用户名: 密码: 验证码:
低浓度瓦斯脉动燃烧的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大力开发低浓度煤矿抽采瓦斯这种具有高热值,低污染的新能源,对优化我国能源消费结构,促进环境经济协调发展有着重要的作用和意义。但对于煤矿低浓度瓦斯来说由于其甲烷浓度含量低燃烧释放热值低,用常规的燃烧方式很难将其稳定燃烧高效利用,极大地制约了其利用率。针对这个问题,本文将脉动燃烧技术与煤矿低浓度瓦斯燃烧利用相结合,提出一种新的低浓度瓦斯燃烧利用方法,并从燃烧理论、数值模拟及实验研究三个方面对低浓度瓦斯脉动燃烧特性进行分析研究。
     理论研究上分析了脉动燃烧基本理论,包括其工作原理、热力学模型及热声耦合机理,结合低浓度煤矿瓦斯燃烧特性,建立了低浓度瓦斯脉动燃烧气柱振荡模型的数学模型并根据瑞利准则,分析了脉动燃烧稳定性机理和驱动机理;建立了低浓度瓦斯脉动着火的数学模型,并探讨了脉动燃烧过程中控制污染物排放的机理。
     结合低浓度瓦斯气体燃料的性质及实验条件,确定了脉动燃烧器型式为Helmholtz型,根据脉动燃烧器设计原则,设计了额定功率为10kW的低浓度瓦斯脉动燃烧装置,系统主要包括:配气系统、燃烧系统及数据采集测量系统。
     在数值模拟方面建立了适合低浓度瓦斯脉动燃烧的数学模型、物理模型及求解模型,并通过编制UDF入口控制程序实现了对脉动入口边界条件的自动控制,运用Fluent流场分析软件对瓦斯浓度低于10%的低浓度瓦斯脉动燃烧特性进行了研究,数值模拟结果表明:在一个脉动周期内各流场分布包括压力场、速度场及温度场分布也呈现周期性变化,其变化趋势符合脉动原理;在进气入口夹角为90°时温度场分布最均匀;污染物NOx分布明显低于常规的直接燃烧,并以快速型NOx为主;
     实验研究:首次自行搭建了低浓度煤矿瓦斯脉动燃烧实验台,对低浓度瓦斯的脉动燃烧特性进行了实验研究。实验结果表明:通过燃烧火焰声音、燃烧室压力及空气自吸现象可以判断是否进入脉动;找出了影响各燃烧指标的主要脉动参数;以及低浓度瓦斯在不同脉动燃烧参数条件下的燃烧污染物排放特性;同时得到了在实验条件下额定负荷为10kW的燃烧功率时,低浓度瓦斯脉动燃烧的脉动频率范围60-110Hz;燃烧最佳参数组合为热负荷8kW、尾管长度2000mm、瓦斯浓度8%;实验结果还表明采用脉动燃烧方法不仅可以扩展低浓度瓦斯的贫燃极限,实现瓦斯在5%浓度下稳定而充分的燃烧,而且污染物的排放也处于一个较低的水平范围之内。
     论文最后将实验结果与数值模拟结果进行了比较分析,结果表明实验与模拟得到的脉动参数变化对燃烧特性的影响具有相同的变化规律,即尾管长度越长,脉动频率越低;瓦斯浓度越大,燃烧温度越高;燃烧室温度随着热负荷的增加而增加在并在一定热功率时达到最大,证明了数值模拟结果的准确性与燃烧模型的正确性。
It is very important to exploit CBM vigorously which has high calorific value and lowpollution. This item plays an important role and significance for optimizing energyconsumption structure and promoting development of environment and economy coordinately.However, because of the extremely low methane content, it is difficult to using the lowconcentration mine gas efficiently with regular combustion way. According to this issue, thepaper puts forward a new combustion way to improve the utilization rate of low concentrationmine gas using the pulse combustion theory. The combustion characteristic of lowconcentration mine gas is researched through the ways of theoretical study, numericalsimulation and experimental study.
     Theoretical study: Gas surge model has been established and according to RayleighCriteria, the mechanism of the steady operation and driven of pulsating combustion arestudied. And the mathematical ignition model of low concentration mine gas is establishedbased on the basic theory of pulse combustion that involves working principle,thermodynamics cycle and thermal sound coupling mechanism. And the NO controlmechanism is discussed during the pulse combustion process. In addition, with the integrationof fuel properties and experimental conditions, it determines the type of a pulseburner-Helmholtz. According to pulse burner design principles, it designs a low density gaspulse combustion device of the rated power which is10kW. The system includes:measurement of gas distribution system, combustion systems and data acquisition systems.
     Numerical simulation: The mathematical model、physical model and solution model areestablished which suit to the low concentration gas.The automatic control about pulseentrance boundary conditions is realized by preparing UDF entry control procedures. And thecombustion characteristics are researched about low concentration mine gas whose gascontents are lower10%.The numerical simulation results indicates that in a pulse cycle, thepressure field、velocity field and temperature field distribution also represent cyclicalvariation. And the changing trends satisfy the pulse principle; When the intake entrance is90°the temperature field distribution is the most homogeneous; NO distribution is lowerthan the conventional combustion significantly, and mainly is prompt NO; The temperature ofcombustion chamber raises with the temperature rising of air preheating.
     Experimental study: In order to research the combustion characteristics, the pulsatingcombustion experimental device and the orthogonal experiment scheme are established. Theexperimental simulation results indicates that whether is the pulse condition can be judged through combustion flame voice、the pressure of combustion chamber and the air voiceself-priming phenomenon; By orthogonal experiments, it finds the index pulse parameterswhich impact the burning effectiveness; On10kW rated load, gas pulse combustion of lowconcentrations of the best parameter combination is that Heat load is8kW, tail pipe length is2000mm, and gas concentration is8%.
     All in all, Compared experimental results with numerical simulation results, both has thesame changing regularity on combustion characteristics: The longer the tail length is, thelower the pulse frequency is; The higher gas concentration is, the higher combustiontemperature is; As the heat load increases to8kW, combustion temperature is maximum. Itverifies the accuracy of numerical simulation results.
引文
[1]王家臣,范志忠.厚煤层煤与瓦斯共采的关键问题[J].煤炭科学技术,2008,36(2):1-5
    [2]张子敏,林又玲,吕绍林.中国煤层瓦斯分布特征[M].北京:煤炭工业出版社,1998
    [3]金晶.世界及中国能源结构[J].能源研究与信息.2003.19(1):20-26
    [4]王顺庆.我国能源结构的不合理性及对策研究[J].生态经济.2006(11):63-65
    [5]卢国斌,郭超,宋有才.浅析我国煤层气的应用于发展[J].资源导刊.2010.12:36-37
    [6]魏来.煤层气的开发和利用[J].科园月刊.2010,9:55-56
    [7]钱伯章.新能源科技与生产[M].北京:科学出版社,2010
    [8]中联煤层气有限责任公司.中国煤层气开发产业化对策研究[M].北京:石油工业出版社,2007.12
    [9]中国煤炭工业劳动保护科学技术学会.瓦斯防治技术[M].煤炭工业出版社.2007,9
    [10]胡社荣,刘海荣.中国煤矿超大死亡事故及其原因雏析[J].中国矿业.2009,18(5):99-103
    [11]钱伯章,朱建芳.煤层气开发与利用新进展[J].天然气与石油.2010,28(4):30-34
    [12]赵益芳,阎海英,王飞,冯志华.矿井低浓度瓦斯增浓技术的研究[J].太原理工大学学报.2001,33(1):57-60.
    [13]牛国庆.矿井回风流中低浓度瓦斯利用现状及前景[J].工业安全与环保.2002,28(3):3-5.
    [14]尹娟,翁一武.燃用低浓度煤矿通风瓦斯的燃气轮机系统及性能分析[J].现代电力2007,24(5):68-71
    [15]马晓钟.煤矿瓦斯综合利用技术的探索与实践[J].中国煤层气.2007,4(3):29-31
    [16]龙伍见,我国煤矿低浓度瓦斯利用技术研究现状及前景展望[J].矿业安全与环保.2010,37(4):73-77
    [17]刘应书,李永玲,煤矿低浓度瓦斯及其分离富集技术[J].气体分离.2010,1:53-59
    [18]陈勇,王从厚,吴鸣.气体膜分离技术与应用[M].北京:化学工业出版社2004
    [19] Richard W Baker. Future directions of membrane gas separation technology [J].Ind.Eng.Chem.res.2002,41:1393-1411
    [20] U. S. EPA Report. Technical and Economic Assessment [J]. Mitigation of Methane Emissions fromCoal Mine Ventilation Air. EPA-430-R-001, February,2000:1-24
    [21]王鑫阳,杜金.浓度低于1%的矿井瓦斯氧化技术现状及前景[J].煤炭技术.2008,27(9):1-3
    [22]李洪.中国煤矿企业低浓度瓦斯的安全利用[J].中国煤炭.2009,35(1):14-18
    [23]宋正昶,林柏泉,周世宁.低浓度瓦斯在泡沫陶瓷内过焓燃烧的实验研究[J].煤炭学报.2011,36(4):628-632
    [24]尹娟,翁一武.煤矿通风瓦斯在燃气轮机中的催化燃烧特性[J].动力工程.2009,29(2):104-110
    [25]王一坤,刘银河,车得福.通风瓦斯处理系统燃烧特性研究[J].工程热物理学报.2011,32(1):169-172
    [26]蒲舸,李文俊,闫云飞.超低浓度甲烷气体催化燃烧数值模拟[J].重庆大学学报.2010,33(4):60-64
    [27]程显辰.脉动燃烧[M].北京:中国铁道出版社,1994.
    [28] Angle R., A. Hernandez, Combined flow and heat transfer characterization of open cell aluminumfoams. M.S. Thesis, University of Puerto Rico Mayagüez Campus,2005.
    [29] J. T. Richardson, Y. Peng, D. Remue. Properties ofceramic foam catalyst supports: pressure drop.Applied Catalysis A: General,2000,204:19-32.
    [30]肯尼斯,郑楚光等译.燃烧原理.华中科技大学出版社.1992
    [31]王应时.燃烧过程数值模拟.科学出版社,1986
    [32]范维澄,万跃鹏.流动与燃烧的模型与计算.中国科学技术大学出版社,1992
    [33]傅维标.燃烧物理基础.机械工业出版社,1984
    [34]赵坚行.燃烧的数值模拟.科学出版社,2002
    [35] F.A. Williams,庄逢辰,杨本濂译.燃烧理论:化学反应流动系统的基础理论.科学出版社,1990
    [36]周力行.燃烧理论和化学流体力学.科学出版社,1986
    [37]李保国,曹崇文,刘相东.脉动燃烧技术及其应用[J].中国农业大学学报.1998,3(2):36-40
    [38]程显辰.脉动燃烧器的设计与研究[J].北京航天航空大学学报.1998,24(2):241-243
    [39]刘云芳,程乐鸣,郑海啸.固体燃料的脉动燃烧技术[J].动力工程.2005,25(5):707-715
    [40] Lord Rayleigh.The Theory of Sound[J],vol.II, Dover:1945:224-235
    [41]钟英杰,陈福连,吴心平.热声转换和脉动燃烧技术研究现状及其应用[J].浙江工业大学学报.1998,26(1):34-39
    [42] Blomquist C A, Clinch J M, Chiu H H. Operational and heat transfer results from an experimentalpulse combustion burner[C] Proceedings of Symposium on Pulse Combustion App locations,1982(1):1-22
    [43] Keller J O,Hongo I.Pulse Combustion:The Mechanism of No Production.Co mbustion and Flame,1990,801219~237
    [44] P.K.Bar,H.A.Dwyer,T.T.Bromletie.A one-Dimensional Model of a Pulse Combustion
    [45]徐温干.煤的脉动燃烧模型[J].燃烧科学与技术.1996,2(3):260-269
    [46]赵海亮,李彦,由长福,徐旭常.脉动供燃料燃烧技术及各参数影响研究[J].热能动力工程.2004.19(4)372-375
    [47] J.E. Dec el al. Combustion Modeling Demonstration of the Importance of Characteristic[J]. CombustFlame,1990,82:252-269
    [48]周伟国,姜正侯.脉冲燃烧器尾管传热系数研究[J].煤气与热力.1992(1):41-47
    [49]李保国.脉动燃烧器及其尾管传热分析[J].上海理工大学学报.2001,23(3):263-266
    [50]李华.脉动流强化传热规律实验研究[D].浙江工业大学硕士学位论文.2007
    [51]杨柳,刘相东等.脉动燃烧尾气冲击流传热特性的实验研究[J].干燥技术与设备.2005,3(4):170-175
    [52]李保国,刘相东,曹崇文.脉动燃烧干燥及传热特性研究[J].农业工程学报.2000,16(6):11-14
    [53]路倩倩,杨德勇,郎之花等.脉动燃烧干燥换热特性分析与实验[J].2010,41(3):123-126
    [54]牛海霞,刘榴等.脉动燃烧尾气干燥过程质量传递特性[J].农业机械学报.2011,42(1):129-133
    [55]杨沫,王育清,傅燕弘,陶文铨.具有表面辐射的换热和对流耦合换热问题的数值计算方法.西安交通大学学报.1992,26(2):25-31
    [56]陶文铨,李娬.处理区域内部导热与辐射联合作用的数值计算方法.西安交通大学学报.1985,19(3):65-75
    [57]阎小俊,预混层流的计算模型和实验研究.西安交通大学,1999
    [58]陶文铨.数值传热学.科学出版社,2001
    [59]余其铮.辐射换热原理.哈尔滨工业大学出版社,2000
    [60] R.西格尔, J. R.豪厄尔,曹玉璋等译.热辐射传热.科学出版社,1990
    [61]王兴安,梅飞鸣.辐射传热.高等教育出版社,1989
    [62]郭宽良.计算传热学.中国科技大学出版社,1988
    [63]陶文铨.计算传热学的近代发展.科学出版社,2000
    [64]华罗庚,王元.数值积分及其应用.科学出版社,1963
    [65]戴维斯,拉宾诺维奇.数值积分方法.高等教育出版社,1986
    [66]毕明树,工程热力学.化工出版社,2004
    [67] Yunus A. Cengel, Michale A. Boles. Thermodynamics: an engineering approach. McGraw-Hill,1994
    [68]帕坦卡(Patanker),郭宽良译.传热和流体流动的数值方法.安徽科学技术出版社,1984
    [69] F. N. Egolfopoulos, P. Cho, C. K. Law. Laminar flame speeds of methane-air mixtures under reducedand elevated pressures. Combustion and Flame,1989,76:375-391
    [70] Marcos H. J., P. Marcelo, J. S. Lemos, Macroscopic turbulence modeling for incompressible flowthrough undeformable porous media. Int. J. Heat Mass Transfer,2001,44:1081-1093
    [71] Nakayama, F. Kuwahara, M. Sugiyama, G. Xu. A two-equation model for conduction and convectionin porous media, Int. J. Heat Mass Transfer,2001,44:4375-4379.
    [72]许登峰等.脉动燃烧技术的回顾和展望[J].航空动力学报.1991,6(1):73-78
    [73]孙俊,高孝洪.船舶内燃机燃烧模型及应用[J].航海工程.2003(2):14-16
    [74] Jin L, Leong K C. Heat transfer performance of metal foam heat sinks subjected to oscillating flow [J].Transactions on Components and Packaging Technologies,2006,29(4):856-863.
    [75] Lorenzo. Numerical Investigation of in Compressible Flow in Grooved Channels[J].Fluid Mech.1986,168:541~567
    [76] Sridhar Thyageswaran. Numerical Modeling of Pulse Combustor Tail Pipe HeatTransfer[J]. Heat and Mass Transfer.2004,47:2637~2651
    [77]张国俊,钟英杰等.里克管的数值模拟[J].动力工程.2007,27(2):247-250
    [78]张帆.脉动喷气发动机工作过程数值模拟[D].南京理工大学硕士学位论文,2009
    [79]吴中华.脉动燃烧喷雾干燥过程数值模拟[D].中国农业大学硕士学位论文,2002
    [80]许晋源,徐通模.燃烧学.机械工业出版社,1984
    [81]钱申贤,燃气燃烧原理.中国建筑工业出版社,1989
    [82]姜正候,徐吉浣,章成骏.燃气燃烧理论与实践.中国建筑工业出版社,1985
    [83]张斌全.燃烧理论基础.北京航空航天大学出版社,1990
    [84]陈树义,章丽玲.燃料燃烧及燃烧装置.冶金工业出版社,1985
    [85]曾汉才.燃烧与污染.华中理工大学出版社,1992
    [86]秦朝葵,随元春,张同,姜正侯.脉冲燃烧的数学模型[J].煤气与力.1993.3:24-39
    [87]周伟国,秦朝葵.燃气脉冲燃烧技术[M].上海:同济大学出版社
    [88]李志勇.热声耦合振荡与控制[D].河北工业大学硕士学位论文.2007
    [89]陈昕巍,内燃机燃烧过程热声耦合机理的现象学研究[D].天津大学硕士学位论文.2006
    [90] Lord Rayleigh,“The Theory of Sound”.vol.II,Dover,pp.224-235,NewYork,1945
    [91]于国峰,章成骏.脉冲燃烧着火过程分析[J].煤与热力.1996,16(1):34-37
    [92]曾汉才.燃烧与污染[M].华中理工大学出版社,1990:27-40.
    [93]王斌.燃气脉动燃烧过程NOx生成规律的研究[D].北京:中国石油大学,2008
    [94]阮登芳,共振式进气消声器设计理论及其应用研究[D],重庆大学博士了论文,2005
    [95]徐元凡,王科.脉动燃烧器燃气供给系统理论设计[J].农业设备与车辆工程.2008(12):34-36
    [96]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算[M].北京:科学出版社.2003.
    [97]李保国,曹崇文,刘相东.脉动燃烧器稳定运行的理论分析[J].中国农业大学学报.1998.3:158-162
    [98]高学平.高等流体力学[M].天津大学出版社.2004
    [99] V. A. Sazonov et al. Catalytic combustion of lean methane-air mixture. Catalysis Today,1999,47:149-153
    [100]张会强,陈兴隆,周力行.湍流燃烧数值模拟研究的综述[M].力学进展.1999,29(4):567-575
    [101]买买提热夏提.简谈空气中的声速与温度关系[J].物理实验.2007,27(11):43-47
    [102] Valerie Dupont. Experimental and modeling studies of the catalytic combustion of methane. Fuel,2002,81:799-810
    [103] Koichi Eguchi, Hiromichi Arai. Low temperature oxidation of methane over Pd-based catalysts:effect of support oxide on combustion activity. Applied Catalysis A: General,2000,222:359-367
    [104] S. Cimino, et al. Methane combustion on pervoskites-based structured catalysts, Catalysis Today,2000,59:19-31
    [105] Yong-seog Seo, et al. Development of a catalytic burner with Pd/NiO catalysts, Catalysis Today,1999,47:421-427
    [106] Yasushi Ozawa, et al. PdO/Al2O3in catalytic combustion of methane: stabilization and deactivation.Chemical Engineering Science,2003,58:671-677
    [107] L. Kiwi-Minsker, et al. Pt and Pd supported on glass fiber as effective combustion catalysts. CatalysisToday,2000,59:61-68
    [108] Min-Woong Ryoo, et al. The effect of mass transfer on catalytic combustion of benzene and methaneover palladium catalysts supported on porous materials. Catalysis Today,2003,83:131-139
    [109] R. Carroni. Catalytic combustion for power generation, Catalysis Today,2002,75:287-295
    [110] G. J. Griffin, D. G. Wood. Non-adiabatic catalytic combustion at a fin surface involving heatextraction from the fin edge. Combustion and Flame,2001,125:1230-1238
    [111] Ilenia Rossetti, Lucio Forni. Catalytic flameless combustion of methane over pervoskites prepared byflame-hygrolysis. Applied Catalysis B: Environment,2001,33:345-352
    [112] Chen-Bin Wang, et al. Thermal characterization of titania-modified alumina–supported palladiumand catalytic properties for methane combustion. Thermo-chemical Acta,2003,401:209-216
    [113] Yong-Seog, et al. Development of a catalytic burner with Pd/Ni catalysts. Catalysis Today,1999,47:421-427
    [114] P. Artizzu-Duart, et al. Catalytic combustion of methane over copper-and manganese-substitutedbarium hex-aluminates, Catalysis Today,1999,54:181-190
    [115] Isotta Cerri, et al. Premixed metal fiber burner based on a Pd catalyst. Catalysis Today,2003,83:19-23
    [116] Tae-Gu Kang, et al. Promotion of methane combustion activity of pd catalyst by titania loading.Catalysis Today,2000,59:87-93
    [117] P. Reyes, et al. Catalytic combustion of methane on pd-Cu/SiO2catalysts. Catalysis Today,2000,62:209-217
    [118] Chen-Bin Wang, et al. Low temperature complete combustion of methane over titania-modifiedalumina-supported palladium. Fuel,2002,81:1883-1887
    [119] John W. Geus, Joep C. van Giezen. Monoliths in catalytic oxidation. Catalysis Today,1999,47:169-180
    [120] Ronald M. Heck, Robert J. Farrautto. Automobile exhaust catalysts, applied catalysis A: General,2001,221:443-457
    [121] Yashi Ozawa, et al. Development of a catalytically assisted combustor for gas turbine. Catalysis today,1999,47:399-405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700