用户名: 密码: 验证码:
缓倾斜层状矿体开采沉陷预测与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:目前,随着矿产资源的大量开采和地下水资源的过度抽取,导致地表出现了大面积的沉降,给当地的环境和人们的生命财产造成了巨大损害。石膏是一种埋深浅、矿体薄、分布广的缓倾斜层状矿体,具有遇水膨胀、软化等特点,开采此矿体极易诱发地表沉降和塌陷事故。但由于其价格低,人们对其开采沉陷的研究成果较少。因此,开展此项研究具有十分重要的理论意义。本文采用室内试验、理论分析、相似模拟、现场测试和数值模拟相结合的研究方法,对石膏矿的力学特性、采空区顶板的破断机理及其上覆岩层的移动规律,以及开采沉陷的预测方法和控制措施进行了研究,得到了如下研究成果:
     (1)采用RMT-15OB岩石力学试验机,对自然状态和水饱和状态的石膏试样,以及自然状态下不同高径比的石膏试样的瞬时力学特性进行了试验研究。研究结果表明:水饱和状态的石膏试样的抗压强度是其自然状态的79.94%;根据试验结果分析,得到了石膏试样强度与尺寸效应的理论模型及其参数。
     (2)采用SAW-2000岩石力学试验机,对自然状态和水饱和状态的石膏试样进行了分级加载的流变试验。试验结果表明:自然状态和水饱和状态的石膏试样均表现出了很好的流变特性,且其流变全过程曲线符合粘弹性流变特征;自然状态和水饱和状态的石膏试样的长期强度分别为其峰值强度的77%和68.8%,且后者的长期强度为前者的55%。
     (3)根据弹性-粘弹性相应原理,采用粘弹性薄板弯曲理论,建立了采空区顶板粘弹性薄板弯曲的力学模型,得到了采空区顶板的临界荷载及其挠度吐线的表达式,建立了采空区顶板破断的判据,确定了合理的采空区长度、矿房跨度、直接顶厚度等采场结构参数。利用FLAC3D中的伯格斯蠕变模型对采空区顶板蠕变变形和不同高跨比的矿柱承载能力进行了数值模拟。数值模拟结果表明:在0-60d时,采空区顶板缓慢下沉、逐渐离层、开裂形成薄板弯曲结构;在180d时,采空区顶板离层现象十分明显,顶板开始破断失稳,此时地表也出现了明显的沉降;到达360d时,采空区顶板已整体垮落失稳,地表沉降值逐渐增大,最终形成整体塌陷;当石膏矿柱的跨度小于4m时,其已被压坏而不能支承上覆岩层的围岩压力,导致采空区顶板及上覆岩层破断而垮落。
     (4)采用相似理论,建立了相似模拟模型试验。相似模拟试验结果表明:当矿房跨度大于10m时,采空区顶板开始产生竖向裂隙和离层裂隙;随矿房跨度的增大,其竖向裂隙和离层裂隙逐渐增大而产生弯曲、下沉、破断以及整体垮落;当矿房跨度为164m时,采空区上覆岩层的垮落带高度为55m,为采空区高度的18.3倍,导水裂隙带发育高度为94.5m,为采空区高度的31.5倍,地表沉降的最大值为115cm,下沉系数为0.38。
     (5)根据理论分析、相似模拟、数值模拟的结果,建立了考虑采场结构参数的地表沉降和顶板竖向位移预测的ANFIS模型,分析了其拟合性能和预测性能,对衡山某石膏矿的采空区地表沉降和顶板竖向位移进行了预测,同时还对其进行了实测。研究结果表明:建立的采空区地表沉降和顶板竖向位移预测的ANFIS模型的拟合精度分别达96%和98%以上,预测精度分别达97%和96%以上;采用该模型预测的衡山某石膏矿的采空区地表沉降值和顶板竖向位移值与实测结果吻合良好;矿房跨度为10m,矿柱跨度为4m是该地区石膏矿最合理的采场结构参数。
     (6)采用RMT-150B岩石力学试验机,对7种配合比的黄土-废石胶结充填体在不同龄期的抗压强度进行了测试,利用龄期为28d的黄土-废石胶结充填体的力学参数对试验采场进行了充填法回采的FLAC3D数值模拟,根据数值模拟结果选用C组配比的黄土-废石胶结充填体对该矿试验采场进行了充填,同时还对其进行了应力测试。研究结果表明:龄期为28d的C组黄土-废石胶结充填体的抗压强度大于2MPa;选用C组配合比的黄土-废石胶结充填体的试验采场的应力测试结果与数值模拟结果吻合良好,能有效地控制该试验采场的地压。
     (7)采用C组黄土-废石胶结充填体的力学参数对石膏矿采空区进行充填开采的FLAC3D数值模拟,分析了5种充填开采方案对采空区顶板岩层的竖向位移和地表沉降的影响。数值模拟的结果表明:采用最优充填开采方案能有效地减小地表沉降、采动影响范围和下沉系数,其值分别为未充填时的65.1%、56%和64.6%,达到了控制开采沉陷的目的。图127幅,表37个,参考文献256篇
Abstract:The area of mining subsidence increasing with groudwater overdrafting and mineral resources excessive mining, at present, is serious threats to the human life and property and the surrounding environment. The gypsum is a gently inclined bedded ore body that is characterized by shallow burial, narrow forebody, wide distribution, watered expanding and softening, and mined out the gypsum ore bady is easily to cause the events of mining subsidence. There is little research results on the mechanism of mining subsidence because of the lower price, it is very important to study on the mechanism of mining subsidence. This paper combined use laboratory test, theory anlysis, similar simultion, field test and numerical simulation for analyzing the characters of gypsum ore body, broken mechanism of goaf roof and deformation law of overlying strata, and control measures and prediction method. The main results are as follows:
     (1) The instantaneous mechanics characteristics of the gypsum standard sample in a natural state and saturated state and the gypsum with six different ratios of height to diameter in a natural state by using RMT-150B rock mechanics testing machine. The laboratory test results show that, the compressive strengths of the gypsum standard sample in a saturated state is79.94%of the gypsum in a natural state, the laboratory test ruesults were used for establishing the theoretical model between strength and dimension effect and its parameters.
     (2) The rheological mechanics characteristics of the gypsum in a natural state and in a saturated state under step loading by using SAW-2000rock mechanics testing machine. The laboratory test results show that, the stress-strain full curve of the gypsum under step loading is in good agreement with viscoelastic creep curve, the long-term strength of the gypsum in a natural state and in a saturated state is77%and68.8%of its peak strength, and the long-term strength of the gypsum in a saturated state is55%of the peak strength of the gypsum in a natural state.
     (3) The elastic-viscoelastic correspondence principle was used for establishing the viscoelastic plate mechanics model for analysing critical loading and the formula of the flexural function of the goaf roof, and establishing the brocken criterion of the goaf roof. The suitable room length and interval room span and immediate roof thickness of the mining stope of the gypsum mine are determined. The Burges creep model in FLAC3D programe was used for simulating the creep deformation of the goaf roof and overlying strata, and simulating the bearing capacity of the gypsum pillar at different height to span ratios. The simulate results show that, the subsidence of the goaf roof is slowly grew, gradually separated strata, forming a thin plate bending structure with the time increasing after60days of the ore body mined out, and the goaf roof and overlying strata begin to brocken and the surface appear subsidence at the same time after180days of the ore body mined out, and the goaf roof and the surface begin to collapse as an integrity after360days of the ore body mined out. The gypsum interval pillar begin to brocken and don't support the surrounding rock pressure as the interval pillar span is less than4m.
     (4) The similar simulation model was estalished based on similarity theory. The simulation results show that, the immediate roof start to produce the vertical fracture and bed separated fissures when the room span is more than10m, the goaf roof and overlying strata begin to separated strata, bent, sunk, brocken and collapsed as an integrity with room span increasing, and the height of the collapse and the height of the transmissive fractured belt of a stope is56m and94.5m, that is18.7times and31.5times of the height of the goaf, and the maximum of the surface subsidence is115cm, and the subsidence coefficient is0.38as the room span is164m.
     (5) FLAC3D was used for simulating the surface subsidence of the old goaf with different structural parameters and analyzed the factors which is influencing the surface subsidence. The simulating results were used for establishing the ANFIS (adaptive neuro-fuzzy inference system) model for predicting the surface subsidence and the vertical deformation of the roof of the goaf and the fitting and predicting capabilities were analyzed. The ANFIS model was used for predicting the surface subsidence and the vertical deformation of the roof of the goaf of a gypsum mine in Hengshan and the practical surface subsidence and vertical deformation of the roof were measured. The results show that, the accuracies of the fitting results of the surface subsidence and the vertical deformation of the roof by the established ANFIS model amount to96%and98%, and the accuracies of the predicting results of the surface subsidence and the vertical deformation of the roof by the established ANFIS model amount to97%and96%, respectively, and the predicted results of the surface subsidence and the vertical deformation of the roof of the goaf of a gypsum mine by the established ANFIS model and he measured results are in good agreement. The interval pillar span and room span are suitable to4m and10m for the mining stopes of the gypsum mine in Hengshan.
     (6) The compressive strengths of the backfills of the cemented waste rock with cement and loess with seven different mixture ratios at different solidification durations were measured by using RMT-150B rock mechanics testing machine. In addition, the mechanical parameters for the backfills of the cemented waste rock with cement and loess at the solidification duration of28days were used to simulate the mining and filling processes of test stop by using FLAC3D. Based on the simulation results, the backfills of the cemented waste rock with cement and loess with type C mixture ratio was used to filling in the test stope, and the stress measurements were conducted for the backfills and surrounding rocks. The results show that the compressive strength of the backfill of the cemented waste rock with cement and loess with type C mixture ratio at the solidification duration of28days was larger than2MPa. The stress measurements of the backfills and surrounding rocks in the test stope are in good agreement with the simulation results, which means that the backfills of the cemented waste rock with cement and loess with type C mixture ratio can be used to effectively control the ground pressure in stope mining.
     (7) FLAC3D was used for simulating the influence of the sufface subsidence and the vertical deformation of the roof with five different backfilling schemes for backfilling the gaof of the gypsum used the cemented waste rock with cement and loess with type C mixture ratio. The simulate results show that, the sufface subsidence and the affected areas and the subsidence coefficient by mining with optimal scheme to backfill the gaof of the gypsum is65.1%and56%and64.6%that the unfilled gaof of the gypsum.
引文
[1]Hu R L, Yue Z Q, Wang L C, et al. Review on current status and challenging issues of land subsidence in China[J]. Engineering Geology,2004,76(1-2):65-77.
    [2]Poulsen B A, Shen B. Subsidence risk assessment of decommissioned bord-and-pillar collieries[J]. International Journal of Rock Mechanics and Mining Sciences,2013, 60(6):312-320.
    [3]何国清,杨伦,等.矿山开采沉降学[M].中国矿业大学出版社,1991.
    [4]Wang Jinan, Shang Xinchun, Ma Haitao. Investigation of catastrophic ground collapse in Xingtai gypsum mines in China[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1480-1499.
    [5]马海涛.“11.6”特别重大坍塌事故矿区采场稳定性三维数值模拟分析[J].中国安全生产科学技术,2007,3(6):68-72.
    [6]Martinez J P, Marin MH, Burbey TJ. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, Mexico[J]. Engineering Geology, 2013,164(9):172-186.
    [7]Shi Xiaoqing, Fang Rui, Wu Jichun, et al. Sustainable development and utilization of groundwater resources considering land subsidence in Suzhou, China[J]. Engineering Geology,2012,124(1):77-89.
    [8]Tung H, Hu JC. Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR[J]. Tectonophysics, 2012,578(20):126-135.
    [9]Ashar ML, Toshinori S, Nobuhiro T, et al. Ground subsidence in Semarang-Indonesia investigated by Alos-Palsar satellite SAR interferometry[J]. Journal of Asian Earth Sciences,2011,40(5):1079-1088.
    [10]Estelle C, Falk A, Hasanudin A, et al. Sinking cities in Indonesia:ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction[J]. Remote Sensing of Environment,2013,128(1):150-161.
    [11]曹湘林,刘伟强.鸭公塘2#采空区地表塌陷原因及稳定性分析与计算[J].有色金属(矿山部分),2011,63(3):12-15.
    [12]Rick G A. Review of subsidence at Wairakei field, New Zealand[J]. Geothermics 2000, (29):455-478.
    [13]Fuenkajorn K, Archeeploha S. Prediction of cavern configurations from subsidence data[J]. Engineering Geology,2009,110:21-29.
    [14]黄平路,陈从新.厚覆盖层矿山地下开采地表塌陷机制分析[J].岩土力学,2010,31(增1):357-362.
    [15]周春梅,李沛,虞珏,等.金属矿山地下开采引起地面塌陷的规律[J].武汉工程大学学报,2010,32(1):61-64.
    [16]张晓锋.石膏矿采空区处理方法研究[D].武汉理工大学硕士论文,2007.
    [17]王官宝.石膏矿冒顶引发冲击地压机理及防治措施研究[D].武汉理工大学博士论文,2006.
    [18]李明,郑怀昌,刘志河.贾庄石膏矿采空区稳定性FLAC3D分析[J].非金属矿,2009,32(2):54-57.
    [19]廖文景,徐必根,唐绍辉.石膏矿采空区稳定性主要影响因素正交试验研究[J].矿业研究与开发,2011,31(6):14-17.
    [20]张道勇,左文贵.邵东石膏矿采空区沉陷模拟[J].采矿技术,2010,10(2):47-49.
    [21]邹洋,李夕兵,赵国彦,等.石膏矿采空区上覆岩层冒落规律与危险性评价[J].中国安全科学学报,2011,1(2):101-108.
    [22]朱星辉.平邑石膏矿房柱式开采大面积采空区处理方法研究[D].山东科技大学硕士论文,2004.
    [23]徐必根,黄英华,刘小林.护顶层对石膏矿采空区稳定性影响研究[J].矿业研究与开发,2007,27(5):20-22.
    [24]贺桂成,丁德馨,刘永,等.衡山石膏矿老采空区地表沉陷的ANFIS预测[J].采矿与安全工程学报,2012,29(6):876-881.
    [25]姜德义.岩盐溶腔稳定性及失稳控制研究[D].重庆大学博士论文,2001.
    [26]Fokker PA, Visser K, Peters E, et al. Inversion of surface subsidence data to quantify reservoir compartmentalization:A field study[J]. Journal of Petroleum Science and Engineering,2012,96-97(10):10-21.
    [27]Psimoulis P, Ghilardi M, Fouache E, et al. Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data[J]. Engineering Geology,2007, 90(1-2):55-70.
    [28]钱鸣高,石平五.矿山压力与岩层控制[M].中国矿业大学出版社,2003.
    [29]C F阿威尔辛著.煤矿地下开采的岩层移动[M].煤炭工业出版社,1959.
    [30]郝庆旺,马伟民.开采沉陷学的研究历史与发展裆势[C].矿山岩层与地表移动学术讨论会论文,苏州,1986.
    [31]江文武.金川二矿区深部矿体开采效应的研究[C].中南大学博士学位论文,2009.
    [32]吴立新,王金庄,刘延安,等.建(构)筑物下压煤条带开采理论与实践[M].中国 矿业大学出版社,1994.
    [33]Budryk M, Knothe M著,于振海,刘天泉译.矿山岩体力学[M].煤炭工业出版社,1985.
    [34]周国铨.建筑物下采煤[M].煤炭工业出版社,1983.
    [35]Litwiniszyn J. Przemieszenia gorotworuw's wietle teorii prawdop odobienstwa[J]. Arch. Gor. Hut. T.11,1954.
    [36]Salamon M D G. Elastic analysis of displacements and stresses induced by the mining of seam or roof deposis[J]. J. S. Afr, Inst. Metall,1963, Vol.63.
    [37]Kratesch H. Mining Subsidence Engineering[M]. Springer Verlag, Berlin,1983.
    [38]Brauner G. Subsidence due to underground mining[M]. Bureau of Mines, USA,1973.
    [39]Berry DS. An elastic treatment of groud movement due to mining[J]. J. Mech. Phys.
    [40]白矛,刘天泉,仲惟林.用力学方法研究岩层及地表移动[J].煤炭学报,1982,7(3):27-38
    [41]刘宝琛.矿山岩体力学概论[M].湖南科学技术出版社,1982.
    [42]吴立新,王金庄,刘延安,等.建筑物下压煤条带开采理论与实践[M].中国矿业大学出版社,1994.
    [43]吴立新,王金庄.连续大面积开采托板控制岩层变形模式的研究[J].煤炭学报,1994,19(3):233-241.
    [44]李增琪.使用富氏积分变换计算开挖引起的地表移动[J].煤炭学报,1983,8(2):18-28.
    [45]李增琪.使用富氏积分变换计算开挖引起的地表移动之二-水平煤层空间问题[J].煤炭学报,1985,10(1):5-19.
    [46]李增琪.计算矿山压力和岩层移动的三维层体模型[J].煤炭学报,1994,19(2):115-121
    [47]杨硕,李增琪.构筑物下开采集中位移应变漏与大变形-矿山压力、岩层移动和地表移动的三维力学计算方法及其应用[M].科学出版社,2003.
    [48]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [49]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,25(2):10-14.
    [50]麻凤海,范学理,汪泳嘉,等.巨系统复合介质岩层移动模型及工程应用[J].岩石力学与工程学报,1997,16(6):536-543.
    [51]赵晓东,宋振骐.岩层移动复合层板模型的系统方法解析[J].岩石力学与工程学报,2001,20(2):197-201.
    [52]张向东,范学理,赵德深.覆岩运动的时空过程[J].岩石力学与工程学报,2002,21(1):56-59.
    [53]Rodriguez D R, Tora O J. Hypothesis of themultiple subsidence trough related to very steep and vertical coal seams and its prediction through profile functions [J]. Geotechnical and Geological Engineering,2000,18,289-311.
    [54]Kelly M, Gale WJ, Luo X, Hatherly P, et. al. Long-wall caving process in different geological environments. Better understanding through the combination of modern assessment methods[C]. In:International Conference on Geomechanics Ground Control in Mining and Underground Construction, University of Wollongong,1998,573-590.
    [55]刘开云,乔春生,周辉,等.覆岩组合运动特征及关键层位置研究[J].岩石力学与工程学报,2004,23(8):1290-1293.
    [56]李文秀,梁旭黎.赵胜涛,等.地下开采引起地表沉陷预测的弹性薄板法[J].工程力学,2006,23(8):177-181.
    [57]蔡江东.深部采动对塌陷盆地周边土体影响的空间效应研究[J].岩土力学,2011,32(增2):401-406.
    [58]王金安,李大钟,尚新春.采空区坚硬顶板流变破断力学分析[J].北京科技大学学报,2011,32(2):142-148.
    [59]王金安,李大钟,马海涛.采空区矿柱-顶板体系流变力学模型研究[J].岩石力学与工程学报,2010,29(3):577-582.
    [60]邓喀中.开采沉陷中岩体结构效应研究[M].中国矿业大学出版社,1993.
    [61]李云鹏,王芝银.开采沉陷粘弹塑性损伤模拟分析[J].西安矿业学院学报,1999,19(9):34-38.
    [62]郝延锦,吴立新,戴华阳.用弹性板理论建立地表沉陷预计模型[J].岩石力学与工程学报,2006,25(增刊):2958-2962.
    [63]Yang Yu, Gong Zhiqiang, Liang Bing. Dynamic subsidence basins in coal mines based on rock mass rheological theory[J]. Mining Science and Technology (China),2011,21(3): 333-335.
    [64]He Manchao, Chen Zhida. Analysis of mining subsidence using the large deformation theory [C]. Proc 4th International Conference on Land Subsidence, Houston,12-17 May 1991P205-213. Publ IAHS Press:Wallingford,1991 International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Volume 29, Issue 3, May 1992, PageA189.
    [65]Lian Xugang, Jarosz A, Rosas JS, etal. Extending dynamic models of mining subsidence Transactions of Nonferrous[J]. Metals Society of China,2011,21(Supp3):536-542.
    [66]Poulsen B A, Shen B. Subsidence risk assessment of decommissioned bord-and-pillar collieries [J]. International Journal of Rock Mechanics and Mining Sciences,2013,60(6): 312-320.
    [67]顾伟,谭志祥,邓喀中.基于双重介质力学耦合相关的沉陷模型研究[J].采矿与安全工程学报,2013,30(4):589-594.
    [68]北京开采所.煤矿地表移动与覆岩破坏规律及其应用[M].煤炭工业出版社,1981.
    [69]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].中国矿业大学出版社,2003.
    [70]许家林,钱鸣高,朱卫兵.覆岩主关键层对地表下沉动态的影响研究[J].岩石力学与工程学报,2005,24(5):787-791.
    [71]姜福兴,范琳伟.采场上覆岩层运动与支承压力关系的机械模拟研究[J].矿山压力与顶板管理,1988,(2):69-72.
    [72]李召龙,吴侃.荷载作用下采空区附加沉降的相似材料模拟研究[J].金属矿山,2012,429(3):56-59.
    [73]汤建泉.开采覆岩运动和破坏规律的实验研究[D],中国矿业大学硕士学位论文,1995
    [74]汤建泉,何满潮,马庆云,等.开采覆岩运动和破坏规律实验研究[J].中国煤炭,1996,(2):14-17.
    [75]钟道昌,汤建泉,马庆云.采场覆岩破坏和运动规律的实验研究[J].矿山压力与顶板管理,1996,(3):61-64.
    [76]马庆云,赵晓东,宋振骐.老顶岩梁破断形式与位置的进一步探讨[J].山东矿业学院学报,1997,(16):53-60.
    [77]马庆云,汤建泉.覆岩运动与破坏过程的问题探讨[J].矿山压力与顶板管理,2000,(2):32-34.
    [78]张永吉,于福元,张绍文.综放开采覆岩破坏及顶煤冒落的相似模拟研究[J].阜新矿业学院学报(自然科学版),1995,14(2):40-43.
    [79]戴华阳,王世斌,易四海,等.深部隔离煤柱对岩层与地表移动的影响规律[J].岩石力学与工程学报,2005,24(16):2929-2933.
    [80]戴华阳,翟厥成,胡友健.山区地表移动的相似模拟实验研究[J].岩石力学与工程学报,2000,19(4):501-504.
    [81]尹光志,张卫中,张东明,等.煤矿开采岩层移动的相似模拟实验及数值分析[J].矿业安全与环保,2004,31(2):1-8.
    [82]李树刚,王琳华,林海飞,等.采场覆岩“三带”演化特性的相似模拟实验及分析[J].矿业安全与环保,2013,40(3):17-20.
    [83]林海飞,李树刚,成连华.覆岩采动裂隙演化形态的相似材料模拟实验[J].西安科技大学学报,2010,30(5):507-512.
    [84]王志国,周宏伟,谢和平,等.深部开采对覆岩破坏移动规律的实验研究[J].实验力学,2008,23(6):503-510.
    [85]Ren Weizhong, Guo Chengmai, Peng Ziqiang, et al. Model experimental research on deformation and subsidence characteristics of ground and wall rock due to mining under thick overlying terrane[J]. International Journal of Rock Mechanics and Mining Sciences, 2010,47(4):614-624.
    [86]Guo Guangli, Zha Jianfeng, Wu Bin, et al. Study of "3-Step Mining" Subsidence Control in Coal Mining Under Buildings [J]. Journal of China University of Mining and Technology,2007,17(3):316-320.
    [87]Jung H C, Kim S W, Jung H S. Satellite observation of coal mining subsidence by persistent scatterer analysis[J]. Engineering Geology,2007,92(1-2):1-13.
    [88]Manng A H, Ge Linlin Yan, Yueguan. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia[J]. Engineering Geology,2010,115(1-2):1-15.
    [89]Jiang Liming, Lin Hui, Ma Jianwei, et al. Potential of small-baseline SAR interferometry for monitoring land subsidence related to underground coal fires:Wuda (Northern China) case study[J]. Remote Sensing of Environment,2011,115, (2):257-268.
    [90]Woo K S, Eberhardt E, Rabus B, et al. Integration of field characterisation, mine production and InSAR monitoring data to constrain and calibrate 3-D numerical modelling of block caving-induced subsidence [J]. International Journal of Rock Mechanics and Mining Sciences,2012,53:166-178.
    [91]Liu Zhenguo, Bian Zhengfu, Liu Fuxiang, et al. Monitoring on subsidence due to repeated excavation with DInSAR technology[J]. International Journal of Mining Science and Technology,2013,23(2):173-178.
    [92]Yu Bing, Liu Guoxiang, Li Zhilin, et al. Subsidence detection by TerraSAR-X interferometry on a network of natural persistent scatterers and artificial corner reflectors[J]. Computers & Geosciences,2013,58(8):126-136.
    [93]Rankilor P R. The construction of a photoelastic model simulating mining subsidence phenomena[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics,1971,8(5):433-444.
    [94]Villegas T, Nordlund E, Lindqvist C D. Hangingwall surface subsidence at the Kiirunavaara Mine, Sweden[J]. Engineering Geology,2011,121(1-2):18-27.
    [95]Guo Guangli, Zha Jianfeng, Miao Xiexing, et al. Similar material and numerical simulation of strata movement laws with long wall fully mechanized gangue backfilling [J]. Procedia Earth and Planetary Science,2009, 1(1):1089-1094.
    [96]Zeng Z, Kou X E. Application of viscoelasticity to study the time-dependent surface subsidence caused by underground mining[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993,30(2):135-142.
    [97]张玉卓,仲惟林,姚建国.岩层移动的错位理论解与边界元法计算[J].煤炭学报,1987,2(6):21-31.
    [98]Zhang Yuzhuo, Yoginder P. Simulation of strata movement due to underground mining using an automated measurement system for equivalent material modeding facility[J]. Journal of coal science & engineering,1996,2(1):10-15.
    [99]谢和平,周宏伟,王金安,等.FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397-401.
    [100]麻凤海,丁或.大倾角多煤层开采地表移动规律的数值模拟研究[J].中国矿业,2009,18(6):71-73.
    [101]王泳嘉,陶连金,邢纪波.近距离煤层开采相互作用的离散元模拟研究[J].东北大学学报(自然科学版),1997,18(4):374-377.
    [102]Najjar Y, Zaman M. Numerical modeling of ground subsidence due to mining[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993,30(7):1445-1448.
    [103]Coulthard M A, Dutton AJ. Numerical modelling of subsidence induced by underground coal mining[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1989,26(3-4):226-234.
    [104]Alejano L R, Oyanguren P R, Taboada J, et al. Numerical prediction of subsidence phenomena due to flat coal seam mining[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(4-5):440-441.
    [105]Ma Fenghai, Sun Li, Li Dun. Numerical simulation analysis of covering rock strata as mining steep-inclined coal seam under fault movement[J]. Transactions of Nonferrous Metals Society of China,2011,21(Supp3):556-561.
    [106]李新强,高延法,张庆松.开采沉陷动态数值仿真研究[J].岩石力学与工程学报,2004,23(1):86-90.
    [107]Karmis M, Goodman G, Haycocks C. Computer modeling of mining subsidence using the zone area method[J]. International Journal of Rock Mechanics and Mining Sciences,1982, 19(3):58-69.
    [108]蓝航,姚建国,张华兴,等.基于FLAC3D的节理岩体采动损伤本构模型的开发及应用[J].岩石力学与工程学报,2008,27(3):572-579.
    [109]Guo Wenbing, Hou Quanlin, Zou Youfeng. Relationship between surface subsidence factor and mining depth of strip pillar mining[J]. Transactions of Nonferrous Metals Society of China,2011,21, (3):594-598.
    [110]Yang Fan, Chen Shuang. Numerical simulation of compound media coupling mechanism of deep mining overburden strata[J]. Transactions of Nonferrous Metals Society of China, 2011,21(Supp3):631-636.
    [111]Ishijima Y, Isobe T. Simulation to analyse surface subsidence using three-dimensional finite element method[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1976,13(11):136-143.
    [112]Naijar Y, Zaman M, Ahern J. Prediction of surface subsidence caused by underground mining using a nonlinear finite element procedure [C]. Proc 3rd International Symposium on Numerical Models in Geomechanics (NUMOG Ⅲ), Niagara Falls,1989,557-565.
    [113]Broome M T. Modelling the subsidence and progressive mining of a shaft pillar using a distinct element model[C]. Proc 1st Regional Conference for Africa, Rock Mechanics in Africa, Swaziland,1988,101-107.
    [114]Alejano L R, Oyanguren P R, Taboada J. FDM predictive methodology for subsidence due to flat and inclined coal seam mining [J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(4):475-491.
    [115]Girrens S P, Anderson C A, Bennett J G. Numerical prediction of subsidence with coupled geomechanical-hydrological modelling[C]. Proc Workshop on Surface Subsidence due to Underground Mining, Morgantown,1981,63-72.
    [116]Xu Nengxiong, Pinnaduwa H S, Kulatilake W, et al. Tian Wei Surface subsidence prediction for the WUTONG mine using a 3-D finite difference method[J]. Computers and Geotechnics,2013,48(3):134-145.
    [117]WooKS, Eberhardt E, Elmo D. Empirical investigation and characterization of surface subsidence related to block cave mining[J]. International Journal of Rock Mechanics and Mining Sciences,2013,61(6):31-42.
    [118]Woo K S, Eberhardt E, Rabus B, et al. Integration of field characterisation, mine production and InSAR monitoring data to constrain and calibrate 3-D numerical modelling of block caving-induced subsidence [J]. International Journal of Rock Mechanics and Mining Sciences,2012,53(5):166-178.
    [119]Helm P R, Davie C T, Glendinning S. Numerical modelling of shallow abandoned mine working subsidence affecting transport infrastructure [J]. Engineering Geology,2013, 154(28):6-19.
    [120]Can E, Mekik C, Kuscu S, et al. Computation of subsidence parameters resulting from layer movements post-operations of underground mining[J]. Journal of Structural Geology, 2013,27(2):16-24.
    [121]鲍菜茨基M,胡戴克M著,于振海,刘天泉译.矿山岩体力学[M].煤炭工业出版社,1985.
    [122]M D G沙拉蒙.地下工程的岩石力学[M].冶金工业出版社,1982.
    [123]Brauner G. Subsidence due to underground mining[M]. Bureau of Mines, USA,1973.
    [124]Wu Jian, Li Fanhua. Predietion oil-lbearing singles and body by 3D geologicl modeling combined with seismic inversion[J]. Petroleum Exploration and Development,2009, 36(5):623-627.
    [125]郝延锦,戴华阳,周文国.大采深全断面地表沉陷预测模型研究[J].采矿与安全工程学报,2006,23(14):494-97.
    [126]郝延锦,吴立新,戴华阳.用弹性板理论建立地表沉陷预计模型[J].岩石力学与工程学报,2006,25(1):2958-2962.
    [127]李文秀,郭玉贵,侯晓兵.软岩地层深部开采地表下沉分析[J].地下空间与工程学报,2006,2(6):938-941.
    [128]李文秀,郭玉贵,张瑞雪.深部采矿岩体移动ANSYS分析[J].河北大学学报(自然科学版),2008,28(2):130-133.
    [129]郭增长.极不充分开采地表移动预计方法及建筑物深部压煤开采技术的研究p].中国矿业大学(北京校区)硕士文论,2001.
    [130]吴侃,葛家新,周鸣,等.概率积分法预计模型的某些修正[J].煤炭学报,1998,23(1):33-36.
    [131]路璐,刘胜富.地表沉陷的概率积分法预计参数的回归分析[J].矿业快报,2008,476(12):43-47.
    [132]卞和方,杨化超,张书毕.概率积分法预计参数的智能优化选择方法研究[J].采矿与安全工程学报,2013,30(3):385-389.
    [133]余学义,党天虎,潘宏宇,等.采动地表动态沉陷的流变特性[J].西安科技学院学报,2003,23(2):131-134.
    [134]余华中,李德海,李明金.厚松散层下开采预计的概率积分法修正模型[J].焦作工学院学报(自然科学版),2004,23(4):255-257.
    [135]崔希民,缪协兴,赵英利,等.论地表移动过程的时间函数[J].煤炭学报,1999,4(5):453-456.
    [136]崔希民,金日平.基于时间函数的地表移动动态过程计算方法[J].中国矿业,1999,8(6):58-60.
    [137]Cui Ximin. Prediction of progressive surface subsidence above longwall coal mining using a time function[J]. International Journal of Rock Mechanics & Mining Sciences,2001, 38(7):1057-1063.
    [138]于广明.分形及损伤力学在开采沉陷中的应用研究[D].中国矿业大学北京研究生部博士研究生论文,1997.
    [139]尹光志,王登科,黄滚.突变理论在开采沉陷中应用[J].矿山压力与顶板管理,2005,4:94-96.
    [140]祁慧敏,杨凤霞,张鑫.遗传规划在开采沉陷预计中的应用研究[J].计算机光盘软件与应用,2013:146-148.
    [141]连增增,谭志祥,李培现,等.模糊关系方程法在矿山开采沉陷最大下沉值预测中的应用[J].金属矿山,2010,409(7):132-135.
    [142]徐洪钟,施斌,李雪红.全过程沉降量预测的Logistic生长模型及其适用性研究[J].岩土力学,2006,26(3):387-390.
    [143]刘玉成,曹树刚,刘延保.可描述地表沉陷动态过程的时间函数模型探讨[J].岩土力学,2010,31(3):925-931.
    [144]Sheorey PR, Ploui J, Singh K B, er al. Ground subsidence observation and a modified influence function method for complete subsidence prediction[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37:801-818.
    [145]Li Wenxiu, Mei Songhua. Fuzzy system method for the design of a jointed rock slope[J]. International Journal of Rock Mechanics&Mining Sciences,2004, 41(Suppl):569-574.
    [146]Lian Xugang, Jarosz A, Saavedra R J, et al. Extending dynamic models of mining subsidence[J]. Transactions of Nonferrous Metals Society of China,2011, 21(Supp3):536-54.
    [147]Manng AH, Ge Linlin, Zhang Kui, et al. Estimating horizontal and vertical movements due to underground mining using ALOS PALSAR[J]. Engineering Geology, 2012(143-144):18-27.
    [148]Mixer H B, Dowding C H. Prediction of subsidence from full extraction coal mining[C]. Proc 22nd US Symposium on Rock Mechanics, Cambridge, Mass,1981,
    [149]Bahuguna P P, Srivastava A M C, Saxena N C. A critical review of mine subsidence prediction methods[J]. Mining Science and Technology,1991,13(3):369-382.
    [150]Aston T R C, Tammemagi H Y, Poon A W. A review and evaluation of empirical and analytical subsidence prediction techniques[J]. Mining Science and Technology,1987, 5(1):59-69.
    [151]Halatchev R, Andreev G, Gabeva D. Entropy approach-an alternative for effective prediction of land subsidence from mining[C]. international symposium,1995,305-312.
    [152]Saeidi A, Deck O, Verdel T. Development of building vulnerability functions in subsidence regions fromempirical methods[J]. Engineering Structures,2009, (31):2275-2286.
    [153]Alvarez M I, Fernandez A, Nicieza C G, et al. Generalization of the n-k influence function to predict mining subsidence [J]. Engineering Geology,2005, (80):1-36
    [154]Ambrozic T, Turk G. Prediction of subsidence due to underground mining by artificial neural networks [J]. Computers & Geosciences,2003,29(5):627-637.
    [155]Choi J, Oh H J, Won JS, et al. Validation of an artificial neural network model for landslide susceptibility mapping [J]. Environmental Earth Sciences,2010,60(3):473-483.
    [156]Esaki T, Djamaluddin I, Mitani Y. A GIS-based prediction method to evaluate subsidence-induced damage from coal mining beneath a reservoir, Kyushu, Japane[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2008, 41(3):381-392.
    [157]Ren G, Reddish D J, Whittaker B N. Mining subsidence and displacement prediction using influence function methods[J]. Min Sci Techno,1987,5(1):89-104.
    [158]Park I, Choi J, Lee MJ, et al. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping[J]. Computers & Geosciences,2012, (48):228-238.
    [159]Guler I, Ubeyli E D. Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients [J]. Journal of Neuroscience Methods,2005, 148:113-121.
    [160]Kim K D, Lee S, Oh H J. Prediction of ground subsidence in Samcheok City, Korea using artificial neural networks and GIS[J]. Environmental Geology,2009,58 (1):61-70.
    [161]丁德馨,张志军.位移反分析的自适应神经模糊推理方法[J].岩石力学与工程学报,2004,23(18):3087-3092.
    [162]丁德馨,张志军.位移反分析的自适应神经模糊推理方法在湘西金矿的应用[J].岩土工程学报,2005,27(10):1123-1128.
    [163]Song Jianjun, Han Chunjian, Li Ping, et al. Quantitative prediction of mining subsidence and its impact on the environment[J]. International Journal of Mining Science and Technology,2012, (22):69-73.
    [164]John L B, Paul L Y, Richard A, et al. A decision-logic framework for investigating subsidence problems potentially attributable to gypsum karstification[J]. Engineering Geology,2002, (65):205-215.
    [165]Zhang Hua, Wang Yunjia, LI Yongfeng. SVM model for estimating the parameters of the probability-integral method of predicting mining subsidence[J]. Mining Science and Technology (China),2009,19, (3):385-388.
    [166]Li WenXiu, Liu Lin, Dai LanFang. Fuzzy probability measures (FPM) based non-symmetric membership function:Engineering examples of ground subsidence due to underground mining[J]. Engineering Applications of Artificial Intelligence,2010, 23(3):420-431.
    [167]白力改,谭志祥,柳聪亮,等.基于ArcGIS的开采沉陷预计分析可视化方法[J].金属矿山,2010,47(5):140-42.
    [168]李春意,崔希民,何荣,等.开采沉陷预计中三维空间曲面拟合参数的研究[J].采矿与安全工程学报,2011,28(3):420-424.
    [169]王正帅,邓喀中.采动区地表动态沉降预测的Richards模型[J].岩土力学,2011,32(6):1664-4668.
    [170]王军保,刘新荣,李鹏.MMF模型在采空区地表沉降预测中的应用[J].煤炭学报,2012,37(3):411-415.
    [171]谭鹏,曹平.基于灰色关联支持向量机的地表沉降预测[J].中南大学学报(自然科学版),2012,43(2):632-637.
    [172]李凡月,刘文生.模糊物元模型在采煤沉陷区稳定性综合评判中的应用[J].煤炭学报,2011,36(增1):79-82.
    [173]Tugrul U, Hakan A, Ozgur Y. An integrated approach for the prediction of subsidence for coal mining basins[J]. Engineering Geology, In Press, Corrected Proof, Available online 7 August 2013.
    [174]Lee S, Park I. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines[J]. Journal of Environmental Management,2013,127(9):166-176.
    [175]Yang Weifeng, Xia Xiaohong. Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on field measurement and artificial neural networks [J]. Computers & Geosciences,2013,52(3):199-203.
    [176]Manng A H, Ge Linlin, Li Xiaojing, et al. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR[J]. International Journal of Applied Earth Observation and Geoinformation,2012,18(8): 232-242.
    [177]刘秉正,彭建华.非线性动力学[M].高等教育出版社,2004.
    [178]朱旺喜.非线性科学在矿山灾害及控制研究中的应用—国家自然科学基金矿业学科资助项目分析[J].岩石力学与工程学报,2007,26(1):211-214.
    [179]Cristianini N, Shawe Taylor J. An introduction to support vector machines and other kernel-based learning methods [M]. Cambridge University Press,2000.
    [180]VAPNIKVN,张学工,译.统计学习理论的本质[M].清华大学出版社,2000:128-130
    [181]苗夺谦,李道国.粗糙集理论、算法与应用[M].清华大学出版社,2008.
    [182]宋晓秋.模糊数学原理与方法[M].中国矿业大学出版社,1999.
    [183]Glover F. Tabu search-Part Ⅰ[J]. Operations Research Society of America Journal on Computing,1989,1(3):190-206.
    [184]Glover F. Tabu search-Part Ⅱ[J]. Operations Research Society of America Journal on Computing,1990,2(1):4-32.
    [185]Holland J. Adaptation in natural and artificial systems[M]. The University of Michigan, 1975.
    [186]Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proceedings IEEE International Conference on Neural Networks, Ⅳ. Piscataway, NJ:IEEE Service Center,1995, 1942-1948.
    [187]Song Shijie, Zhao Xiaoguang, Xie Juan, et al. Grey Correlation Analysis and Regression Estimation of Mining Subsidence in Yu-Shen-Fu Mining Area[J]. Procedia Environmental Sciences,2011,10(B):1747-1752.
    [188]Dorigo R, Raniezzo S, Colorni A. Ant system:Optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B,1996, 26(1):29-41.
    [189]于广明,谢和平,孙洪泉,等.矿山开采沉陷的非线性机制和规律研究[J].中国科学基金,1999,(1):28-30.
    [190]徐永圻,王悦汉.短壁开采技术[M].中国矿业学院出版社,1987.
    [191]Pope A J. Two approaches to nonlinear least-squares adjustment[J]. The Canadian Surveyor,1974(5):226-241.
    [192]Schek HJ, Maier P. Nichtlineare normalyleichungen zur bestimung der unbekannten und deren kovarianzmatrix[J].1976(4):312-320.
    [193]屠世浩,窦凤金,万志军,等.浅埋房柱式采空区下近距离煤层综采顶板控制技术[J].煤炭学报,2011,36(3):366-370.
    [194]李海清,向龙,贾宏宇.品字形房柱式采空区开采地表移动规律[J].地下空间与工程学报,2011,7(3):541-546.
    [195]刘立民,连传杰,卫建清,等.房柱式开采减沉效果的三维数值模拟研究[J].矿山压力与顶板管理,2001,(4):73-76.
    [196]姜岩,韩晓冬,卿熙宏.房柱式开采地表沉陷力学研究[J].矿山测量1999,(3):44-46.
    [197]E Ghasemi, K Shahriar. A new coal pillars design method in order to enhance safety of the retreat mining in room and pillar mines[J]. Safety Science,2012,50(3):579-585.
    [198]Missavage RJ, Chugh YP, Roscetti T. Subsidence prediction in shallow room and pillar mines [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1986,23(6):254-262.
    [199]Marino G G, Gamble W. Mine subsidence damage from room and pillar mining in Illinois [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1987,24(1):43-52.
    [200]刘强.近地房柱法地表沉降规律及防治措施研究[D].中南大学硕士学位论文,2011.
    [201]查剑锋.矸石充填开采沉陷控制基础问题研究[D].中国矿业大学博士学位论文,2008.
    [202]肖卫国.深井充填技术的研究[D].中南大学硕士学位论文,2003.
    [203]李一帆,张建明,邓飞,等.深部采空区尾砂胶结充填体强度特性试验研究[J].岩土力学,2005,26(6):865-868.
    [204]刘志祥,李夕兵,戴塔根,等.尾砂胶结充填体损伤模型及与岩体的匹配分析[J].岩土力学,2006,(27):1442-1446.
    [205]刘志祥,李夕兵,赵国彦,等.充填体与岩体三维能量耗损规律及合理匹配[J].岩石力学与工程学报,2010,29(2):344-348.
    [206]Fall M, Benzaazoua M. Modeling the effect of sulphate on strength development of paste backfill and binder mixture optimization[J]. Cement and Concrete Research,2005, 35(2):301-314.
    [207]Fall M, Benzaazoua M, Saa EG. Mix proportioning of underground cemented tailings backfill[J]. Tunnelling and Underground Space Technology,2008,23(1):80-90.
    [208]李永明,刘长友,邹喜正,等.急倾斜薄煤层胶结充填开采合理参数确定及应用[J].煤炭学报,2011,36(supl):7-12.
    [209]徐俊明,张吉雄,黄艳利,等.充填综采矸石-粉煤灰压实变形特性试验研究及应用[J].采矿与安全工程学报,2011,28(1):158-162.
    [210]史俊伟,魏中举,刘庆龙,等.基于正交试验的煤矿安全开采充填材料配比优化研究[J].中国安全科学学报,2011,21(6):111-115.
    [211]Hassani F P, Mortazavi A, Shabani M. An investigation of mechanisms involved in backfill-rock mass behavior in narrow vein mining[J]. Journal of the South African Institute of Mining and Metallurgy,2008,108(8):463-472.
    [212]缪协兴,张吉雄,郭广礼.综合机械化固体充填采煤方法与技术研究[J].煤炭学报,2010,35(1):1-6.
    [213]缪协兴.综合机械化固体充填采煤技术研究进展[J].煤炭学报,2012,37(8):1247-1255.
    [214]Rankine R, Pacheco M, Sivakugan N. Underground mining with backfills[J]. Soils and Rocks,2007,30(2):93-101.
    [215]余伟健,王卫军.矸石充填整体置换“三下"煤柱引起的岩层移动与二次稳定理论[J].岩石力学与工程学报,2011,30(1):105-112.
    [216]余伟健,王卫军.不同压实矸石充填体置换“三下”煤柱得岩层移动规律[J].力学与实践,2011,33(2):39-45.
    [217]Yin Shenghua, Wu Aixiang, Hu Kaijian. The effect of solid components on the rheological and mechanical properties of cemented paste[J]. Backfill Minerals Engineering,2012, 35:61-66.
    [218]Nan Shiqing, Gao Qian, Liu Zenghui. Numerical Simulation of Fluid-Solid Coupling in Surrounding Rock and Parameter Optimization for Filling Mining[J]. Procedia Engineering,2011,26:1639-1647.
    [219]Zha Jianfeng, Guo Guangli, Feng Wenkai. Mining subsidence control by solid backfilling under buildings[J]. Transactions of Nonferrous Metals Society of China,2011, 21(Supp3):670-674.
    [220]Guo Guangli, Feng Wenkai, Zha Jianfeng, et al. Subsidence control and farmland conservation by solid backfilling mining technology[J]. Transactions of Nonferrous Metals Society of China,2011,21(Supp3):665-669.
    [221]颜志平,漆泰岳,张连信,等.ZKD高水速凝材料及其泵送充填技术的研究[J].煤炭学报,1997,22(3):270-275.
    [222]孙恒虎,宋存义.高水速凝材料及其应用[M].中国矿业大学出版社,1994.
    [223]孙希奎,王苇.高水材料充填置换开采承压水上条带煤柱的理论研究[J].煤炭学报,2011,36(6):909-913.
    [224]李建杰,丁全录,佘海龙.硫铝酸盐-铝酸盐水泥体系高水充填材料的研制试验煤炭学报[J].2012,37(1):39-43.
    [225]朱卫兵,许家林,赖文奇.覆岩离层分区隔离注浆充填减沉技术的理论研究[J].煤炭学报,2007,32(5):458-462
    [226]赵德深,苏仲杰,隋惠全,等.覆岩离层充填减缓地表沉降实验模拟研究[J].煤炭学报,1997,22(6):571-575.
    [227]赵德深.煤矿区采动覆岩离层分布规律与地表沉陷控制研究[D].辽宁工程技术大学博士学位论文,2000.
    [228]郭惟嘉,刘立民,沈光寒,等.采动覆岩离层性确定方法及离层规律研究[J].煤炭学报,1995.20(1):39-44.
    [229]王忠昶,张文泉,赵德深.离层注浆条件下覆岩变形破坏特征的连续探测[J].岩土工程学报,2008,30(7):1094-1098.
    [230]宁掌玄,张红珠,冯美生.采动覆岩离层注浆的相似材料及数值模拟[J].辽宁工程技术大学学报(自然科学版),2010,29(3):369-372.
    [231]张玉卓,赵有星.采煤与覆岩离层注浆充填共同作用下地表沉陷计算的影响函数法[M].地表沉陷控制新技术,中国矿业大学出版社,1998.
    [232]王成真,冯光明.超高水材料覆岩离层及冒落裂隙带注浆充填技术[J].煤炭科学技术,2011,39(3):32-35.
    [233]刘洪.层状岩体离层计算方法研究[D].中国矿业大学博士学位论文,1997.
    [234]苏仲杰,于广明,杨伦.覆岩离层变形力学机理数值模拟研究[J].岩石力学与工程学报,2003,22(8):1287-1290.
    [235]杨伦,于广明,王旭春,等.煤矿覆岩采动离层位置的计算[J].煤炭学报,1997,22(5):477--480.
    [236]姜岩.覆岩离层注浆控制矿山开采沉陷研究[D].山东科技大学博士学位论文,2000.
    [237]滕永海,阎振斌.采动过程中覆岩离层发育规律的研究[J].煤炭学报,1999,24(1):25-28.
    [238]徐乃忠.煤矿覆岩离层注浆沽小地表沉陷研究[D].中国矿业大学博士学位论文,1997.
    [239]王金山,王忠昶.采动覆岩破坏及离层发育特征的三维数值模拟[J].煤矿开采,2011,16(6):22-26.
    [240]肖建清.循环荷载作用下岩石疲劳特性的理论与实验研究[D].中南大学博士学位论文,2009.
    [241]杨圣奇.岩石流变力学特性的研究及其应用[D].河海大学博士学位论文,2006.
    [242]谢和平,鞠杨,黎立云.基于能量耗散与释放原理的岩石强度与整体破坏准则[J].岩石力学与工程学报,2005,24(17):3003-3010.
    [243]刘新荣,郭建强,王军保,等.基于能量原理盐岩的强度与破坏准则[J].岩土力学,2013,34(2):305-310.
    [244]刘晓明,熊力,刘建华,等.基于能量耗散原理的红砂岩崩解机制研究[D].中南大学学报(自然科学版),2011,42(10):3143-3149.
    [245]Jaeger JC, Cook NGW. Fundmaentals of rock mechanics[M]. NewYork, Chpamna& Hall,1979.
    [246]Obert L, Windes S L, Duvall W I. Standardized test for determining the physical Properties of mine rock[J]. U. S. Bur Mines Rept Ist.,1946:3891.
    [247]刘宝深,张寄生,杜奇中,等.岩石抗压强度的尺寸效应[J].岩石力学与工程学报,1998,17(6):611-614.
    [248]徐芝纶.弹性力学[M].高等教育出版社,2002.
    [249]王芝银,李云鹏.岩体流变理论及其数值模拟[M].科学出版社,2008.
    [250]邵小平.急斜煤层大段高安全开采围岩控制基础研究[D].西安科技大学博士学位论文,2008.
    [251]贺桂成,刘永,张志军,等.衡山石膏矿地面塌陷机理的FLAC3D模拟[J].矿业研究与开发,2013,33(1):1-5.
    [252]丁德馨,张志军.圆弧滑动边坡反演设计的自适应神经模糊推理方法研究[J].岩土工程学报,2004,26(2):202-206.
    [253]张志军.PSA-ANFIS方法及其在矿山岩土工程灾害预测中的应用[D].中南大学博士学位论文,2008.
    [254]贺桂成,刘永,丁德馨,等.废石胶结充填体强度特性及其应用研究[J].采矿与安全工程学报,2013,30(1):74-79.
    [255]刘永,贺桂成,袁梅芳,等.黄土-废石胶结充填体抗压强度试验研究[J].地下空间与工程学报,2013,9(1):113-118.
    [256]陈立,李靖,王俊卿,等.黄土的结构强度及其与结构屈服压力的关系[J].岩土工程学报,2008,30(6):895-899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700