用户名: 密码: 验证码:
临涣矿区东南缘瓦斯赋存构造控制特征及防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对淮北煤田临涣矿区东南缘矿井瓦斯赋存和突出灾害具有明显的构造控制特征这一特点,本文运用地球化学、构造地质学、岩石矿物学、物理化学、渗流力学、岩石力学等多学科交叉的研究方法,采用理论分析、数值模拟、实验室测定分析与现场工程实践等手段,以该区域两大典型矿井——许疃和任楼煤矿做为研究对象,对构造控制下的矿井瓦斯赋存状态与赋存规律进行了研究,提出相应的分区分级安全开采技术体系。论文的研究内容对建立单一煤层条件下或煤层群赋存条件下的区域性瓦斯综合治理技术体系有着重要的理论指导意义。
     论文针对许疃煤矿33采区南北翼瓦斯差异性赋存特征以及采区南翼有大面积厚层古近系红层沉积的特点,通过地面钻井采集岩样,对比分析了红层与常见煤系地层岩石(泥岩、砂岩、粉砂岩)在矿物成分、孔隙结构、渗透性以及煤层瓦斯封盖能力上的差异。结合33采区煤样的多元物性参数测试结果,发现红层沉积对煤的物性参数没有显著影响,造成采区南北两翼瓦斯差异性赋存的原因主要在于煤层上覆巨厚红层的影响。红层的孔隙结构以小孔和中孔为主,与砂岩、泥岩和粉砂岩相比具有高孔隙率、高渗透性的特点,对煤层瓦斯的封盖能力较差。现场瓦斯含量和瓦斯成分测定结果也表明红层覆盖区32煤层瓦斯含量小、煤层瓦斯赋存呈现瓦斯风化带特征,说明在红层沉积的区域煤系地层透气性好,其下伏煤层瓦斯逸散作用强烈,煤层的煤与瓦斯突出危险性也随之减弱。
     任楼煤矿靠近徐宿弧形推覆构造南段前缘,井田内石炭-二叠系煤层自沉积以来经受过两期或者两期以上大型地质构造运动的改造作用,构造极为发育。针对这一特点,本文对任楼煤矿的构造,特别是断层的分布特点进行了梳理,对矿井的地应力进行了测量,对采煤工作面过小断层时的瓦斯涌出特征开展了系统分析。研究发现任楼煤矿以水平应力为主导,最大水平主应力与垂直应力之比为2.46~2.72,且均为压应力,这一地应力分布特点为构造煤的形成提供了力学条件,同时局部的构造残余应力也容易成为诱导突出发生的重要因素。此外,任楼矿小型断层两侧的瓦斯异常涌出具有一定的规律性,最大瓦斯涌出段至断层点的距离和瓦斯异常涌出范围均与断层落差呈良好线性关系;断层附近瓦斯涌出量峰值出现的位置以及瓦斯异常涌出范围分别约为断层落差的35倍与60倍。
     最后,根据许疃煤矿和任楼煤矿瓦斯赋存的构造控制特点,分别建立了适用于许疃煤矿32煤层的单一煤层分区分级瓦斯综合治理技术体系和适用于任楼煤矿7、8煤层的保护层开采及卸压瓦斯强化抽采治理技术体系。
The occurrence of gas and outburst in the southeast margin of Linhuan Coalfieldin Huaibei is dominated by the geological structure. Using the methods of theoreticalanalysis, numerical simulation, experimental analysis and engineering application,this paper gives a study on the gas occurrence state and gas occurrence law of Xutuanmine and Renlou mine, from the perspective of geochemistry, geotectonics, physicalchemistry, percolation mechanics, rock mechanics etc. A specialized gas control planfor different geological zones is drawn in the end. The results gotten in this study hasa vital meaning to the formulation of regional gas control plan under the situation ofsingle coal seam and coal seam group.
     Due to a Large area of thick redbeds lying on the south part of33District inXutuan mine, there is an obvious difference in gas occurrence between north andsouth. By taking samples through surface drilling, this paper contrasts the differencesin the mineral composition, pore structure, permeability and gas storage effect amongredbeds, mudstone, sandstone and siltstone. Combining the result of physicalparameters in red-cover coal seam and uncover ones above, it is found that the red bedhas not an obvious effect on the physical parameters of coal. The reason why thisdifference occurs is the storage effect of redbeds. The main pore system is dominatedby micropores and mespores, with a higher porosity and permeability than other kindsof samples, which lead to a worse storage effect on gas. The field experiments alsodemonstrate this phenomenon. The gas content of No.32seam with red bed coveringis not big as expected. A gas weathering area exists in coal seam. The results aboveillustrate that the permeability of coal seam with red bed is fair, a large amount of gasrun away through the coal seam below. That leads to a reduction in outburst risk.
     The Renlou mine is located in the front-end of the southern of Xusu arc nappestructure. The coal seam form in the permo-carboniferous system has gone through astrong geological transformation for twice or more, resulting ample of geologicalstructures. Based on the classification of the distribution characters of structures, thispaper measures the ground stress and gives a collection of gas emission statistics. Theresult reveals that the horizontal stress is2.46~2.72times as large as the vertical stress.Both the two directions of stress belong to pressure stress. These characters lead to theformation of deformed coal and provide a convenience for outburst. Besides, the gasemission in both sides of structure obeys a certain law. There are obvious relationships in the distance from largest gas emission point to the fault point with the fault throw,the abnormal gas emission scope also has such laws. These two parameters above is35times and60times as long as the fault throw respectively.
     According to the characters of gas occurrence control of structures, twocomprehensive gas prevention technologies for Xutuan mine and Renlou mine areestablished. A region and level based single coalseam gas prevention technology inXutuan Coal Mine and the protective seam mining and intensified pressure-relief gasextraction technology applies to the situation of Renlou Coal Mine.
引文
[1]程远平,付建华,俞启香.中国煤矿瓦斯抽采技术的发展[J].采矿与安全工程学报,2009,26(2):127-139.
    [2]谢和平,王金华,申宝宏,等.煤炭开采新理念——科学开采与科学产能[J].煤炭学报,2012,37(7):1069-1079.
    [3]程远平,王海锋,王亮,等.煤矿瓦斯防治理论与工程应用[M].徐州:中国矿业大学出版社,2010.
    [4]林柏泉,常建华,翟成.我国煤矿安全现状及应当采取的对策分析[J].中国安全科学学报,2006,16(5):42-46.
    [5]谢和平,周宏伟,薛东杰,等.煤炭深部开采与极限开采深度的研究与思考[J].煤炭学报,2012,37(4):535-536.
    [6]于景邨,刘志新,岳建华,等.煤矿深部开采中的地球物理技术现状及展望[J].地球物理学进展,2007,27(2):586-592.
    [7]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [8]郭栋,马福生.煤矿深部开采中的地球物理技术现状及展望[J].陕西煤炭,2008,27(2):68-71.
    [9]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813.
    [10]李化敏,付凯.煤矿深部开采面临的主要技术问题及对策[J].采矿与安全工程学报,2006,23(4):468-471.
    [11]于景邨,刘志新,岳建华,等.煤矿深部开采中的地球物理技术现状及展望[J].地球物理学进展,2007,22(2):586-592.
    [12]张子敏,高建良.关于中国煤层瓦斯区域分布的几点认识[J].地质科技情报,1999,18(4):67-70.
    [13]张子敏,张玉贵.大平煤矿特大型煤与瓦斯突出瓦斯地质分析[J].煤炭学报,2005,30(2):137-140.
    [14]俞启香,程远平.矿井瓦斯防治[M].徐州:中国矿业大学出版社,2012.
    [15]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [16] Bustin R M, Clarkson C R. Geological controls on coalbed methane reservoir capacity andgas content[J]. International Journal of Coal Geology,1998,38(1):3-26.
    [17] Groshong Jr. R H, Pashin J C, McIntyre M R. Structural controls on fractured coal reservoirsin the southern Appalachian Black Warrior foreland basin[J]. Journal of Structural Geology,2009,31(9):874-886.
    [18] A·Э·彼特罗祥.煤矿沼气涌出[M].宋士钊,译.北京:煤炭工业出版社,1983.
    [19] Creedy D P. Geological controls on the formation and distribution of gas in British coalmeasure strata[J]. International Journal of Coal Geology,1988,10(1):1-31.
    [20] Shepherd J, Rixon L K, Griffiths L. Outbursts and geological structures in coal mines: Areview[J]. International Journal of Rock Mechanics and Mining Sciences&GeomechanicsAbstracts,1981,18(4):267-283.
    [21] Bibler C J, Marshall J S, Pilcher R C. Status of worldwide coal mine methane emissions anduse[J]. International Journal of Coal Geology,1998,35(1):283-310.
    [22] Frodsham K, Gayer R A. The impact of tectonic deformation upon coal seams in the SouthWales coalfield, UK[J]. International journal of coal geology,1999,38(3):297-332.
    [23] Li H, Ogawa Y. Pore structure of sheared coals and related coalbed methane[J].Environmental Geology,2001,40(11-12):1455-1461.
    [24]焦作矿业学院瓦斯地质研究室.瓦斯地质概论[M].北京:煤炭工业出版社,1990.
    [25]杨力生.谈谈瓦斯地质研究成果和今后发展方向[J].瓦斯地质论文集.北京:煤炭工业出版社,1995.
    [26]杨力生.煤矿瓦斯预测方法述评[J].瓦斯地质,1988(1):5-7.
    [27]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].徐州:中国矿业大学出版社,1999.
    [28]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
    [29]张子敏,林又玲,吕绍林.中国煤层瓦斯分布特征[M].北京:煤炭工业出版社,1998.
    [30]曹运兴,张玉贵,李凯琦,等.构造煤的动力变质作用及其演化规律[J].煤田地质与勘探,1996,24(4):15-18.
    [31]康继武.褶皱构造控制煤层瓦斯的基本类型[J].煤田地质与勘探,1994,22(1):30-32.
    [32]芮绍发,陈富勇,宋三胜.煤矿中小型构造控制瓦斯涌出规律[J].矿业安全与环保,2001,28(6):18-19.
    [33]严家平,姚金林,童宏树,等.任楼煤矿小断层对瓦斯涌出的控制作用[J].煤田地质与勘探,2007,35(4):19-22.
    [34]季淮君,李增华,刘震,等.涡北煤矿地质构造对瓦斯涌出规律的影响[J].中国煤炭,2011,37(11):26-28.
    [35]于不凡.开采解放层的认识与实践[M].北京:煤炭工业出版社,1986.
    [36]刘林.煤层群多重保护层开采防突技术的研究[J].矿业安全与环保,2001,28(5):1-4.
    [37]石必明.远距离下保护层开采上覆煤层变形及透气性变化规律的研究[D].徐州:中国矿业大学,2004.
    [38]朱岩华.底板岩层采动破坏影响范围的分带研究[D].徐州:中国矿业大学,2004.
    [39] XOДOT B. B.煤与瓦斯突出[M].宋士钊,王佑安,译.北京:中国工业出版社,1966.
    [40]程远平.煤矿瓦斯防治理论与工程应用[M].徐州:中国矿业大学出版社,2010.
    [41]国家煤矿安全监察局,国家安全生产监督管理总局.防治煤与瓦斯突出规定[M].北京:煤炭工业出版社,2009.
    [42]国家安全生产监督管理总局. AQ1050-2008保护层开采技术规范[S].北京:煤炭工业出版社,2008.
    [43]四川矿业学院三结合研究组天府煤矿重庆煤炭科学研究所.天府煤矿远距离解放层解放效果考察报告[J].川煤科技,1976(1):20-54.
    [44]于不凡.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005.
    [45]中国矿业学院瓦斯组.煤和瓦斯突出的防治[M].北京:煤炭工业出版社,1979.
    [46]程远平,俞启香,袁亮.上覆远程卸压岩体移动特性与瓦斯抽采技术[J].辽宁工程技术大学学报,2003,22(4):483-486.
    [47]程远平,俞启香,袁亮,等.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [48]俞启香,程远平,蒋承林,等.高瓦斯特厚煤层煤与卸压瓦斯共采原理及实践[J].中国矿业大学学报,2004,33(2):127-131.
    [49]涂敏,黄乃斌,刘宝安.远距离下保护层开采上覆煤岩体卸压效应研究[J].采矿与安全工程学报,2007,24(4):418-421.
    [50]程远平,周德永,俞启香,等.保护层卸压瓦斯抽采及涌出规律研究[J].采矿与安全工程学报,2006,23(1):12-18.
    [51]刘泽功,袁亮,戴广龙,等.采场覆岩裂隙特征研究及在瓦斯抽放中应用[J].安徽理工大学学报(自然科学版),2004,24(4):10-15.
    [52]国家煤矿安全监察局.瓦斯治理经验五十条[M].北京:煤炭工业出版社,2005.
    [53]袁亮.松软低透煤层群瓦斯抽采理论与技术[M].北京:中国工业出版社,2004.
    [54]袁亮.2007中国(淮南)煤矿瓦斯治理技术国际会议论文集[M].徐州:中国矿业大学出版社,2007.
    [55] Liu H, Cheng Y. Fissure evolution and evaluation of pressure-relief gas drainage in theexploitation of super-remote protected seams[J]. Mining Science and Technology,2010,20(2):178-182.
    [56]焦先军.淮南潘谢矿区地面钻井卸压瓦斯抽采技术及应用研究[D].徐州:中国矿业大学,2009.
    [57]刘海波.极薄保护层钻采上覆突出煤层变形与透气性分布规律及在卸压瓦斯抽采中的应用[D].徐州:中国矿业大学.
    [58]刘洪永.远程采动煤岩体变形与卸压瓦斯流动气固耦合动力学模型及其应用研究[D].徐州:中国矿业大学,2010.
    [59]刘林.下保护层合理保护范围及在卸压瓦斯抽采中的应用[D].徐州:中国矿业大学,2010.
    [60]王海锋.采场下伏煤岩体卸压作用原理及在被保护层卸压瓦斯抽采中的应用[D].徐州:中国矿业大学,2008.
    [61] Liu H, Cheng Y, Song J C, et al. Pressure relief, gas drainage and deformation effects on anoverlying coal seam induced by drilling an extra-thin protective coal seam[J]. MiningScience and Technology,2009,19(6):724-729.
    [62] Liu L, Cheng Y, Wang H, et al. Principle and engineering application of pressure relief gasdrainage in low permeability outburst coal seam[J]. Mining Science and Technology,2009,19(3):342-345.
    [63]屠锡根.试论上保护层开采的有效性[J].煤炭学报,1965(3):15-30.
    [64]杨起.中国煤变质作用[M].北京:煤炭工业出版社,1996.
    [65]韩树棻.两淮地区成煤地质条件及成煤预测[M].北京:地质出版社,1990.
    [66]韩树棻,朱彬,文凯.淮北地区浅层煤成气的形成条件及资源评价[M].北京:地质出版社,1993.
    [67] Jiang B, Qu Z, Wang G G X, et al. Effects of structural deformation on formation of coalbedmethane reservoirs in Huaibei coalfield, China[J]. International Journal of Coal Geology,2010,82(3-4):175-183.
    [68]屈争辉,姜波,汪吉林,等.淮北地区构造演化及其对煤与瓦斯的控制作用[J].中国煤炭地质,2008,20(10):34-37.
    [69]安徽省地质矿产局.安徽省区域地质志[M].北京:地质出版社,1986.
    [70]武昱东,琚宜文,侯泉林,等.淮北煤田宿临矿区构造—热演化对煤层气生成的控制[J].自然科学进展,2009,19(10):1134-1141.
    [71]韦重韬,姜波,傅雪海,等.宿南向斜煤层气地质演化史数值模拟研究[J].石油学报,2007,28(1):54-57.
    [72]佟莉,琚宜文,杨梅,等.淮北煤田芦岭矿区次生生物气地球化学证据及其生成途径[J].煤炭学报,2013,38(2):288-293.
    [73]谭静强,琚宜文,张文永,等.淮北煤田中南部大地热流及其煤层气资源效应[J].中国科学:地球科学,2010,40(7):855-865.
    [74]胡宝林,汪茂连,宋晓梅,等.宿东矿区煤的镜质组反射率与煤的构造破坏程度关系[J].淮南矿业学院学报,1995,15(4):3-6.
    [75]蒋静宇.岩浆岩侵入对瓦斯赋存的控制作用及突出灾害防治技术—以淮北矿区为例[D].徐州:中国矿业大学,2012.
    [76]曹代勇.安徽淮北煤田推覆构造中煤镜质组反射率各向异性研究[J].地质论评,1990,36(4):333-340.
    [77]王亮,程远平,聂政,等.巨厚火成岩对煤层瓦斯赋存及突出灾害的影响[J].中国矿业大学学报,2011,40(1):29-34.
    [78] Jiang J, Cheng Y, Wang L, et al. Petrographic and geochemical effects of sill intrusions oncoal and their implications for gas outbursts in the Wolonghu Mine, Huaibei Coalfield,China[J]. International Journal of Coal Geology,2011,88(1):55-66.
    [79] Wang L, Cheng Y, Xu C, et al. The controlling effect of thick-hard igneous rock on pressurerelief gas drainage and dynamic disasters in outburst coal seams[J]. Natural Hazards,2013,66(2):1221-1241.
    [80] Jiang J, Cheng Y, Wang L, et al. Effect of magma intrusion on the occurrence of coal gas inthe Wolonghu coalfield[J]. Mining Science and Technology (China),2011,21(5):737-741.
    [81] Chen S, Zhu Y, Li W, et al. Influence of magma intrusion on gas outburst in a low rank coalmine[J]. International Journal of Mining Science and Technology,2012,22(2):259-266.
    [82] Yao Y, Liu D. Effects of igneous intrusions on coal petrology, pore-fracture and coalbedmethane characteristics in Hongyang, Handan and Huaibei coalfields, North China[J].International Journal of Coal Geology,2012,96-97:72-81.
    [83] Gurba L W, Weber C R. Effects of igneous intrusions on coalbed methane potential,Gunnedah Basin, Australia[J]. International Journal of Coal Geology,2001,46(2-4):113-131.
    [84] Jiang J, Cheng Y. Effects of Igneous Intrusion on Microporosity and Gas AdsorptionCapacity of Coals in the Haizi Mine, China[J]. The Scientific World Journal,2014,2014.
    [85] Sarana S, Kar R. Effect of igneous intrusive on coal microconstituents: Study from an IndianGondwana coalfield[J]. International Journal of Coal Geology,2011,85(1):161-167.
    [86] Yao Y, Liu D, Huang W. Influences of igneous intrusions on coal rank, coal quality andadsorption capacity in Hongyang, Handan and Huaibei coalfields, North China[J].International Journal of Coal Geology,2011,88(2-3):135-146.
    [87]蒋静宇,程远平,王海锋,等.岩浆侵入对煤吸附瓦斯特性的影响分析[J].采矿与安全工程学报,2012,29(1):118-123.
    [88]韩树棻,杨有根,朱彬,等.安徽北部中新生代沉积盆地分析[M].北京:地质出版社,1996.
    [89]吴基文,蔡东红,童世杰.任楼煤矿地应力场分布特征及其对巷道变形的影响[J].合肥工业大学学报:自然科学版,2009,32(10):1554-1557.
    [90]中华人民共和国国家质量监督检验检疫总局. GB/T19222-2003煤岩样品采取方法[S].北京:煤炭工业出版社,2003.
    [91] Gürdal G, Yal n M N. Pore volume and surface area of the Carboniferous coals from theZonguldak basin (NW Turkey) and their variations with rank and maceral composition[J].International Journal of Coal Geology,2001,48(1):133-144.
    [92] Washburn E W. The dynamics of capillary flow[J]. Physical review,1921,17(3):273.
    [93] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum.[J].Journal of the American Chemical society,1918,40(9):1361-1403.
    [94]中华人民共和国国家质量监督检验检疫总局,中国国家标准化委员会.煤的工业分析方法[S].北京:中国标准出版社,2008.
    [95]中华人民共和国国家质量监督检验检疫总局,中国国家标准化委员会. GB/T23561-2009煤和岩石物理力学性质测定方法[S].北京:中国标准出版社,2009.
    [96]李文华,白向飞,杨金和,等.烟煤镜质组平均最大反射率与煤种之间的关系[J].煤炭学报,2006,31(3):342-345.
    [97]中华人民共和国国家质量监督检验检疫总局,中国国家标准化委员会. GB/T16773-2008煤岩分析样品制备方法[S].北京:中国标准出版社,2008.
    [98]国家质量技术监督局. GB/T8899-1998煤的显微组分组和矿物测定方法[S].北京:煤炭工业出版社,1988.
    [99]中华人民共和国国家质量监督检验检疫总局,中国国家标准化委员会. GB/T6948-2008煤的镜质体反射率显微镜测定方法[S].北京:中国标准出版社,2008.
    [100]赵师庆,席伟谦,李庆辉.淮南矿区煤的深成变质与深部煤质预测[J].安徽地质,1994,4(3):19-26.
    [101]廖清发,陈萍,唐修义.淮南望峰岗井田深部煤变质作用研究[J].煤炭技术,2010,29(3):182-185.
    [102] Li M, Jiang B, Lin S, et al. Tectonically deformed coal types and pore structures in Puhe andShanchahe coal mines in western Guizhou[J]. Mining Science and Technology (China),2011,21(3):353-357.
    [103] An F, Cheng Y, Wu D, et al. The effect of small micropores on methane adsorption of coalsfrom Northern China[J]. Adsorption,2013,19(1):83-90.
    [104] Pillalamarry M, Harpalani S, Liu S. Gas diffusion behavior of coal and its impact onproduction from coalbed methane reservoirs[J]. International Journal of Coal Geology,2011,86(4):342-348.
    [105] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.1. Isotherms and pore volumedistributions[J]. Fuel,1999,78(11):1333-1344.
    [106] Clarkson C R, Bustin R M. The effect of pore structure and gas pressure upon the transportproperties of coal: a laboratory and modeling study.2. Adsorption rate modeling[J]. Fuel,1999,78(11):1345-1362.
    [107] Cai Y, Liu D, Pan Z, et al. Pore structure and its impact on CH4adsorption capacity andflow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel,2013,103:258-268.
    [108]王恩元,何学秋.煤岩等多孔介质的分形结构[J].焦作工学院学报,1996,15(4):19-23.
    [109]陈尚斌,夏筱红,秦勇,等.川南富集区龙马溪组页岩气储层孔隙结构分类[J].煤炭学报,2013,38(5):760-765.
    [110]傅雪海,秦勇,张万红,等.基于煤层气运移的煤孔隙分形分类及自然分类研究[J].科学通报,2005,50(S1):51-55.
    [111]国家安全生产监督管理总局. AQ1080-2009煤的瓦斯放散初速度指标(Δp)测定方法[S].北京:煤炭工业出版社,2009.
    [112] Ruppel T C, Grein C T, Bienstock D. Adsorption of methane on dry coal at elevatedpressure[J]. Fuel,1974,53(3):152-162.
    [113] Crosdale P J, Beamish B B, Valix M. Coalbed methane sorption related to coalcomposition[J]. International Journal of Coal Geology,1998,35(1-4):147-158.
    [114] Joubert J I, Grein C T, Bienstock D. Effect of moisture on the methane capacity ofAmerican coals[J]. Fuel,1974,53(3):186-191.
    [115] Crosdale P J, Moore T A, Mares T E. Influence of moisture content and temperature onmethane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gasreservoir[J]. International Journal of Coal Geology,2008,76(1):166-174.
    [116] Diamond W P, Schatzel S J. Measuring the gas content of coal: A review[J]. InternationalJournal of Coal Geology,1998,35(1):311-331.
    [117]中华人民共和国煤炭工业部. MT/T752-1997煤的甲烷吸附量测定方法(高压容量法)[S].北京:煤炭工业出版社,1997.
    [118]张子敏.瓦斯地质学[M].徐州:中国矿业大学出版社,2009.
    [119]田靖安,王亮,程远平,等.煤层瓦斯压力分布规律及预测方法[J].采矿与安全工程学报,2008,25(4):481-485.
    [120]秦勇,曾勇.煤层甲烷储层评价及生产技术[M].徐州:中国矿业大学出版社,1996.
    [121]钱凯,赵庆波,汪泽成.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1996.
    [122]曾勇,王占磊,吴财芳,等.矿井煤层甲烷封盖条件的初步研究[J].煤田地质与勘探,2006,34(5):31-34.
    [123] Sheldon N. Red Beds[M]//GORNITZ V. Encyclopedia of Paleoclimatology and AncientEnvironments. Springer Netherlands,2009:871-873.
    [124] Pinti D. Red Beds[M]//GARGAUD M, AMILS R, QUINTANILLA J, et al. Encyclopedia ofAstrobiology. Springer Berlin Heidelberg,2011:1439.
    [125]彭华,吴志才.关于红层特点及分布规律的初步探讨[J].中山大学学报(自然科学版),2003,42(5):109-113.
    [126]李廷勇,王建力.中国的红层及发育的地貌类型[J].四川师范大学学报(自然科学版),2002,25(4):427-431.
    [127]程强,寇小兵,黄绍槟,等.中国红层的分布及地质环境特征[J].工程地质学报,2004,12(1):34-40.
    [128] Rong J, Wang Y, Zhang X. Tracking shallow marine red beds through geological time asexemplified by the lower Telychian (Silurian) in the Upper Yangtze Region, South China[J].Science China Earth Sciences,2012,55(5):699-713.
    [129] Shijia T, Youfang L. Geochemical characteristics of the ancient weathered crust derivedfrom red beds in Sichuan basin[J]. Chinese Journal of Geochemistry,1988,7(1):88-96.
    [130] Perri F, Critelli S, Martín-Algarra A, et al. Triassic redbeds in the Malaguide Complex(Betic Cordillera—Spain): Petrography, geochemistry and geodynamic implications[J].Earth-Science Reviews,2013,117:1-28.
    [131] Ting S, Bowen G J, Koch P L, et al. Biostratigraphic, chemostratigraphic, andmagnetostratigraphic study across the Paleocene-Eocene boundary in the Hengyang Basin,Hunan, China[J]. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA,2003:521-536.
    [132]李云通,孙秀玉,刘俊英.中国地层(13)——中国的第三系[M].北京:地质出版社,1984.
    [133] Chen H, Yuan-Ping C, Zhou H, et al. Damage and Permeability Development in CoalDuring Unloading[J]. Rock Mechanics and Rock Engineering,2013:1-14.
    [134]李小春,高桥学,吴智深,等.瞬态压力脉冲法及其在岩石三轴试验中的应用[J].岩石力学与工程学报,2001,20(S1):1725-1733.
    [135] Chen S, Zhu Y, Wang H, et al. Shale gas reservoir characterisation: A typical case in thesouthern Sichuan Basin of China[J]. Energy,2011,36(11):6609-6616.
    [136]陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.
    [137]吴勘,马强分,冯庆来.鄂西建始中二叠世孤峰组孔隙特征及页岩气勘探意义[J].地球科学(中国地质大学学报),2012(S2):175-183.
    [138] Bowker K A. Barnett Shale gas production, Fort Worth Basin: issues and discussion[J].AAPG bulletin,2007,91(4):523-533.
    [139]韦启新,苑小燕.我国东部油田红层沉积特征与油气成藏规律[J].石油学报,2008,29(2):191-194.
    [140]宋晓梅,段忠稳.任楼井田地质构造特征及两期古构造应力场的研究[J].中国煤田地质,1999,11(1):9-12.
    [141]范育敏.安徽宿州市任楼井田地质构造特征分析[J].能源与环境,2011(3):38-41.
    [142]琚宜文,王桂梁.淮北宿临矿区构造特征及演化[J].辽宁工程技术大学学报(自然科学版),2002,21(3):286-289.
    [143]康红普,林健,张晓.深部矿井地应力测量方法研究与应用[J].岩石力学与工程学报,2007,26(5):929-933.
    [144]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [145]吴玉华,吴基文,赵开全,等.任楼煤矿地应力测量与分析[J].宿州学院学报,2006,21(5):85-88.
    [146]孙昌一.地质构造对煤层瓦斯赋存与分布的控制作用[D].淮南:安徽理工大学,2006.
    [147]严家平,姚金林,童宏树,等.任楼煤矿小断层对瓦斯涌出的控制作用[J].煤田地质与勘探,2007,35(4):19-22.
    [148]汪西海.煤和瓦斯突出与地应力之关系[J].地质力学学报,1997,3(1):88-94.
    [149]罗康成.地应力场对煤与瓦斯突出的控制作用[J].煤炭工程,2009(8):95-97.
    [150]程远平,张晓磊,王亮.地应力对瓦斯压力及突出灾害的控制作用研究[J].采矿与安全工程学报,2013,30(3):408-414.
    [151]李希建,林柏泉.煤与瓦斯突出机理研究现状及分析[J].煤田地质与勘探,2010,38(1):7-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700