用户名: 密码: 验证码:
喷射液束电解—激光复合加工系统及加工工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射液束电解—激光复合加工是将电解加工与激光加工进行复合的新型加工方法,其加工原理是在激光加工快速去除材料的同时,利用喷射电解液束的电解作用在线去除再铸层,提高加工小孔的表面质量。为了将该技术使用于工程应用,研究和掌握激光束在动态喷射液束中的衰减特性,研制喷射液束电解—激光复合加工系统,深入研究该技术的加工工艺,具有重要的现实意义。为此,本文以喷射液束电解—激光复合加工技术应用于工程实际为目的,进行了以下研究工作:
     本文首先研究了动态喷射液束中激光的衰减特性。根据溶液对激光吸收、散射的理论分析,结合喷射液束电解—激光复合加工原理,分析了喷射液束中氢气微气泡对激光的散射特性,基于自制的专用试验装置,研究了激光在喷射液束中的衰减特性,为设计喷射液束电解—激光复合加工系统提供重要的依据。
     其次研制了喷射液束电解—激光复合加工系统。1)根据复合加工对喷射液束的要求,通过合理设计装置结构和选择喷嘴材料,设计了喷射耦合装置,该装置实现了激光束与喷射液束的精确耦合,使得喷射液束的破碎长度大于10mm,满足了复合加工对喷射液束的的要求;2)根据喷射液束电解加工的需要,研制了高压脉冲电源,该电源以555振荡电路为核心,以MOSFET为功率开关管,用脉宽调节和脉间调节相结合的方法,使输出电压和电源频率连续可调;3)基于激光在动态喷射液束中的衰减特性和提高激光在喷射液束中的加工效率,设计了喷射液束电解—激光复合加工分时控制系统,实现了喷射液束电解—激光分时控制的多种加工方式,解决了激光在喷射液束中严重衰减问题。
     最后利用喷射液束电解—激光复合加工系统,进行了复合加工工艺试验研究。1)基于扫描电镜和金相显微技术,研究了喷射液束电解—激光复合加工的再铸层。研究结果表明:喷射液束电解—激光复合加工能够将电解加工与激光加工进行复合,并能100%地去除孔壁的再铸层,提高激光加工表面质量;2)使用单因素分析法,对某新型镍基高温合金片进行喷射液束电解—激光复合打孔,研究工艺参数对表面粗糙度和晶间腐蚀的影响规律。研究结果表明:采用复合电解液加工小孔的表面质量好于单一成份的电解液,当复合电解液的配比浓度为6%NaNO3+3%~4%NaCl、电解液的温度为30℃~40℃、电源电压为200VDC~300VDC时,能得到粗糙度小和晶间腐蚀少的加工效果;3)应用响应曲面法设计了二次回归正交试验,通过加工不锈钢材料小孔试验建立了材料去除率和再铸层残留率的二次回归方程,总结了喷射液束电解—激光复合加工的工艺规律,利用优化的工艺参数进行了系列加工实例。
     通过本文的理论分析和工艺试验研究,进一步验证了喷射液束电解—激光复合加工能够有效去除再铸层,表明了喷射液束电解—激光复合加工技术具有诱人的工程应用前景,同时本文新研制的复合加工系统和工艺试验研究结果为该技术的工程应用提供了重要依据。
The hybrid processing of jet electrochemical machining and laser beam machining(JECM-LBM) is a new processing method which is combined with laser processing andelectrochemical machining. The processing principle is that the material is removed mainly bylaser processing and the recast is removed by the electrochemical reaction with the surfacematerials, as well as improve the overall quality of laser-drilled holes. It will be great significanceto thoroughly grasp JECM-LBM core techniques and JECM-LBM processing technology tofabricate hole and groove structures with the size (from0.1mm to1.0mm) which exists widely inaerospace industry.
     In order to apply the new technology to the engineering, the main research contents wereincluded:
     1) The properties of laser attenuation were researched in dynamic jet electrolyte. According tothe theoretical analyses of laser absorption and scattering of solution and the principle ofJECM-LBM, the properties that laser is scattered by bubble in jet electrolyte were analyzed. Theproperties of laser attenuation in the jet electrolyte were researched with self-designed andmanufactured set up. The results of the laser attenuation in the jet electrolyte provided theimportant basis for the design of the JECM-LBM experimental system.
     2) The experimental system of JECM-LBM was developed. Firstly, based on the requirementsof jet electrolyte, the injection coupling device was developed by optimizing the device structureand selecting reasonably the nozzle materials. The device can implement the precise coupling laserwith the jet electrolyte. The breaking length of the jet is more than10mm which meet therequirements of JECM-LBM processing. Secondly, the high voltage pulse power supply wasdeveloped according to the need of jet electrochemical machining. It used555oscillation circuitand MOSFET mainly, and combined the PFM and PWM, and then the output voltage, current, andthe frequency of power supply could be adjusted continuously. At last, the time shared controlsystem was developed, which meet the variety of processing methods of jet electrochemicalmachining and laser machining. The severe laser attenuation was overcome in the jet electrolyte.
     3) The processing rules have been thoroughly researched by using the experimental system.Firstly, based on the scanning electron microscope and metallographic techniques, the recast layerin JECM-LBM was studied. The results shows that the JECM-LBM is combined with laserprocessing and electrochemical machining, and the recast layer can been completely removed byelectrolysis to improve the hole quality. Secondly, in order to study the rules of process parameterson surface roughness and inter granular corrosion, the JECM-LBM drilled on the new type nickel based super alloy. The results show that the hole quality drilled by JECM-LBM using compositeelectrolyte is better than using the single electrolyte. For achieving the small roughness and lessinter granular corrosion, the process parameters are6%NaNO3+3%~4%NaCl compositeelectrolyte,30℃~40℃electrolyte and200VDC~300VDC supply power. At last, theorthogonal experiments were designed by the response surface methodology(RSM), and the twoquadratic regression equations were achieved with drilling on stainless steel shell. Theprocessing rules of JECM-LBM have been summarized by the experimental results. Usingoptimum processing parameters, a series of samples were machining with JECM-LBM.
     The above theoretical analysis and experimental investigation were shown that the hybridprocess has great potential as a new technical approach in engineering for removing the recastlayer to obtain the high machining quality. The new system of JECM-LBM and the experimentalresults in the paper can provide important reference for the application of the new process inaeronautical engineering.
引文
[1]关振中,激光加工工艺手册,中国计量出版社,2005.9
    [2] Avanish Kumar Dubey, Vinod Yadava, Laser beam machining—A review[J]. International Journal ofMachine Tools&Manufacture48(2008)609-628
    [3] N.B. Dahotre and S.P. Harimkar, Laser Fabrication and Machining of Materials. Springer2008
    [4] S. Bandyopadhyay, J.K. Sarin Sundar, G. Sundararajan, S.V. Joshi. Geometrical features andmetallurgical characteristics of Nd:YAG laser drilled holes in thick IN718and Ti–6Al–4V sheets.Journal of Materials Processing Technology127(2002)83–95
    [5] D.K.Y. Low, L. Li, A.G. Corfe. Effects of assist gas on the physical characteristics of spatter duringlaser percussion drilling of NIMONIC263alloy. Applied Surface Science154–155.2000.689–695
    [6]张华,喷射液束电解—激光复合加工的基础研究[博士学位论文],南京航空航天大学,2009
    [7] Bandyopadhyay, Hina Gokhale, J.K. Sarin Sundar. A statistical approach to determine processparameter impact in Nd:YAG laser drilling of IN718and Ti-6Al-4V sheets. Optics and Lasers inEngineering43(2005)163–182
    [8] B.S. Yilbas. Parametric study to improve laser hole drilling process. Journal of Materials ProcessingTechnology70(1997)264273
    [9] D.K.Y. Low, L. Li, P.J. Byrd.The effects of process parameters on spatter deposition in laserpercussion drilling. Optics&Laser Technology32(2000)347-354
    [10] R. Biswas, A.S.Kuar, S.Sarkar, S.Mitr. A parametric study of pulsed Nd:YAG laser micro-drilling ofgamma-titanium aluminide. Optics&Laser Technology42(2010)23–31
    [11]张晓兵.改善激光加工Ni3Al基合金小孔质量的研究.航空制造技术,2004,(z1):126-128
    [12]谭险峰,杨俊华,耿艳青.脉冲宽度对激光打孔影响的试验研究.新技术新工艺.2011.3:77-79
    [13] Qiang Li, Yijun Zheng, Zhiyong Wang, et al. A novel high-peak power double AO Q-switches pulseNd: YAG laser for drilling. Optics&Laser Technology,2005,37(5):357-362.
    [14] Wen-Tung Chien, Shiann-Chin Hou. Investigating the recast layer formed during the laser trepandrilling of Inconel718using the Taguchi method. Journal of Materials Processing Technology.2007(33):308-316
    [15] M. Ghoreishi, D.K.Y. Low, L. Li. Comparative statistical analysis of hole taper and circularity in laserpercussion drilling. Journal of Machine Tools&Manufacture42(2002)985–995
    [16]郭文渊,王茂才,张晓兵.镍基超合金激光打孔再铸层及其控制研究进展.激光杂志,2003.第24卷第4期
    [17]陈长军,郭文渊,王茂才等.镍基超合金再铸层化学研磨去除的实验研究.燃气涡轮试验与研究,2004.第17卷第3期
    [18]张晓兵.100ns~700ns脉冲列YAG激光加工镍基合金小孔.应用激光,25(2005):90-93
    [19] D.K.Y. Low, L. Li, A.G. Corfe. Effects of assist gas on the physical characteristics of spatter duringlaser percussion drilling of NIMONIC263alloy. Applied Surface Science154–155.2000.689–695
    [20]王智勇,陈铠,TH.Beck,等.辅助气体对激光打孔的影响.激光杂志,2000,21(6):44-46.
    [21] H.K. Sezer, L.Li, S.Leigh. Twin gas jet-assisted laser drilling through thermal barrier-coated nickelalloy substrates. Machine Tools&Manufacture49(2009)1126–1135
    [22]Bernold Richerzhagen. Device for Machining Material with a Laser.国际专利, WO/1995/032834,1995.
    [23]Bernold Richerzhagen. Method and apparatus for machining material with a liquid-guided laser beam.美国专利, US5902499,1999.
    [24] B.Richerzhagen,M. Kutsuna,H. Okada,et al. Waterjet-guided Laser Processing. Industrial LaserReview,1997(08).
    [25] Ochelio sibailly, John Manley, Bernold Richerzhagen. Mixng Laser and water. Applicationreport,2003,12.
    [26] Bernold Richerzhagen. Chip singulation process with a water jet-guided laser. Solid StateTechnology,2001,44(4):S25-S29.
    [27] C.F.Li,D.B.Johnson,R.Kovacevic. Modeling of waterjet guided laser grooving of silicon. InternationalJournal of Machine Tools&Manufacture,2003,43:925-936.
    [28]初杰成.水引导激光耦合机理及加工试验研究.[硕士学位论文].哈尔滨工业大学,2006.
    [29]李灵,杨立军,王扬等.水导激光微细加工中激光与水束光纤耦合技术.光学精密工程,2008,16:1614-1621
    [30] Yang Wang, Ling Li, Lijun Yang, et al. Experimental research on water-jet guided laser processing[J].Proceedings of the SPIE-The International Society for Opitcal Engineering,2007,(6595):25.1-25.6.
    [31]叶瑞芳,沈阳,王磊,黄元庆.新型水导引激光耦合系统研究.厦门大学学报(自然科学版),2009,48:369-372
    [32]叶瑞芳.新型水射流导引激光加工系统光学特性与关键技术研究[博士学位论文].厦门大学,2009
    [33]蔡黎明,雷玉勇,邴龙健等.水射流导引激光在微细加工中的应用.微细加工技术,2008,10,60-64
    [34] Jyri A. Porter. Yrj A. Louhisalmi.Jussi A. Karjalainen. Sascha Füger. Cutting thin sheet metal witha water jet guided laser using various cutting distances, feed speeds and angles of incidence. Journalof Advanced Manufacturing Technology,2007,(33):961-967
    [35] P. Ogawa, D. Perrottet, F. Wagner, R. Housh, B. Richerzhagen. Fast cutting of ceramics with thewater jet guided Nd:YAG Laser.
    [36] YUE, T.M., CHAN, T.W., MAN, H.C. and LAU, W.S., Analysis of ultrasonic-aided laser drilling usingfinite element method. CIRP Annals45/1(1996)169-172
    [37] W.S. Lau, T.M. Yue, M. Wang. Ultrasonic-Aided Laser Drilling of Aluminium-Based Metal MatrixComposites. CIRP Annals-Manufacturing Technology,1994,43(1):177-180
    [38] T.W. Chan, T.M. Yue, H.C. Man. Ultrasonically aided laser drilling of particsle reinforced aluminiumbased composites. Materials Science and Technology,1998,14(3):1039-1044.
    [39]T.M. Yue, W.S. Lau, T.W. Chan, et al. Ultrasonic-aided laser machining of Al/Cu based SiCp metalmatrix composites. ASME-Integrated Design and Manufacturing of Composites,1994,64(2):51-55.
    [40] L.Li, C.Achara. Chemical assisted laser machining for the minimization of recast and heat affectedzone[J],CIRP Annals–Manufacturing Technology,2004,53(1):175-178.
    [41] Andreas Stephen, Mechanisms and Applications of Laser Chemical Machining. Physics Procedia12(2011)261–267
    [42] A. Stephen, G. Sepold, S. Metev, et al. Laser-induced liguid-phase jet-chemical etching of metals.Journal of Materials Processing Technology,2004,149(1-3):536-540
    [43] A. Stephen, S. Metev, F. Vollertsen. Principles and applications of laser-induced liquid-phasejet-chemical etching. Proceedings of the SPIE-The International Society for Optical Engineering,2003,(5063):227-232
    [44] Mohan Sen, H.S.Shan. A review of electrochemical macro-to micro-hole drilling processes.International Journal of Machine Tools&Manufacture,2005,45(2):137–152
    [45]徐家文,云乃彰,王建业等.电化学加工技术-原理·工艺及应用.北京:国防工业出版社,2008.6
    [46]《金属切削理论与实践》编委会.电解加工.北京:北京出版社,1981.10
    [47]范植坚,王天诚.电解加工技术及其研究方法.北京:国防工业出版社.2004.10
    [48] Kock M, Kirchner V, Schuster R. Electrochemical Micromachining with Ultrashort Voltage Pulses-aversatile Method with Lithographical Precision Electrochemical[J]. Acta.,2003,48:3213-3219
    [49] Kirchner, V., Xia, X., Schuster, R., Electrochemical Nanostructuring with Ultrashort Voltage Pulses,Accounts of Chemical Research,2001(34):371-377.
    [50] Kirchner, V., Cagnon, L., Schuster, R., Ertl, G., Electrochemical Machining of Stainless SteelMicroelements with Ultrashort Voltage Pulses. Applied Physics Letters,2001(79/11):1721-1723
    [51] Joseph J. Maurer, Jonathan J. Mallett, John L. Hudson. Electrochemical micromachining ofHastelloy B-2with ultrashort voltage pulses. Electrochimical Acta55(2010)952–958
    [52] Se Hyun Ahn, Shi Hyoung Ryu, Deok Ki Choi, et al. Electro-chemical micro drilling using ultra shortpulses. Precision Engineering2004(28):129–134
    [53] Chan Hee Jo a, Bo Hyun Kim b, Chong Nam Chu. Micro electrochemical machining for complexinternal micro features. CIRP Annals-Manufacturing Technology2009(58):181–184
    [54] Shi Hyoung Ryu. Micro fabrication by electrochemical process in citric acid electrolyte, journal ofmaterials processing technology2009(209):2831–2837
    [55]狄士春,吴海波,赵万生,等.高频窄脉冲电化学加工间隙的在线检测与控制.哈尔滨工业大学学报,2007(39):35-37
    [56]王贤成,狄士春,迟关心,等.高频窄脉冲微细电解加工实验研究.机械工程师,2004.7:42
    [57]朱保国.脉冲电化学微细加工关键技术研究.[博士学位论文],哈尔滨:哈尔滨工业大学,2007
    [58]李鑫.微细电化学加工电源及检测系统研究.[硕士学位论文].哈尔滨:哈尔滨工业大学,2010
    [59]李勇,龚姗姗,陈旭鹏,彭良强.阵列微细型孔的电化学加工工艺[P].中国专利:CN1699006,2005-11-23
    [60] Li Yong, Zheng Yunfei, Yang Guang. Localized electrochemical micromachining with gap control,Sensors and Actuators A108(2003)144–148
    [61]李勇.微细电加工应用技术研究.电加工与模具.2009年增刊32-37
    [62]马晓宇,李勇,吕善进,等.加工间隙内电解产物对微细电解加工的影响分析.电加工与模具,2008(6):31-35
    [63]马晓宇,李勇.间歇回退对微细电解加工的影响分析及实验研究.第13届全国特种加工学术会议.2009.12:6-11
    [64]马晓宇,李勇,胡满红,等.综合改善微细电解加工精度的工艺研究.电加工与模具.2009(5):24-29
    [65]刘改红,李勇,陈旭鹏,等.微细电解加工用电极的侧壁绝缘及应用实验.电加工与模具.2009(4):28-31
    [66]朱荻,王明环,明平美,等.微细电化学加工技术.纳米技术与精密工程,2005,3(2):151-155.
    [67]张朝阳,朱荻,王明环.纳秒脉冲微细电化学加工的理论及试验.机械工程学报,2007,43(1):208-213.
    [68]张朝阳,朱荻.微细电解加工的精度及定域性研究.机械科学与技术,2006,25(2):242-245.
    [69]张朝阳,朱荻,曲宁松,等.微米级电化学加工关键技术研究,中国机械工程,2007,18(4):403-406.
    [70]张朝阳,朱荻.纳秒脉冲电流提高微细电化学加工精度的研究,中国机械工程,2008,19(14):1716-1719,1723.
    [71]张朝阳.纳秒脉冲电流微细电解加工技术研究[博士学位论文].南京:南京航空航天大学,2006.
    [72]黄绍服,曾永彬,朱荻,等.阴极高速旋转对微细电化学钻孔加工精度的影响.重庆大学学报,2010,33(12):34-39,46
    [73]徐惠宇,朱荻,史先传.微细电解加工系统设计及实验研究,航空精密制造技术,2005,41(4):26-29
    [74]王明环,朱荻,徐惠宇.提高微细电解加工精度的研究,航空精密制造技术,2005,41(6):24-27
    [75] D. Zhu, W. Wang, X.L. Fang, et al. Electrochemical drilling of multiple holes withelectrolyte-extraction. CIRP Annals-Manufacturing Technology2010(59):239–242
    [76] W. Wang, D. Zhu, N.S. Qu. et al. Electrochemical drilling with vacuum extraction of electrolyte.Journal of Materials Processing Technology2010(210):238–244
    [77] Liu Yong, Zhu Di*, Zeng Yongbin. et al. Experimental Investigation on Complex StructuresMachining by Electrochemical Micromachining Technology. Chinese Journal of Aeronautics2010(23):578-584
    [78]李冬林,朱荻,李寒松.模板电解加工群孔技术研究,中国机械工程.2010,21(17):2090-2094
    [79]王维,朱荻,曲宁松.群孔管电极电解加工均流设计及其试验研究,航空学报.2010,31(8):1667-1673
    [80]李冬林,朱荻,李寒松.模板阴极电解加工群孔的成形规律.华南理工大学学报(自然科学版),2010,38(5):105-109
    [81] B.Bhattacharyya, J.Munda, M.Malapati. Adavancement in electrochemical micro-machining.International Journal of Machine Tools&Manufacture,2004,44(15):1577-1589.
    [82] J, Kozak, K.P. Rajurkar, R. Balkrishna. Study of Electrochemical Jet Machining Process. Transactionof the ASME,1996,(118):490-499.
    [83] Mohan Sen, H.S. Shan. Analysis of hole quality characteristics in the electro jet drilling process.International Journal of Machine Tools&Manufacture,2005,45(15):1706-1716.
    [84] Mohan Sen, H.S. Shan. Electro jet drilling using hybrid NNGA approach. Robotics andComputer-Integrated Manufacturing,2007,23(1):17-24.
    [85] W.Natsu, S.Ooshiro, M.Kunieda. Research on generation of three-dimensional surface withmicro-electrolyte jet machining. CIRP Journal of Manufacturing Science and Technology,2008.1:27–34
    [86] Wataru Natsu, Tomone Ikeda, Masanori Kunieda. Generating complicated surface with electrolytejet machining. Precision Engineering,2007,31(1):33-39.
    [87] Xiong Lu, Yang Leng. Electrochemical micromachining of titanium surfaces for biomedicalapplications. Journal of Materials Processing Technology,2005,169(2):173-178.
    [88]施文轩,张明歧,殷旻.电液束加工工艺的研究及其发展.航空制造技术,2001,(6):25-27.
    [89]施文轩,张明歧,殷旻,等.电射流加工工艺研究和发展.电加工与模具,2001,(1):36-39.
    [90]李英杰,李福援,纪峰,等.电液束加工小孔质量的试验研究.机械科学与技术,2007,26(5):619-622.
    [91] M.H. Gelchinski, B. Hills, L.T. Romanikw, et al. Laser-Enhanced Jet-Plating and Jet-Etching:High-Speed Maskless Patterning Method.美国专利,US4497692,1985.
    [92] M. Datta, L.T. Romankiw, D.R. Vigliotti, et al. Jet and laser-jet electrochemical micromachining ofnickel and steel. Journal of the Electrochemical Society,1989,136(8):2251-2256.
    [93] P.T. Pajak, A.K.M. De Silva, D.K. Harrison, et al. Precision and efficiency of laser assisted jetelectrochemical machining. Precision Engineering,2006,30(3):288-298.
    [94] P.T. Pajak, A.K.M. De Silva, J.A. Mcgeough, et al. Modelling the aspects of precision and efficiencyin laser-assisted jet electrochemical machining (LAJECM). Journal of Materials ProcessingTechnology,2004,149(1-3):512-518.
    [95] A.K.M. De Silva, P.T. Pajak, D.K. Harrison, et al. Modelling and experimental investigation of laserassisted jet electrochemical machining. CIRP Annals-Manufacturing Technology,2004,53(1):179-182.
    [96] P. T. Pajak, A. K. M. De Silva, D. K. Harrison, et al. Process energy analysis for aluminium alloy andstainless steel in laser-assisted jt electrochemical machining. Proceedings of the Institution ofMechanical Engineers,2006, B3(220):405-412
    [97] P. T. Pajak, A. K. M. De Silva, D. K. Harrison, et al. Laser assisted jet Electrochemical machining ofhard to cut alloys. The34th International MATADOR Conference(2004),265-271
    [98] P. T. Pajak, A. K. M. De Silva, D. K. Harrison, et al. Laser assisted jet Electrochemical machininginvestigations in micro applications.4th Euspen International Conference (2004),65-66
    [99] P. T. Pajak, A. K. M. De Silva, O. K. Harrison, et al. material micro-removal mechanisms in laserassisted jet Electrochemical machining. The5th International Conference of the European Society forPrecision Engineering and Nanotechnology (EUSPEN),2005(2):681-684
    [100] A.K.M. De Silva, P.T. Pajak, J.A. McGeough, et al. Thermal effects in laser assisted jetelectrochemical machining Original Research Article, CIRP Annals-Manufacturing Technology,2011(60):243-246
    [101]王振龙,赵万生,狄士春.微细电火花加工技术的研究进展.中国机械工程,2002.第13卷第10期
    [102]刘晋春,赵家齐,赵万生.特种加工(第3版).机械工业出版社.2005年6月
    [103] D.K.Y. Low, L. Li, P.J. Byrd. The effects of process parameters on spatter deposition in laserpercussion drilling. Optics&Laser Technology32(2000)347-354
    [104] Jacquelynn K.M. Garofano, Harris L. Marcus and Mark Aindow. Nanoscale carbide precipitation inthe recast layer of a percussion laser-drilled superalloy. Scripta Materialia61(2009)943–946
    [105]张晓兵.激光加工涡轮叶片气膜孔的现状及发展趋势.应用激光,2002.第22卷第2期
    [106]张华,徐家文,王吉明等.激光在中性盐溶液中传输特性的研究.应用激光.2008,28(4):301-305
    [107]张华,徐家文,王吉明等.中性盐溶液中激光力学效应的研究.应用激光.2009,29(4):309-312.
    [108]张华,徐家文,王吉明等.喷射液束电解—激光复合加工可行性研究.中国机械工程.2009,20(8):975-978.
    [109]张华,徐家文,王吉明等.喷射液束电解—激光复合加工工艺试验研究.航空学报.2009,30(6):1138-1143.
    [110] Zhang Hua, Xu Jiawen, Wang Jiming. Investigation of a novel hybrid process of laser drillingassisted with jet electrochemical machining. Optics and Lasers in Engineering,2009,47(11):1242-1249.
    [111] Zhang Hua, Xu Jiawen. Modeling and Experimental Investigation of Laser Drilling Assisted with JetElectrochemical Machining. Chinese Journal of Aeronautics.2010,23(4):
    [112]郑启光.激光先进制造技术.武汉:华中科技大学出版社.2002
    [113]孙承伟,陆启生,范正修等.激光辐照效应.北京:国防工业出版社.2002
    [114]《电解加工》编译组.电解加工.北京:国防工业出版社.1977
    [115]王建业,徐家文.电解加工原理及应用.北京:国防工业出版社,2001
    [116]米田康治,国枝正典.電解液ジェット加工における加工形状シミュレーショ.ン.電気加工学会誌,1996, Vo1.29No.62
    [117]姚启钧,光学教程(第三版).北京:高等教育出版社.2002
    [118]俞昌铭.热传导及其数值分析.北京:清华大学出版社,1981.
    [119]刘顺发,陈洪斌.激光加热物体的三维模型的计算.光子学报,2000,29(3):267-270.
    [120]魏在福,查鸿逵,王润文.激光加热温度场物理分析.光学学报,1994,14(4):355-359.
    [121] C.F. Ma, Y.P. Gan, Y.C. Tian, Liquid Jet Impingement Heat Transfer with or without Boiling[J],Journal of Thermal Science,1993,1.2(1)32-47
    [122]陈养渭.天然水体中激光衰减的现场测量.舰船科学技术,2000,(1):3-7.
    [123] Arvi Kruusing. Underwater and water-assisted laser processing: Part1-general features, steamcleaning and shock processing[J].Optics and Lasers in Engineering.2004,41:307-327.
    [124]叶玉,堂饶建,珍肖峻.光学教程.北京:清华大学出版社,2005.
    [125]郭永康,鲍培谛.光学教程.四川大学出版社.1989
    [126]孙春生.舰船气泡尾流的前向光散射特性及探测技术研究[博士学位论文].长沙:国防科学技术大学.2008
    [127]孙文策.工程流体力学(第2版).大连:大连理工大学出版社.2003
    [128]贾伯年.传感器技术(第3版).南京:东南大学出版社.2007
    [129]化学工业部化学试剂质量监测中心.化学试剂标准大全,北京:化学工业出版社,1995.
    [130]薛胜雄.高压水射流技术工程.合肥:合肥工业大学出版社,2006
    [131]王洪伦,龚烈航,姚笛.高压水切割喷嘴的研究.机床与液压,2005,4:42-43
    [132]赵月,秦裕琨.针形喷嘴射流特性的实验研究.节能技术,2005.5(23):195-197
    [133] Noboru Morita. Analytic and experimental investigation on deep hole formation process of covalentbond-ceramics using pulased YAG laser, ASPE proceesings. Cincinnati, OH,USA,1994:189-195
    [134] Watanabe T, Morita N. Analytic and experimental investigation on deep hole formation process ofcovalent bond-ceramics in laser processing. ICALEO’93Laser Materials processing. Orlandor, USA,1993,2306:87-96
    [135]董志勇,射流力学,北京:科学出版社,2005.3
    [136] Yoneda, K., Kunieda, M., Numerical Analysis of Cross Section Shape of Micro-Indents Formed bythe Electrochemical Jet Machining, Journal of JSEME,1996,29/63:1–8.
    [137]中国材料工程大典编委会.中国材料工程大典第3卷──钢铁材料工程(下).北京:化学工业出版社,2006
    [138]张家荣,赵廷元.工程常用物质的热物理性质手册.新时代出版社,1987
    [139]中国航空材料手册编辑委员会.中国航空材料手册第一卷——结构钢、不锈钢.北京:中国标准出版社,2002.
    [140]唐兴伦,范群波,张朝晖,等. ANSYS工程应用教程──热与电磁学篇.北京:中国铁道出版社,2002
    [141]博弈创作室,APDL参数化有限元分析技术及其应用实例[M],中国水利水电出版社2004.2
    [142]倪晓武,陈笑,陆建.激光与液态物质相互作用机理的研究进展[J].激光技术.2002,26(4)-258-261
    [143]李云盛,郑运荣译.金相显示剂手册.北京:国防工业出版社,1983.
    [144]李新立译.金相浸蚀手册.北京:科学普及出版社,1982.
    [145]杨德.试验设计与分析.北京:中国农业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700