用户名: 密码: 验证码:
钻孔封孔段失稳机理分析及加固式动态密封技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钻孔抽采是煤矿瓦斯治理的基础技术手段之一,应用范围广泛。而高瓦斯松软煤层由于在煤化过程中受到地质构造的破坏,普遍煤质松软,加上瓦斯压力的作用,在施工抽采钻孔后,封孔段易产生失稳、变形,致使钻孔难以密封,无法保证瓦斯抽采效果。除了封孔段的稳定性,封孔质量是影响瓦斯抽采浓度、孔口负压、甚至整个钻场抽采效果的又一重要因素。因此,开展高瓦斯松软煤层封孔段易失稳钻孔的动态密封技术研究,对提高钻孔抽采效率,遏制瓦斯突出、瓦斯爆炸等重大事故的发生,具有十分重要的现实意义。
     本文首先分析了高瓦斯松软煤层瓦斯抽采钻孔封孔段失稳的特征及原因,并在此基础上探讨了封孔段失稳对钻孔周围裂隙的影响以及对封孔质量的影响。结合理论分析,认为需要新的密封工艺、新的密封材料以满足高瓦斯松软煤层封孔段易失稳钻孔密封的需要,进而实现瓦斯高效抽采。
     其次,通过对注浆加固钻孔封孔段作用机理进行研究,认为采用煤岩体注浆技术可以把某些可凝浆液注入到煤岩体的裂隙或孔隙中,使煤岩体形成强度高、抗渗性好、稳定性高的新结构体,从而改善煤岩体的物理力学性能,提高煤岩体稳定性。通过钻屑法现场实测,确定出试验区所在埋深的煤层合理封孔深度为14m。利用钻孔窥视仪对现场钻孔进行观测,直观确定了钻孔内部的情况,并结合钻屑量随钻孔深度变化规律,将钻孔封孔段划分为破裂膨胀发展区、破裂膨胀稳定区、破裂膨胀剧烈区、破裂膨胀趋缓区、破裂膨胀消失区。
     再次,针对高瓦斯松软煤层封孔段易失稳且钻孔密封难的问题,基于主动式密封“固封液,液封气”的原理,发明了加固封孔段和动态密封一体化的新型密封技术及方法。根据钻孔封孔段加固机理以及现场应用对加固材料的性能要求,通过添加膨胀剂、减水剂等材料,研制出了一种水泥基固化钻孔材料。利用FEIQuantaTM250环境扫描电子显微镜、低场核磁共振等设备,对新研制的水泥基固化钻孔材料的特性进行了研究,为现场施工提供了理论指导。基于动态密封的技术原理以及现场应用对该技术配套材料的特殊要求,研制出初始流动性大、可泵性好、凝固时间可调、长时间保持膏状,且有一定粘聚力的粘液密封材料。在广义达西定律和球形、柱形扩散理论模型的基础上,推导出了幂律型浆液在钻孔中进行渗透注浆的扩散公式。通过数值模拟的方法,对注入浆液在钻孔周围的分布进行数值模拟和分析,并根据模拟结果对封孔段各部分的注浆长度进行了优化。
     最后,为考察加固式动态密封的实际应用效果,在潞安集团常村煤矿53采区进行了现场工业性试验,并对相关瓦斯抽采参数进行了测试、分析。
     通过以上研究,在理论上阐明了加固式动态密封技术原理,在方法上提出了适用于高瓦斯松软煤层易失稳瓦斯抽采钻孔的加固式动态密封新技术,在材料上研制了配套的水泥基固化材料和膏体状粘液密封材料。上述技术、材料在现场试验应用中取得了良好效果,表现出了显著的技术优越性。课题研究期间,作者公开发表学术论文10篇,其中EI检索5篇,取得或申请受理专利9项,其中发明专利4项,获得省部级科技进步一等奖2项,排名第十。
Borehole extraction is widely used to control mash gas in coal mine. In somecases, coal seam destroyed by geological processes so that the physical property ofcoal is instability. If the gas pressure of coal seam is large enough, the coal seam canbe called high gassy and soft coal seam. The boreholes in these coal seam are easy toproduce distortion. It’s hard to seal borehole and pose a great difficult to dischargemash gas from the high gassy and soft coal seam. On the basis of the stability ofboreholes, the effect of sealing has an impact on the gas concentration and negativepressure, and even the effect of drainage in the whole boreholes field. Therefore,performing the research relating to dynamic sealing techniques for boreholes witheasy-failure sealing segment is one of important practical significance to improve theefficiency of drainage and reduce the number of boreholes, and to prevent and controloutburst of gas and explosion.
     This paper firstly analyzed the characters of failure for boreholes in high gassyand soft coal seam, and studied the reasons for it. Then it was got that the efficiencyof sealing was influenced since the failure of sealing segment resulted to thedevelopment of fractures around the boreholes. Theoretical analysis suggested thenovel sealing techniques and materials could meet the need from borehole sealing andrealizing the high-efficiency drainage.
     Secondly, this paper studied the mechanism of grouting reinforcement for sealingsegment and the law of flowing for seriflux, which suggested that the groutingtechniques could inject the seriflux into the fractures existing in coal and rocks andmade the coal and rocks form novel structures with high intention and stability,and improving the properties and stability of coal and rock. A reasonable depth forsealing was determined to14m finally for coal seam in test field. Internal conditionsof boreholes were got through the infrared borehole imaging tool. According to thelaw between the amount of cuttings and depth of boreholes, sealing segment wasdivided into fractures and inflation developing area, fractures and inflation stable area,fractures and inflation severe area, fractures and inflations decreasing area and nonefractures and inflation area.
     Thirdly, in allusion to the problem in sealing for easy-failure boreholes in highgassy and soft coal seam, this paper came up with a novel approach for sealing byreinforcing dynamic sealing techniques. Based on the“solid seal liquid, liquid sealgas” Mechanism and the requirements of matched materials, cement solidification drilling materials was developed by adding swelling agent and water reducing agent.Incorporation and infiltrate in borehole walls for polyurethane material and curedmaterial were compared through environmental scanning electron microscope FEIQuantaTM250. According to the mechanism of reinforcing dynamic sealingtechniques and the requirements of matched materials, seriflux with certain cohesionwas got, which could meet the need of reinforcing dynamic sealing techniques. On thebasis of generalized Darcy's law, spherical and cylindrical theoretical model fordiffusion, mechanism of diffusion for power law was got. The distribution of serifluxinjected in coal and rock was simulated through FLUENT, which optimized the lengthof every stage.
     Finally, in order to evaluate the effect of reinforcing dynamic sealing techniques,field tests were performed in NO.53panel of Chang Cun coal mine belonging to LuAn Company, as well as tests and analysis of relating parameters for gas drainage.
     Through above research, this paper theoretically expounded the mechanism ofreinforcing dynamic sealing techniques, then developed novel techniques of dynamicsealing with pressure which is appropriate to nearly horizontal boreholes in high gassyand soft coal seam and matched materials. In terms of equipment, pneumatic thickseriflux grouting pump and matched pneumatic mixer. Field applications indicted thesystem has great advantages comparing with traditional materials and techniques.During the research, the authors published10papers, in which five has been indexedby EI, obtain or apply for the processing of9patents,4of which are invention patents,and won the first award for Scientific Advencement of provincial, ranking tenth.
引文
[1]王庆一.中国能源现状与前景[J].中国煤炭,2005(02):25-30.
    [2] Min Hou, Jinglin You, Patrick Simon, et al. High temperature Raman spectroscopic study ofthe micro-structure of a caesium triborate crystal and its liquid[J]. CrystEngComm,2011,13(8):3030-3034.
    [3]王社平.推进煤炭绿色开采亟需政策支持[N].中国能源报,2012-03-05(02)
    [4]林柏泉,张建国.矿井瓦斯抽放理论与技术[M].徐州:中国矿业大学出版社,1996.
    [5]王建国.提高科技自主创新能力保障煤矿安全[J].煤炭科学技术,2007(07):1-6.
    [6]李学来,刘见中.瓦斯灾害治理新技术[J].中国安全科学学报,2004(07):104-107.
    [7]国家安全生产监督管理总局政府网站事故查询系统[EB/OL].2012.http://media.chinasafety.gov.cn:8090/iSystem/shigumain.jsp
    [8]林柏泉,胡殿明.煤层瓦斯赋存规律及防治技术[M].2006.
    [9]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009(02):127-139.
    [10]付建华,程远平.中国煤矿煤与瓦斯突出现状及防治对策[J].采矿与安全工程学报,2007,24(03):253-259.
    [11]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [12]国家安全生产监督管理总局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2009.
    [13]赵铁锤.搞好瓦斯抽放利用促进煤矿安全生产[J].中国煤层气,2005(02):3-5.
    [14] Zhang Chao,Lin Baiquan,Zhou Yan,et al. Study on “fracturing-sealing” integrationtechnology based on high-energy gas fracturing in single seam with high gas and low airpermeability[J]. International Journal of Mining Science and Technology,2013,23(6):841-846.
    [15]张超,林柏泉,周延,等.本煤层近水平瓦斯抽采钻孔“强弱强”带压封孔技术研究[J].采矿与安全工程学报,2013(06):935-939..
    [16]包剑影.阳泉煤矿瓦斯治理技术[M].北京:煤炭工业出版社,1996.
    [17]邱泽华,石耀霖.国外钻孔应变观测的发展现状[J].地震学报,2004(S1):162-168.
    [18]罗大生.国外钻探技术的发展现状[J].国外地质勘探技术,1993.[J].
    [19]王振,梁运培,金洪伟,防突钻孔失稳的力学条件分析[J].采矿与安全工程学报,2008(04):444-448.
    [20]梁运培,胡千庭,郭华,等.地面采空区瓦斯抽放钻孔稳定性分析[J].煤矿安全,2007(03):1-4.
    [21]徐庆武,王国君,董力,等.瓦斯抽放钻孔护孔技术探讨[J].煤矿安全,2007(01):39-40.
    [22]郭奉贤,赵发军,杨运峰,等.松软煤层深孔钻进工艺实践[J].中州煤炭,2009(12):50-51.
    [23]林府进,孙东玲,董钢锋.顺层长钻孔风力排渣成孔技术[J].矿业安全与环保,2001(02):40-42.
    [24] Price HS.A computer model study of methane,igration in coal beds[J]. Cdn Min and MetalBull,1973,66(9)103-112.
    [25]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2001.
    [26]金龙哲.矿井粉尘防治理论[M].北京:科学出版社,2010.
    [27]张仁贵,周福宝,刘兴华.矿用手动封孔泵:中国,CN1932287[P].2007-03-21.
    [28]范付恒.回采工作面浅孔抽放快速封孔器的研制与应用[J].煤矿开采,2006(04):89-91.
    [29]张成武.新景矿本煤层钻孔封孔工艺改进[J].矿业安全与环保,2009(S1):92-93.
    [30]魏二剑.王行庄煤矿保护层开采保护范围确定及保护效果考察[D].河南理工大学,2011.
    [31]张设计.边掘边抽煤巷瓦斯抽放孔封孔方法简介[J].陕西煤炭技术,1998(02):57-58.
    [32]彭海涛,刘怀连,王校友.高突工作面浅孔抽放技术应用与改进[J].煤矿安全,2009(09):30-32.
    [33]陈继虎.浅谈水泥卷在快速封孔中的应用[J].矿业快报,2005(01):50-51.
    [34]中梁山煤矿通风科仪表组.WYF—I型液压封孔器[J].煤矿安全,1980(03):23-26.
    [35]林柏泉,张建国.矿井瓦斯抽放理论与技术[M].徐州:中国矿业大学出版社,1996.
    [36]林柏泉,崔恒信.矿井瓦斯防治理论与技术[M].徐州:中国矿业大学出版社,1998.
    [37]李永德,杨静,谭上飞,等.双组分反应性聚氨酯建筑密封材料的研究[J].化学建材,2000(02):31-34.
    [38]王铭琦.浇注型低透水聚氨酯密封材料的研制[J].化学工程师,2004(12):14-15.
    [39]周福宝,李金海,昃玺,等.煤层瓦斯抽放钻孔的二次封孔方法研究[J].中国矿业大学学报,2009(06):764-768.
    [40]李飞,郑加飞,窦伟.瓦斯抽采二次封孔技术研究及应用[J].煤炭科技,2012(04):73-74.
    [41]吴水平.囊袋式注浆封孔法在煤矿瓦斯抽采封孔中的应用[J].中国煤炭,2010(06):98-99.
    [42]周鸿超.煤层瓦斯抽采封孔段钻孔稳定性研究[D].河南理工大学,2007.
    [43]吴强,周世宁.胶囊─密封液封孔技术在煤巷直接测定煤层瓦斯压力的研究[J].煤矿安全,1994(08):7-9.
    [44]陈杰,金龙哲.关于聚氨酯封孔可提高瓦斯抽放效果的研究[J].煤炭工程,2003(08):47-49.
    [45]刘林,廖黎.ZYF型钻孔液压封孔器的研究[J].煤炭工程师,1998(06):10-12.
    [46] Noack Klaus. Control of gas emissions in underground coal mines[J]. International Journal ofCoal Geology,1998,35(14):57-82.
    [47]赵正均,郭胜均.KFB型矿用水泥稠浆封孔泵的研制[J].矿业安全与环保,1999(02):19-20.
    [48]孟凡龙,蒋承林,赵文斌.煤层瓦斯测压中注浆封堵钻孔围岩裂隙的分析[J].煤矿安全,2010(01):87-91.
    [49]李敏.煤矿聚氨酯封孔的实验研究[D].中国地质大学(北京),2011.
    [50]王大庆,邢祥,徐学伏.聚氨酯注浆封孔技术在松软煤层瓦斯抽放中的应用[J].中国煤炭,2011(09):89-91.
    [51]高振勇,张志刚,尹斌.提高聚氨酯封孔质量的研究[J].矿业安全与环保,2009(S1):37-38.
    [52]王永安,赵耀江.瓦斯抽放钻孔封孔方法的改进[J].山西煤炭,2006(03):24-25.
    [53]林柏泉,周世宁,张仁贵.三相泡沫密封性能的实验研究[J].中国矿业大学学报,1992(03):16-23.
    [54]张英华,梁铜柱,崔景昆.高水材料在“三软”煤层注水、防尘、封孔技术中的应用研究[J].煤炭学报,2003(01):46-49.
    [55]李少华,徐学标.采动影响下穿层钻孔二次封孔技术研究[J].中小企业管理与科技(下旬刊),2011(08):197-198.
    [56]周福宝,李金海,昃玺,等.煤层瓦斯抽放钻孔的二次封孔方法研究[J].中国矿业大学学报,2009(06):764-768.
    [57]何满潮,邹正盛,邹友峰.软岩巷道工程概论[M].徐州:中国矿业大学出版社,1993,202.
    [58] Islam Md. Rafiqul, Shinjo Ryuichi. Numerical simulation of stress distributions anddisplacements around an entry roadway with igneous intrusion and potential sources of seamgas emission of the Barapukuria coal mine, NW Bangladesh[J]. International Journal of CoalGeology,2009,78(4):249-262.
    [59]张驰,兰永伟.深部开采中软岩巷道的支护形式[J].煤炭技术,2007(08):47-49.
    [60]薛顺勋,聂光国,姜光杰,等.软岩巷道支护技术指南[M].北京:煤炭工业出版社,2002.
    [61] Wang C., Wang Y., Lu S. Deformational behaviour of roadways in soft rocks in undergroundcoal mines and principles for stability control[J]. International Journal of Rock Mechanicsand Mining Sciences,2000,37(6):937-946.
    [62] Wang Jinxi,Lin Mingyue,Tian Duanxin, et al. Deformation characteristics of surroundingrock of broken and soft rock roadway[J]. Mining Science and Technology (China),2009,19(2):205-209.
    [63]马念杰,侯朝炯.采准巷道矿压理论及应用[M].北京:煤炭工业出版社,1995.
    [64]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986(03):77-86.
    [65]谭学术,鲜学福,郑道访.复合岩体力学理论及其应用[M].北京:煤炭工业出版社,1994.
    [66]同济大学.隧道与坑道静力学[M].上海:上海科学技术出版社,1980.
    [67] Brady Barry HG. Rock mechanics: for underground mining[M].Springer,2004.
    [68] Wilson A. H. A method of estimating the closure and strength of lining required in drivagessurrounded by a yield zone: International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts[J],1980,17(6):349-355.
    [69]付国彬,姜志方.深井巷道矿山压力控制[M].徐州:中国矿业大学出版社,1996.
    [70] Fu Guobin.Theoretical Analysis of The Stability of A Deep Roadway [J].Journal of ChinaUniversity of Mining&Technology,2005,5(1):58-65.
    [71]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [72]张春文.高压喷射注浆法处理岭澳核电站DG GB廊道工后沉降的应用[J].电力建设,2002,23(6):16-17,29.
    [73]黄宏伟,杨慧芳,陈杰生.煤气柜地基的劈裂注浆-注水预压处理和分析[J].工业建筑,1996(08):7-11.
    [74] Sembenelli P. Groppo, Sembenelli G. Deep jet-grouted cut-offs in riverine alluvia for Ertancofferdams[J]. Journal of geotechnical and geoenvironmental engineering,1999,125(2):142-153.
    [75] Lee In-Mo, Lee Jae-Sung, Nam Seok-Woo. Effect of seepage force on tunnel face stabilityreinforced with multi-step pipe grouting[J]. Tunnelling and underground space technology,2004,19(6):551-565.
    [76] Wong Ing Hieng, Poh Teoh Yaw. Effects of jet grouting on adjacent ground and structures[J].Journal of geotechnical and geoenvironmental engineering,2000,126(3):247-256.
    [77] Shimada H., Sasaoka T., Kubota S., et al. The application of fly ash cement in mining backfillmaterial: Proceedings of International Symposium on Mine Planning and EquipmentSelection [C], Kalgoorlie, Australia,2003:199-204.
    [78]王永红,马栋,凌树云,等.海底透水通道发育带隧道施工注浆技术研究[J].岩土力学,2011(12):3660-3666.
    [79]何少云.新安江大坝坝基页岩演化及化学灌浆研究与应用[D].河海大学,2005.
    [80]张建军,黄诒宝,沈增辉.地表注浆在隧道破碎围岩加固中的应用[J].广东建材,2011(12):62-64.
    [81]李河玉.小导管注浆技术及在隧道和地下工程中的应用[D].西南交通大学,2002.
    [82]曹慧,陈勇,曹净,等.压灌浆作用机理及其压浆方法[J].浙江建筑,2009(07):51-53.
    [83]陈国芳,何嘉敏,陈忠,等.关于钻孔灌注桩孔底压力注浆计算的几个问题探讨[J].安徽地质,2006(03):220-223.
    [84]张保林.高水速凝材料加固破碎煤体在大阳煤矿的应用[J].煤炭技术,2007(04):122-123.
    [85]于新锋,柏建彪.张集矿综采工作面破碎煤壁注浆加固技术研究[J].煤炭科学技术,2006(02):69-71.
    [86]罗金满.煤岩体防渗堵水加固浆液试验及应用研究[D].西安科技大学,2009.
    [87]冯志强.破碎煤岩体化学注浆加固机理分析及应用[J].煤炭科学技术,2008(10):32-35.
    [88]何长海,张党育,贾玉杰,等.聚氨脂加固极破碎煤体顶板技术[J].矿山压力与顶板管理,2002(02):22-23.
    [89]张淑同,破碎煤岩体注浆加固与堵水研究[D].山东科技大学,2006.
    [90]张金才,刘天泉,张玉卓.裂隙岩体渗透特征的研究[J].煤炭学报,1997(05):35-39.
    [91]罗金满.煤岩体防渗堵水加固浆液试验及应用研究[D].西安科技大学,2009.
    [92]杨坪,彭振斌,李奋强.巷道注浆加固作用机理及计算模型研究[J].矿冶工程,2005(01):3-5.
    [93]张淑同.破碎煤岩体注浆加固材料的选择研究[J].矿业安全与环保,2012(04):52-54.
    [94]刘国泉.关于应用钻屑量与钻屑瓦斯解吸指标判定突出危险性若干问题的讨论[J].煤矿安全,1993(02):35-40.
    [95]丁守垠,李德参.煤层抽放钻孔合理封孔深度的确定[J].淮南职业技术学院学报,2009(01):4-6.
    [96]徐龙仓.提高煤层气抽采钻孔封孔效果研究与应用[J].中国煤层气,2008(01):23-24.
    [97]王林,方前程,王兆丰.水力挤出合理封孔深度的确定和实践[J].煤,2007(09):5-7.
    [98]贾良伦.瓦斯抽放钻孔封孔长度的确定与实践[J].煤炭工程师,1998(02):29-30.
    [99]徐文全,赵恩来,马衍坤,等.钻屑量采样技术分析及改进[J].煤田地质与勘探,2009(01):78-80.
    [100]廖志恒,桂祥友,徐佑林.煤矿钻屑量与解吸指标的测定及误差分析[J].矿业研究与开发,2008(02):75-77.
    [101]文光才,王先义.突出预测钻屑量指标的探讨[J].煤炭工程师,1998(03):32-34.
    [102] Zhang Zhigang.Prediction of multi-borehole undermine coalbed gas drainage[J]. Journal ofCoal Science&Engineering(China),2009(03):295-298.
    [103] Liu Jianzhong.The control of coal mine gas and coordinated exploitation of coal bedmethane in China[J]. Journal of Coal Science&Engineering(China),2009(03):267-272.
    [104] Li Rui,Xu Wei. Technology of gas drainage and utilization in Huaibei mining area[J].Journal of Coal Science&Engineering(China),2009(03):278-283.
    [105]吴强,周世宁.胶囊─密封液封孔技术在煤巷直接测定煤层瓦斯压力的研究[J].煤矿安全,1994(08):7-9.
    [106]崔恒信,张建国,陆鑫,等.胶囊—密封液直接测定煤层瓦斯压力的尝试[J].中州煤炭,1991(05):22-24.
    [107]冀超辉,侯志华.瓦斯压力直接测定法的改进和应用[J].矿业安全与环保,2009(S1):71-72.
    [108]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1999.
    [109]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [110]顾新宇,刘建宇,马尚权,等.钻孔质量及粘液性质对主动式封孔测压效果的影响[J].煤炭工程,2010(01):69-71.
    [111]何书建.新庄煤矿二2煤层瓦斯赋存规律及瓦斯灾害防治研究科研报告[D].徐州:中国矿业大学,2002.
    [112]黄鑫业,蒋承林.带压封孔技术提高瓦斯抽放效果的试验研究[J].煤矿安全,2011(09):1-4.
    [113]陶云奇.中岭煤矿采煤工作面瓦斯抽放技术研究[D].贵阳:贵州大学,2006.
    [114]阮文军.注浆扩散与浆液若干基本性能研究[J].岩土工程学报,2005(01):69-73.
    [115]张景秀.坝基防渗与灌浆技术[M].北京:水利电力出版社,1992.
    [116]曾祥熹,郑长成.水泥浆的流变性及其对浆液运动的影响[J].华东地质学院学报,1999(02):38-42.
    [117]梁海滨.膨胀剂在混凝土施工中的应用[J].价值工程,2010,29(21):147.
    [118]陈建兵,石立民,康惠荣,等.复合膨胀剂限制膨胀率检测方法[J].商品混凝土,2011,8:39.
    [119]曾明,周紫晨.一种用于水泥基灌浆料的复合膨胀剂研究[J].混凝土与水泥制品,2011(2):6-9.
    [120]杭美艳,徐广飞,索勇.混凝土减水剂与胶凝材料适应性的研究[J].商品混凝土,2009,2:27.
    [121]蔡丽朋.减水剂对水泥的适应性及混杂使用减水效果研究[J].建筑技术,2010(1):47-49.
    [122]张波,张方.聚羧酸盐高效减水剂大掺量复合掺合料及机制砂在大体积混凝土中的应用[J].粉煤灰,2009(4):22-24.
    [123] Wei Yongqi. In-situ monitoring of hydration kinetics of cement pastes by low-field NMR[J].Journal of Wuhan University of Technology-Mater. Sci. Ed.,2010,25(4):692-695.
    [124]刘三钧,林柏泉,郝志勇,等.钻孔密封机理及新型煤层瓦斯压力测定技术研究[J].中国煤炭,2009(10):96-99.
    [125] Halperin William P., Jehng Jyh-Yuar, Song Yiqiao. Application of spin-spin relaxation tomeasurement of surface area and pore size distributions in a hydrating cement paste[J].Magnetic resonance imaging,1994,12(2):169-173.
    [126] Bohris A. J., Goerke U., McDonald P. J.,et al. A broad line NMR and MRI study of waterand water transport in Portland cement pastes[J]. Magnetic resonance imaging,1998,16(5):455-461.
    [127] Boch Philippe, Plassais Arnaud, Pomies Marie-Pierre,et al. Cementitious nanostructures:nanoporosity[J]. Journal of Ceramic Processing Research,2004,5:95-100.
    [128]孙振平,俞洋,庞敏,等.低场核磁共振技术在水泥基材料研究中的应用及展望[J].材料导报,2011,25(7):110-113.
    [129]肖立志,石红兵.低场核磁共振岩心分析及其在测井解释中的应用[J].测井技术,1998,22(1):42-49.
    [130]田慧会,魏厚振,颜荣涛,等.低场核磁共振在研究四氢呋喃水合物形成过程中的应用[J].天然气工业,2011(07):97-100.
    [131]宁年英,林向阳,林婉瑜,等.利用低场核磁共振研究擂溃过程对鲜猪肉糜持水性的影响[J].中国食品学报,2013(02):50-59.
    [132]孙振平,庞敏,俞洋,等.减水剂对水泥浆体横向弛豫时间曲线的影响[J].硅酸盐学报,2011(03):537-543.
    [133]姚武,佘安明,杨培强.水泥浆体中可蒸发水的~1H核磁共振弛豫特征及状态演变[J].硅酸盐学报,2009(10):1602-1606.
    [134] Jehng J-Y, Sprague D. T., Halperin W. P. Pore structure of hydrating cement paste bymagnetic resonance relaxation analysis and freezing[J]. Magnetic resonance imaging,1996,14(7):785-791.
    [135] Brownstein Kenneth R., Tarr C. E. Importance of classical diffusion in NMR studies ofwater in biological cells[J]. Physical Review A,1979,19(6):2446.
    [136] S MEIBOOM, D GILL. Modified spin-echo method for measurement of relaxation times[J].Rev SciInstrum,1958(29):688-691.
    [137] McDonald P. J., Korb J-P, Mitchell J., et al. Surface relaxation and chemical exchange inhydrating cement pastes: a two-dimensional NMR relaxation study[J].Physical Review E,2005,72(1):11409.
    [138] Faure Paméla F., Rodts Stéphane. Proton NMR relaxation as a probe for setting cementpastes[J]. Magnetic resonance imaging,2008,26(8):1183-1196.
    [139]吴海进.高瓦斯低透气性煤层卸压增透理论与技术研究[D].徐州:中国矿业大学,2009.
    [140]冯增朝.低渗透煤层瓦斯强化抽采理论及应用[M].北京:科学出版社,2008.
    [141]徐龙君,张代钧,鲜学福.煤微孔的分形结构特征及其研究方法[J].煤炭转化,1995,18(1):31-38.
    [142]黄艳芳,马正飞,刘晓勤,等.用CO2吸附法分析分子筛的孔结构[J].离子交换与吸附,2009,25(4):338-345.
    [143]孙丹.基于旋转法的多功能液体粘度自动检测装置的研究[D].广西大学,2012.
    [144]龙剑英.淀粉接枝共聚物的合成及性能研究[D].中国林业科学研究院,2003.
    [145]李仲谨,蔡京荣,王磊,等.黄原胶接枝丙烯酸高吸水性树脂的制备及性能研究[J].陕西科技大学学报:自然科学版,2007,25(2):1-4.
    [146]尹国强.羽毛蛋白基高吸水性树脂的制备与性能研究[D].西北工业大学,2006.
    [147]尹国强,崔英德,陈循军.改性羽毛蛋白接枝丙烯酸高吸水性树脂的制备与吸水性能[J].化工进展,2008(07):1100-1105.
    [148]房元灿.基于CFD技术的液压管道过滤系统研究及过滤结构优化设计[D].沈阳理工大学,2012.
    [149]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [150]杨秀竹,雷金山,夏力农,等.幂律型浆液扩散半径研究[J].岩土力学,2005(11):112-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700