et al. Applying Friction stir welding to Ariane5main motor thrust frame[C]. Second international symposium on friction stir welding,2000.
    [28] Xu W F, Liu J H, Luan G H, et al. Temperature evolution microstructure and mechanicalproperties of friction stir welded thick2219-O aluminum alloy joints. Materials and Design,2009,30(6):1886-1893.
    [29] Wang H T, Wang G Z, Xuan F Z, et al. Local mechanical properties of a dissimilar metal weldedjoint in nuclear power systems[J]. Materials and Design,2013,568(15):108-117.
    [30] Ambriz R R, Chicot D, Benseddiq N, et al. Local mechanical properties of the6061-T6aluminum weld using micro-traction and instrumented indentation[J]. European Journal ofMechanics,2011,30(3):307-315.
    [31] Rojek J, Hyrcza-Michalska M, Bokota A, et al. Determination of mechanical properties of theweld zone in tailor-welded blanks[J]. Archives of civil and mechanical engineering,2012,(12):156-162.
    [32]乔及森,周清林,朱亮,等.铝合金焊接接头的力学性能测试[J].焊接学报,2006,27(11):41-44,49.
    [33]车洪艳,朱亮,陈剑虹,等.6061铝合金平板对接焊接接头拉伸性能研究[J].兰州理工大学学报,2008,34(2):27-30.
    [34] Hector L G, Chen Y L, Agarwal S, et al. Friction Stir Processed AA5182-O and AA6111-T4Aluminum Alloy. Part2: Tensile Properties and Strain Field Evolution[J]. Journal of MaterialsEngineering and Performance,2007,16(4):404-417.
    [35] Lemmen H J K, Alderliseten R C, Pieters R R G M, et al. Yield Strength and Residual StressMeasurements on Friction-Stir-Welded Aluminum Alloys[J]. Journal of Aircraft,2010,47(5):1570-1583.
    [36] Rodrigues D M, Menezes L F, Loureiro A, et al. Numerical study of the plastic behaviour intension of welds in high strength steels[J]. International Journal of Plasticity,2004,20(1):1-18.
    [37] Fu J Q, Shi Y W. Effect of cracked weld joint and yield strength dissimilarity on crack tip stresstriaxiality[J]. Theoretical and applied fracture mechanics,1996,25(1):51-57.
    [38] Kim Y J, Schwalbe K H. Mismatch effect on plastic yield loads in idealized weldments I. weldcentre cracks[J]. Engineering fracture mechanics,2001,68(2):163-182.
    [39] Kim Y J, Schwalbe K H. Mismatch effect on plastic yield loads in idealized weldments II. heataffected zone cracks[J]. Engineering fracture mechanics,2001,68(2):183-199.
    [40] Alfaro I, Fratini L, Cueto E, et al. Numerical simulation of friction stir welding by naturalelement methods[J]. International journal of material forming,2008,(1):1079-1082.
    [41] Wang X, Zheng Y Y, Liu H X, et al. Numerical study of the mechanism of explosive/impactwelding using smoothed particle hydrodynamics method[J]. Material and design,2012,35:210-219.
    [42] Rafi H K, Janaki Ram G D, Phanikumar G, et al. Microstructure and tensile properties of frictionwelded aluminum alloy AA7075-T6[J]. Material and design,2010,31(5):2375-2380.
    [43]汪洪峰,左敦稳,王宏宇,等.5554铝合金TIG焊缝组织与性能[J].南京航空航天大学学报,2010,42(6):753-757.
    [44]彭杏娜,曲文卿,张国华.焊接方法对2219铝合金性能及组织的影响[J].航空材料学报,2009,29(2):57-90.
    [45] Fracnchim S A, Fernandez F F, Travessa D N. Microstructural aspects and mechanical propertiesof friction stir welded AA2024-T3aluminium alloy sheet[J]. Materials and Design,2011,32(10):4684-4688.
    [46] Singh R K R, Sharma C, Dwivedi D K, et al. The microstructure and mechanical properties offriction stir welded Al-Zn-Mg alloy in as welded and heat treated conditions[J]. Materials andDesign,2011,32(2):682-687.
    [47] Heidarzadeh A, Khodaverdizadeh H, Mahmoudi A, et al. Tensile behavior of friction stir weldedAA6061-T4aluminum alloy joints[J]. Materials and Design,2012,37:166-173.
    [48]孟立春,路浩,刘雪松,等.焊接结构服役状态残余应力超声波法无损测量研究发展[J].电焊机,2008,38(3):1-6.
    [49] Bray D E, Tang W. Subsurface stress evaluation in steel plates and bars using the LCRultrasonicwave[J]. Nuclear engineering an design,2001,207(2):231-240.
    [50] Bray D E. Ultrasonic stress measurement and material characterization in pressure vessels,piping and welds[J]. Journal of pressure vessel technology,2002,124(3):326-335.
    [51] Walaszek H, Lieurade H P, Peyrac C, et al. Potentialities of ultrasonic for evaluation residualstresses: influence of microstructure[J]. Journal of pressure vessel technology,2002,124:349-353.
    [52]李勇攀,王寅观,陈振宇,等.临界折射纵波传播机理的研究[J].声学技术,2004,23(3):141-145.
    [53] Lu H, Liu X S, Yang J G, et al. Ultrasonic stress evaluation on welded plates with Lcr Wave[J].Science&technology of welding and joining,2008,13(1):70-75.
    [54]路浩,刘雪松,杨建国,等.激光全息小孔法验证超声波法残余应力无损测量[J].焊接学报,2008,29(8):77-79.
    [55] Akhshik S, Moharrami R. Improvement in accuracy of the measurements of residual stresses dueto circumferential welds in thin-walled pipe using Rayleigh wave method[J]. Nuclear engineeringand design,2009,239(10):2201-2208.
    [56] Pearce S V, Linton V M, Oliver E C. Residual stress in a thick section high strength T-buttweld[J]. Materials science and engineering A,2008,480(1-2):411-418.
    [57] Karahutov A, Devichensky A, Ivochkin A, et al. Laser ultrasonic diagnostics of residual stress[J].Ultrasonics,2008,48(6-7):631-635.
    [58]江克斌,肖叶桃,郭永涛. T型焊接试件焊接残余应力分布的测定[J].焊接学报,2008,29(1):53-56.
    [59] Barsoum Z, Lundback A. Simplified FE welding simulation of fillet welds–3D effects on theformation residual stresses[J]. Engineering failure analysis,2009,16(7):2281-2289.
    [60] Teng T L, Fung C P, Chang P H, et al. Analysis of residual stresses and distortions in T-jointfillet welds[J]. International journal of pressure vessels and piping,2001,78(8):523-538.
    [61] Venkitakrishnan P V, Sinha P P, Krishnamurthy R. Study and analysis of residual stresses due tovarious secondary processes in AA2219annealed sheet using acoustic emission and hole drillingmethod[J]. NDT&E international,2005,38(8):615-622.
    [62] Muransky O, Hamelin C J, Smith M C, et al. The effect of plasticity theory on predicted residualstress fields in numerical weld analyses[J]. Computational materials science,2012,54:125-134.
    [63]中国特种飞行器研究所主编.海军飞机结构腐蚀控制设计指南[M].北京:航空工业出版社,2005.
    [64]黄魁元.铝及铝合金在硝酸溶液中的腐蚀及缓蚀剂[J].化学清洗,1999,15(2):32-43.
    [65]刘建华,郝雪龙,李松梅,等.新型含钪Al-Mg-Cu合金的抗应力腐蚀开裂特性[J].中国有色金属学报,2010,20(3):415-419.
    [66]王景茹,朱立群,张峥. Monte Carlo法研究LY12CZ铝合金应力腐蚀坑边缘小裂纹萌生条件[C].全国氢脆与应力腐蚀及工程应用学术研讨会,2007:73-79.
    [67]张晓云,孙志华,刘明辉,等.环境对高强度铝合金应力腐蚀行为的影响[J].中国腐蚀与防护学报,2007,27(6):354-362.
    [68] Wu X R, Li B, Lu F, et al. Analysis and control of corrosion cracking in airframe structures[J].Engineering failure analysis,2006,13(3):398-408.
    [69] Henaff G, Odemer G, Morel A T. Environmentally-assisted fatigue crack growth mechanisms inadvanced materials for aerospace applications[J]. International journal of fatigue,2007,29(9-11):1927-1940.
    [70] Henaff G, Odemer G, Benoit G, et al. Prediction of creep-fatigue crack growth rates in inert andactive environments in an aluminum alloy[J]. International journal of fatigue,2009,31(11-12):1943-1951.
    [71] Henaff G, Menan F, Odemer G. Influence of corrosion and creep on intergranular fatigue crackpath in2XXX aluminum alloys[J]. Engineer fracture mechanics,2010,77(11):1975-1988.
    [72] Alexopoulos N D, Dalakouras C J, Skarvelis P, et al. Accelerated corrosion exposure in ultra thinsheets of2024aircraft aluminium alloy for GLARE applications[J]. Corrosion science,2012,55:289-300.
    [73] Alexopoulos N D, Papanikos P. Experimental and theoretical studies of corrosion-inducedmechanical properties degradation of aircraft2024aluminum alloy[J]. Materials science andengineering A,2008,498(1-2):248-257.
    [74] Menan F, Henaff G. Influence of frequency and exposure to a saline solution on the corrosionfatigue crack growth behavior of the aluminum alloy2024[J]. International journal of fatigue,2009,31(11-12):1684-1695.
    [75]毋玲,孙秦,郭英男.高强度铝合金盐雾加速腐蚀试验研究[J].机械强度,2006,28(1):138-140.
    [76]郝美丽,曹学军,封先河,等.铝合金室内加速腐蚀与大气暴露腐蚀的相关性[J].兵器材料科学与工程,2006,29(5):28-31.
    [77]张栋.飞机结构件在当量环境谱下加速腐蚀试验和日历寿命估算方法[J].航空学报,2000,21(3):196-201.
    [78]闫永贵,马力,曾红杰,等.7A52铝合金的应力腐蚀性能研究[J].腐蚀科学与防护技术,2009,21(2):119-121.
    [79]刘玲霞,周古昕,彭建中,等.2519铝合金及焊缝应力腐蚀性能研究[J].兵器材料科学与工程,2009,32(2):68-72.
    [80]机械设计手册编委会编.机械设计手册:疲劳强度设计[M].北京:机械工业出版社,2007.
    [81]航空航天工业部科学技术研究院编.应变疲劳分析手册[M].北京:科学出版社,1991.
    [82]刘岗,郑子樵,杨守杰,等.2E12铝合金的疲劳性能与裂纹扩展行为[J].机械工程材料,2007,31(11):65-72.
    [83]刘恩泽,郑志,佟健,等. DZ468合金高周疲劳性能研究[J].金属学报,2010,46(6):708-714.
    [84]马英杰,李晋炜,雷家峰,等.显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响[J].2010,46(9):1086-1092.
    [85] Manjunatha C M, Parida B K. Prediction of fatigue crack growth after single overload in analuminum alloy[J]. AIAA journal,2004,42(8):1536-1542.
    [86] Newman J C, Brot A, Matias C. Crack-growth calculations in7075-T7351aluminum alloy undervarious load spectra using an improved crack-closure model[J]. Engineering fracture mechanics,2004,71(16-17):2347-2363.
    [87] Ghidini T, Donne D C. Fatigue life predictions using fracture mechanics methods[J].Engineeering fracture mechanics,2009,76(1):134-148.
    [88] Yamada Y, Ziegler B, Newman J C. Application of a strip-yield model to predict crack growthunder variable-amplitude and spectrum loading–part1: compact specimens[J]. Engineeringfracture mechanics,2011,78(14):2597-2608.
    [89] Forman R G, Shivakumar V, Mettu, S R, et al. Fatigue crack growth computer program‘NASGRO’ version3[R], JSC-22267B,2000.
    [90] Rao B N, Rahman S. A coupled meshless-finite element method for fracture analysis of cracks[J].International journal of pressure vessels and piping,2001,78(9):647-657.
    [91]金志江,韩树新.基于循环J积分的压力容器疲劳寿命预测的数值模拟[J].机械工程学报,2007,43(10):191-195.
    [92] Hobbacher A. IIW doc: XIII-2151-07/XV-1254-07Recommendations for fatigue design ofwelded joints and components [S].2007.
    [93] BS EN12663:2000Railway applications structural requirements of railway vehicle bodies [S].2000.
    [94] EN1993-1-9Eurocode3: Design of steel structures, Part1-9: Fatigue [S].2005.
    [95] GB50017-2003钢结构设计规范[S].北京:标准出版社,2003.
    [96] Atzori B, Meneghetti G. Fatigue strength of fillet welded structural steels: finite elements straingauges and reality[J]. International journal of fatigue,2001,23(8):713-721.
    [97] Taylor D, Barrett N, Lucano G. Some new methods for predicting fatigue in welded joints[J].International journal of fatigue,2002,24(5):509-518.
    [98]杨新歧,张艳新,霍立兴,等.焊接接头疲劳评定的局部法研究现状[J].焊接学报,2003,24(3):82-87.
    [99]张艳新,杨新歧,霍立兴,等.焊接接头疲劳评定的等效应力强度因子法[J].机械强度,2004,26(1):92-96.
    [100] Poutiainen I, Marquis G. A fatigue assessment method based on weld stress[J]. Internationaljournal of fatigue,2006,28(9):1037-1046.
    [101]许海生,杨新歧,耿立艳,等.铝合金焊接接头疲劳强度试验研究[J].机械强度,2006,28(3):442-447.
    [102]耿立艳,杨新歧,许海生,等.铝合金焊接接头疲劳评定的应力平均法[J].机械强度,2006,28(2):266-270.
    [103] Kainuma S, Mori T. A study on fatigue crack initiation point of load-carrying fillet weldedcruciform joints[J]. International journal of fatigue,2008,30(9):1669-1677.
    [104] Radaj D, Lazzarin P, Berto F. Fatigue assessment of welded joints under slit-parallel loadingbased on strain energy density or notch rounding[J]. International journal of fatigue,2009,31(10):1490-1504.
    [105] Benachour M, Benguediab M, Hadjoui A, et al. Fatigue crack growth of a double fillet weld[J].Computational materials science,2008,44(2):489-495.
    [106] Casavola C, Pappalettere C. Discussion on local approaches for the fatigue design of weldedjoints[J]. International journal of fatigue,2009,31(1):41-49.
    [107]周张义,李芾,安琪,等.钢结果焊缝疲劳强度分析技术的最新进展[J].中国铁道科学,2009,30(4):69-75.
    [108]周张义,李芾.基于表面外推的热点应力法平板焊趾疲劳分析研究[J].铁道学报,2009,31(5):90-96.
    [109]张健,卞鸣煜,冷建兴,等. T型焊接接头疲劳性能研究[J].船舶工程,2009,31(2):60-63.
    [110] Atzori B, Lazzarin P, Meneghetti G. Fatigue strength of welded joints based on local,semi-local and nominal approaches[J]. Theoretical and applied fracture mechanics,2009,52(1):55-61.
    [111] Lemmen H J K, Alderliesten R C, Benedictus R. Macro and microscopic observations of fatiguecrack growth in friction stir welded aluminum joints[J]. Engineering fracture mechanics,2011,78(6):930-943.
    [112] Lemmen H J K, Alderliesten R C, Benedictus R. Evaluating the fatigue initiation location infriction stir welded AA2024-T3joints[J]. International journal of fatigue,2001,33(3):466-476.
    [113] Lemmen H J K, Alderliesten R C, Benedictus R, et al. Influence of local yield strength andresidual stress on fatigue in friction stir welding[C].49thAIAA/ASME/ASCE/AHS/ASCstructures, structural dynamics, and materials conference,2008.
    [114] Liljedahl C D M, Brouard J, Zanellato O, et al. Weld residual stress effects on fatigue crackgrowth behaviour of aluminium alloy2024-T351[J]. International journal of fatigue,2009,31(6):1081-1088.
    [115] Liljedahl C D M, Zanellato O, Fitzpatrick M E, et al. The effect of weld residual stresses andtheir re-distribution with crack growth during fatigue under constant amplitude loading[J].International journal of fatigue,2010,32(4):735-743.
    [116] Webster G A, Ezeilo A N. Residual stress distributions and their influence on fatiguelifetimes[J]. International journal of fatigue,2001,23(1):375-383.
    [117] Bussu G, Irving P E. The role of residual stress and heat affected zone properties on fatiguecrack propagation in friction stir welded2021-T351aluminium joints[J]. International journal offatigue,2003,25(1):77-88.
    [118] John R, Jata K V, Sadananda K. Residual stress effects on near-threshold fatigue crack growthin friction stir welds in aerospace alloys[J]. International journal of fatigue,2003,(9-11):939-948.
    [119] Cheng X H, Fisher J W, Prask H J, et al. Residual stress modification by post-weld treatmentand its beneficial effect on fatigue strength of welded structures[J]. International journal of fatigue,2003,25(9-11):1259-1269.
    [120] Ghidini T, Donne C D. Fatigue crack propagation assessment based on residual stressesobtained through cut-compliance technique[J]. Fatigue&fracture engineering materials&structure,2006,30(3):214-222.
    [121] Pouget G, Reynolds A P. Residual stress and microstructure effects on fatigue crack growth inAA2050friction stir welds[J]. International journal of fatigue,2008,30(3):463-472.
    [122]李良碧,王自力. FPSO典型焊接接头残余应力释放及其对疲劳强度的影响[J].中国造船,2008,49(4):52-60.
    [123] Sonsino C M. Effect of residual stresses on the fatigue behaviour of welded joints depending onloading conditions and weld geometry[J]. International journal of fatigue,2009,31(1):88-101.
    [124] James M N, Hughes D J, Hattingh D G, et al. Residual stress and strain in MIG butt welds in5083-H321aluminium: As-weld and fatigue cycled[J]. International journal of fatigue,2009,31(1):28-40.
    [125] Nascimento M P, Voorwald H J C, Filho J D C P. Fatigue strength of tungsten inertgas-repaired weld joints in airplane critical structures[J]. Journal of materials processingtechnology,2011,211(6):1126-1135.
    [126] Acevedo C, Nussbaumer A. Effect of tensile residual stresses on fatigue crack growth and S-Ncurves in tubular joints loaded in compression[J]. International journal of fatigue,2012,36(1):171-180.
    [127] Saga M, Kopas P, Uhricik M. Modeling and experimental analysis of the aluminium alloyfatigue damage in the case of bending-torsion loading[J]. Procedia engineering,48:599-606.
    [128] Florea R S, Bammann D J, Yeldell A, et al. Welding parameters influence on fatigue life andmicrostructure in resistance spot welding of6061-T6aluminum alloy[J]. Materials and design,2013,45:456-465.
    [129] MIL-STD-2219Fusion Welding for Aerospace Applications[S]. U S Department of defense,1990.
    [130]刘涛,高恬斐,董莉. GB/T228-2010金属材料拉伸试验室温试验方法[S].北京:中国标准出版社,2010.
    [131] American society for testing and materials. ASTM E837-81Standard Test Method forDetermining Residual Stresses by the Hole-drilling Strain-gage Method[S]. Philadelphia: Americansociety for testing material,1981.
    [132]陈怀宁,李荣峰,陈静,等. GB/T24179-2009金属材料残余应力测定压痕应变法[S].北京:中国标准出版社,2009.
    [133]纪晓春,王云,李慧玲. GB/T16545-1996金属和合金的腐蚀腐蚀试样上腐蚀产物的清除[S].北京:中国标准出版社,1996.
    [134]邱宣怀,郭可谦,吴宗泽,等.机械设计[M].北京:高等教育出版社,1997.
    [135] Manson S S. Fatigue: a complex subject-some simple approximation[J]. Journal of materials,1965,5(7).
    [136] Manson S S. Fatigue behavior in strain cycling in the low and inter-cycle range, fatigue–ainterdisciplinary approach[M]. Syracuse: Syracuse university press,1964.
    [137]吴富民,罗安民. LY12-CZ应变疲劳材质参数测定[J].西北工业大学学报,1984,1:91-105.
    [138]聂宏,乔新.一种新的应变疲劳材质参数估算方法[J].南京航空航天大学学报,1992,24(2):226-231.
    [139] Bannantine J A, Comer J J, Handrock J L. Fundamentals of metal fatigue analysis[M]. NewYork: Prentice hall,1990.
    [140] Smith K N, Watson P, Topper T H. A stress-strain function for the fatigue of metals[J]. Journalof materials,1970,5(4):767-778.
    [141]张海龙,高怡斐,耿秀英,等. GB/T3075-2008金属材料疲劳试验轴向力控制方法[S].北京:中国标准出版社,2008.
    [142] Miedlar P C, Berens A P, Gunderson A, et al. Damage tolerant design handbook: guidelines for the analysis and design of damage tolerant aircraft structures. http://www.dtdesh.wpafb.af.mil,2003.
    [143] Foreman R G, Kearney V E, Engle R M. Numerical analysis of crack propagation in cyclic loadstructure. Journal of basic engineering[J].1967,89(3):454-464.
    [144] Pairs P C, Erdogan F. A critical analysis of crack propagation laws[J]. Journal of basicengineering[J].1963,85(4):528-534.
    [145] Newman J C. A Crack opening stress equation for fatigue crack growth[J]. International journalof fracture,1984,24(4):131-135.
    [146] Skorupa M, Machniewicz T, Schijve J, et al. Application of the strip-yield model from theNASGRO software to predict fatigue crack growth in aluminum alloys under constant andvariable amplitude loading[J]. Engineering fracture mechanics,2007,74(3):291-313.
    [147] Heerens J, Hellmann D. Development of the Euro fracture toughness dataset. Engineeringfracture mechanics[J].2002,69(4):421-449.
    [148] Mostafavi M, Smith D J, Pavier M J. Reduction of measured toughness due to out-of-planeconstraint in ductile fracture of aluminium alloy specimens[J]. Fatigue&fracture of engineeringmaterials&structures,2010,33(11):724-739.
    [149] Lebert A A, Besson J, Gourgues A F. Fracture of6056aluminum sheet materials: Effect ofspecimen thickness and hardening behavior on strain localization and toughness[J]. MaterialssScience and engineering: A,2005,395(1-2):186-194.
    [150] Yang. J Y, Zhang X, Zhang M. Theory and application on thickness effect on cracked platefracture toughness[J]. Chinese journal of mechanical engineering,2005,41(11):32-42.
    [151] Shahani A R, Rastegar M, Dehkordi B M, et al. Experimental and numerical investigation ofthickness effect on ductile fracture toughness of steel alloy sheets[J]. Engineering fracturemechanics,2010,77(4):646-659.
    [152] Attia M S, Mahmoud A S, Megahed M M, et al. Numerical investigations of the stepped doubletorsion fracture toughness specimen[J]. Engineering fracture mechanics,2010,77(16):3359-3367.
    [153] ASTM E1820-11Standard test method for measurement of fracture toughness[S]. Philadelphia: American society for testing materials,2011.
    [154]中国航空研究院.应力强度因子手册[M].北京:科学技术出版社,1981.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700