用户名: 密码: 验证码:
薄煤层滚筒采煤机装煤性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄煤层采煤机滚筒作为机械化薄煤层工作面开采设备的主要工作部件,其性能好坏直接影响采煤机的开采效率。随着薄煤层采煤机双电机并联技术的不断成熟,薄煤层采煤机滚筒的截割性能已基本满足开采要求,而滚筒装煤性能已成为阻碍薄煤层开采效率提高和薄煤层滚筒采煤机推广使用的关键问题。因此,开展薄煤层滚筒采煤机的装煤性能研究对煤矿薄煤层机械化开采技术的发展具有重要意义。本文采用理论分析、模化试验研究和离散元软件仿真的方法,对影响滚筒装煤性能主要结构参数、工作参数、煤层工作面角度、滚筒位置参数和摇臂厚度等因素进行了深入研究。
     本论文基于散体力学理论和单体力学理论,对抛射装煤机理和推挤装煤机理进行了分析,得到了不同结构参数下煤体轴向速度和切向速度的计算公式;结合薄煤层采煤机滚筒的结构特点和工作特点,分析了滚筒结构参数和工作参数对滚筒装煤性能的影响规律,并给出了滚筒最小和最大理论转速、最大理论截深以及循环煤系数的计算公式,为滚筒的结构设计和工作参数选择提供了依据。
     以煤岩截割试验台为基础,利用研制的模化滚筒对影响滚筒装煤性能的主要结构参数和工作参数进行单因素模化试验研究和三因素正交模化试验研究。单因素试验研究得到了筒毂直径、叶片螺旋升角、滚筒截深、滚筒转速和牵引速度以及破碎煤体粒度分布对滚筒推挤装煤率和抛射装煤率的影响规律。三因素正交试验研究分别得到了筒毂直径、叶片螺旋升角、滚筒截深与滚筒转速、牵引速度匹配下,各结构参数与滚筒工作参数对滚筒装煤率影响的显著性。模化试验研究结果为薄煤层采煤机滚筒的结构设计和参数选择提供了依据,为后续的仿真试验研究提供了试验验证。
     基于离散元基本理论,利用PFC3D模拟软件建立了滚筒装煤过程的仿真模型,得到了颗粒参数和墙体参数对滚筒装煤性能的影响规律。以模化试验条件为基础,建立了滚筒离散元仿真准确性的验证模型,并利用该模型进行了多组仿真试验,仿真试验结果与模化试验结果的对比表明在合适的颗粒粒径和颗粒刚度下,滚筒装煤的三维离散元仿真结果与模化试验结果较为相近,证明了三维离散元法用于模拟滚筒装煤过程的可行性和准确性。
     利用三维离散元软件PFC3D对不同工作面角度下滚筒的装煤过程进行了仿真研究,得到了工作面走向倾角和工作倾角对滚筒抛射装煤率和推挤装煤率的影响规律。仿真结果表明:滚筒抛射装煤率和推挤装煤率在负走向倾角下极低,薄煤层机械化开采工艺设计时应尽量避免负走向倾角的出现;滚筒推挤装煤率随工作倾角的增加呈线性减小趋势,抛射装煤率随工作倾角的增加呈先显著下降后缓慢下降的趋势且滚筒在负工作倾角下的抛射装煤率较水平倾角下的抛射装煤率只有微弱减小。仿真中还对负走向倾角下滚筒抛射装煤的改进措施进行了分析和仿真验证,指出了通过提高颗粒轴向速度和降低颗粒出口位置高度的方法能够在一定程度上增加滚筒抛射装煤率。
     根据薄煤层采煤机的滚筒结构特点和工作环境,建立了薄煤层采煤机截割部工作过程的仿真模型,得到了滚筒底部距刮板输送机中部槽高度、煤壁与刮板输送机中部槽距离和摇臂壳体厚度对滚筒装煤性能的影响规律,为薄煤层采煤机摇臂、滚筒以及配套设备的设计和工作参数的选择提供了依据和参考。
As the main working part of mining mechanization equipment used in thin coal seamface, the drum performance affects the production efficiency of thin coal seam shearerdirectly. With double motor parallel technology of thin coal seam shearer being maturing,the demand of production has been satisfied by the cutting performance of coal seamshearer drum basically. While the poor drum coal-loading performance has become the keyissue of improving the efficiency of thin coal seam mining and popularization of thin coalseam shearer. Therefore, the research on coal-loading performance of thin coal seamshearer drum has great significance for the development of coal mechanization miningtechnology. In this paper, the methods of theoretical analysis, modelling experiment andsimulation by discrete element software are used. The main structural parameters, workingparameters, coal seam working face angles, position parameters of drum and ranging armthicknesses which affecting coal-loading performance of drum were studied deeply.
     The coal-loading with drum ejection mechanism and coal-loading with drum pushingmechanism have been analyzed based on theories of mechanics of granular media andmonomer mechanics. Then the computational formulas of axial velocity and tangentialvelocity of coal body with different structural parameters are obtained. Combining thincoal seam shearer drum structure and working characteristics, the influences of drumstructure parameters and working parameters on coal-loading performance of drum areanalyzed. The formulas of the minimum theoretical speed, the maximum theoreticalcutting depth, the highest theoretical speed and circular coal coefficient are given,providing references for the structural design and working parameters selection of drum.
     Based on the coal rock cutting test-bed, the single factor experiment and three factorsorthogonal modeling experiment about drum structure and working parameters whichimpacted coal-loading performance directly are carried out by using the designed modeldrum. The influence law of drum hub diameter, vane helix angle and drum cutting depth,drum rotating speed, drum hauling speed and the distribution of broken coal particle sizeon coal-loading rates of drum ejection and drum pushing are obtained in single factorexperiment research. In three factors orthogonal experimental research, the significantinfluences of structural and working parameters on drum coal-loading rate are acquired,under the matching of drum hub diameter, vane helix angle and drum cutting depth, drumrotating speed and hauling speed. Modeling test results provide references for the structuraldesign and parameter selection of thin coal seam shearer drum, and provide experimental verification for the subsequent simulation experiment research.
     Based on the basic theory of discrete element, simulation model of drum coal-loadingprocess is established by using simulation software of PFC3D. Then the influence laws ofparticle parameters and wall parameters on drum coal-loading performance are studied.Based on the condition of modeling test, the accuracy verification model of drum discreteelement simulation is established, and several simulation tests are carried out by using theverification model. The comparison of simulation test results and modeling test resultsshows that the simulation and test results are relatively close with the suitable particlediameter and particle stiffness, which proves that the applying of three-dimensionaldiscrete element method in simulating the coal-loading process is feasibility and accuracy.
     The drum coal-loading processes with different face angles are simulation studied byusing three-dimensional discrete element software of PFC3D, and then the influence laws ofdip angle in mining direction and dip angle in faceline direction on the coal-loading ratesof drum ejection and drum pushing are obtained. The simulation results show thatcoal-loading rates of drum ejection and drum pushing in the negative dip angle in miningdirection are extremely low, which means that the mechanized mining technology designof the thin seam coal should avoid the negative dip angle in mining direction. Coal-loadingrate with drum pushing decreases linearly with the dip angle in faceline direction. Whilecoal-loading rate with drum ejection decreases observably firstly and then decreases slowlywith the increase of dip angle in faceline direction. Meanwhile, coal-loading rate withdrum ejection in negative dip angle in faceline direction decreases weaker than thehorizontal angle. The improvement measure on coal-loading with drum ejection undernegative dip angle in faceline direction is analyzed and verified in simulation. It points outthat the increase of particle axial velocity and reduction of the particle export positionheight can increase drum coal-loading rate with drum ejection in a certain extent.
     According to the structure characteristic and working environment of the thin coalseam shearer drum, the simulation model of thin coal seam shearer cutting process isestablished, and the influences of height from drum bottom to scraper conveyor chute,distance from the coal wall to the scraper conveyor chute and the ranging arm thickness onthe drum coal-loading performance are obtained, which provides references for the designof thin coal seam shearer ranging arm, drum and the corollary equipment and workingparameters selection.
引文
[1]刘过兵,刘东才.薄煤层高产高效途径探讨[J].辽宁工程技术大学学报,2002,21(4):531-533.
    [2]乔红兵,吴淼,胡登高.薄煤层开采综合机械化技术现状及发展[J].煤炭科学技术,2006,2:1-5.
    [3]傅根生.浅谈薄煤层采煤机的使用与维修[J].江西煤炭科技,2007,4:42-43.
    [4]致美兰.薄煤层电牵引滚筒采煤机技术发展状况[J].煤炭技术,2004(12):3-5.
    [5]张欣,张枢.薄煤层采煤机的发展状况及趋势[J].煤矿机械,2002,6:7-8.
    [6]周常飞,张安寿.我国薄煤层滚筒采煤机的使用与发展[J].煤矿机电,2000,5:73-76.
    [7]冯孝慈,逯明建.薄煤层综采机械化装备配套及关键技术问题的研究[J].中国煤炭,2003,2:2-5.
    [8]陆曾亮.采煤机滚筒装煤问题研究[J].煤矿机电,1981,3:1-4,4:1-8.
    [9] H.Г.包依柯著,顾治胤译.螺旋滚筒式工作机构装煤的理论基础[J].煤炭技术,1985,2:29-34.
    [10] Morris, C.J.“The design of shearer drums with the aid of a computer,” The Mining Engineer,November,289–295(1980).
    [11] Peng, S.S. and H.S Chang. Longwall Mining. New York: John Wiley and Sons,1984.
    [12] Hurt, K.G. and F.G Mcstravick.“High performance shearer drum design,” Colliery Guardian,236,425–429(1988).
    [13] Ayhan, M. Investigation into the cutting and loading performance of drum shearers in OAL Mine.M.Sc. Thesis, The University of Hacettepe, Institution of Science. Ankara, Turkey.1994.
    [14]程东棠,尹慧敏.采煤机滚筒装煤极限转速的探讨[J].阜新矿业学院学报,1988,9:28-34
    [15]李充宁.螺旋滚筒装煤机理的研究[J].陕西煤炭技术,1991.3:48-52.
    [16]刘庆云,闫海峰.采煤机螺旋滚筒的对称系数设计法[J]中国矿业大学学报,1997,26(4):95-98.
    [17]傅文新.采煤机滚筒结构和装煤性能分析[J].煤矿机械,1997,3:33-35.
    [18]冯文轶.采煤机与输送机配套关系对装煤效果的影响[J].煤矿开采,1998,9:54-55.
    [19]李章东,吕宝占.采煤机螺旋滚筒结构参数的模糊优化设计[J]吉林大学学报(工学版),2004,34(2):256-259.
    [20]王玉宝.影响小直径滚筒采煤机装煤性能因素分析[J].中国煤炭,2006,9:48-49.
    [21]刘春生,赵宏梅.叶片轴向倾斜的螺旋滚筒装煤机理和能力[J].黑龙江科技学院学报,2007,1:15-18.
    [22]佟海龙,尹力,金全,李岩松,王希.基于偏最小二乘方法的采煤机螺旋滚筒装煤效果研究[J]煤矿机械,2011,32(11):86-88.
    [23]李晓豁,穆永成,石宁,唐仁鹏,姚天宇.基于PSO-GACA的采煤机螺旋滚筒参数优化设计[J]广西大学学报,2012,37(3):561-566.
    [24]高晓旭,徐衍振,王雷.薄煤层采煤机结构特点及装煤效果分析[J]煤矿机械,2012,33(1):224-226.
    [25]符国权.滚筒式采煤机的技术水平和发展动向[J].煤炭科学技术,1979,2:61-63.
    [26] C.M. Brooker. Theoretical and Practical Aspects of Cutting and Loading by Shearer Drums[J].Colliery Guardian,1979,1:9-16,1979,4:41-50.
    [27]靠近太恩河的纽卡斯尔大学采矿工程系向英国煤管局提供的第二阶段的最终研究报告―长壁采煤机设计和工作方面的典型论文[J].上海煤矿机械研究所,1981,6.
    [28] G.齐贝利斯著,蔡尔嵩译.提高俯采工作面装煤效果的新型滚筒[J].煤矿机电,1983,4:49-50.
    [29] Ю.И.库兹米奇著,刘占林译.新型螺旋滚筒[J].煤炭技术,1984,2:31-31.
    [30] Ludlow, J. and R.A. Jankowski. Use lower shearer drum speed to achieve deeper coal cutting[J].Mining Engineering,1984,36:251–255.
    [31] Ayhan, M. and, E.M. Eyyuboglu. Comparison of globoid and cylindrical shearer drums’ loadingperformance[J]. Journal of the South African Institute of Mining and Metallurgy,2006,106:51-56.
    [32]王传礼,刘峥.滚筒转向对装煤性能影响的实验研究[J].淮南矿业学院学报,1997,12:37-41.
    [33]王传礼,王鸿萍.新型螺旋滚筒装煤性能的理论研究[J].煤矿机械,2001,2:15-17.
    [34]王传礼.新型螺旋滚筒装煤性能的模拟研究[J].矿山机械,1999,8:17-19.
    [35]李宁宁,李建平,宋静等.滚筒式采煤机装煤效果分析及参数优化[J].煤矿机械,2009(1):12-14.
    [36]李宁宁,杜长龙,李建平等.基于装煤性能的采煤机滚筒参数优化[J].矿山机械,2009(11):4-6.
    [37] Liu Songyong,Du Changlong,Zhang Jiajia,Jiang Hao. Parameters analysis of shearer drum loadingperformance[J]Mining Science and Technology,2011,21(5):621-624.
    [38]薛高明,薛雷雷.浅析提高小直径滚筒采煤机装煤效果的措施[J]中州煤炭,2013(8):50-51.
    [39] Yu Y, Arnold P C. The influence of screw feeders on bin flow patterns[J]. Powder technology,1996,88(1):81-87.
    [40] Roberts A W. The influence of granular vortex motion on the volumetric performance of enclosedscrew conveyors[J]. Powder Technology,1999,104(1):56-67.
    [41] Shimizu Y, Cundall P A. Three-dimensional DEM simulations of bulk handling by screwconveyors[J]. Journal of engineering mechanics,2001,127(9):864-872.
    [42] Uchida K, Okamoto K. Measurement technique on the diffusion coefficient of powder flow in ascrew feeder by X-ray visualization[J]. Powder Technology,2008,187(2):138-145.
    [43] Dai J, Grace J R. A model for biomass screw feeding[J]. Powder Technology,2008,186(1):40-55.
    [44] P.A. Moysey, M.R. Thompson. Modelling the solids inflow and solids conveying of single-screwextruders using the discrete element method[J]. Powder Technology,2005,153:95-107.
    [45] McBride W, Cleary P W. An investigation and optimization of the ‘OLDS’ elevator using discreteelement modeling[J]. Powder Technology,2009,193(3):216-234.
    [46] Owen P J, Cleary P W. Prediction of screw conveyor performance using the Discrete ElementMethod (DEM)[J]. Powder Technology,2009,193(3):274-288.
    [47] Zareiforoush H, Mohtasebi S S, Tavakoli H, et al. Effect of loading rate on mechanical propertiesof rice (Oryza sativa L.) straw[J]. Australian Journal of Crop Science,2010,4(3):190-195.
    [48] Zareiforoush H, Komarizadeh M H, Alizadeh M R, et al. Screw conveyors power and throughputanalysis during horizontal handling of paddy grains[J]. Journal of Agricultural science,2010,2(2):P147.
    [49] Zareiforoush H, Komarizadeh M H, Alizadeh M R. Effects of crop-machine variables on paddygrain damage during handling with an inclined screw auger[J]. Biosystems Engineering,2010,106(3):234-242.
    [50] Justin W. Fernandez, Paul W. Cleary, William McBride. Effect of screw design on hopperdrawdown of spherical particles in a horizontal screw feeder[J].Chemical Engineering Science,2011,66:5585-5601.
    [51] Osman H Bin. Granular Flow and Heat Transfer in a Screw Conveyor Heater: A Discrete ElementModeling Study[D] Singapore:National University of Singapore,2012.
    [52]宋祁群.水平螺旋输送机输送机理的研究[J].武汉水运工程学院学报,1993(3):375-382.
    [53]庞美荣.慢速螺旋输送机的功率探讨[J].饲料工业,1994(11):17-20.
    [54]赵红霞,刘建寿,李志荣,等.螺旋输送机螺距优化公式推导[J].洛阳工业高等专科学校学报,1997(2):27-32.
    [55]赵红霞,王淑珍.螺旋输送机螺距优化及效率研究[J].拖拉机与农用运输车,2005(2):37-39.
    [56]黄石茂.螺旋输送机输送机理及其主要参数的确定[J].广东造纸,1998(3):27-31.
    [57]胡勇克,戴莉莉,皮亚楠.螺旋输送器的原理与设计[J].南昌大学学报(工科版),2000(4):29-33.
    [58]徐余伟.螺旋输送机设计参数的选择[J].科技纵横,2008(7):32-37.
    [59]向东枝,徐余伟.螺旋输送机设计参数的选择和确定[J].水泥技术,2010(1):29-33.
    [60]徐余伟.橡胶工业螺旋输送机设计参数的选择和确定[J].机械与模具,2008(10):52-58.
    [61]李海燕.基于EDEM的垂直螺旋输送机性能参数仿真研究[D].太原科技大学,2008.
    [62]陈汝超,陈晓平,蔡佳莹,等.粒煤螺旋输送特性实验研究[J].煤炭学报,2012,37(1):154-157.
    [63]任飞,曾光,杨川,蒋志达,付玲.充填系数对螺旋输送级配离析影响的研究[J].道路施工与机械,2013,7:50-53.
    [64]黄松元.散体力学[M].北京:机械工业出版社,1993.
    [65] Cundall P A, Strack O D L.A discrete numerical model for granular assemblies[J]. Geotechnique,1979,29(1):47-65.
    [66] Xu B H, Yu A B. Numerical simulation of the gas-solid flow in a fluidized bed by computationalfluid dynamics[J]. Chemical Engineering Science,1997,52(16):2789-2809.
    [67] Cundall P A. A computer model for simulating progressive large scale movements in blocky system.In: Muller Led. Proceedings of Symposium of the International Society of Rock Mechanics[C].Rotterdam: A.A.Balkema,1971(1):8-12.
    [68] Cundall P A. The measurement and analysis of acceleration in rock slopes[D].University of London:Imperial college of Science and Technology,1971.
    [69] Cundall P A, Strack O D L. The distinct element method as a tool for research in granular media.Part Ⅱ[R] Minnesota: University of Minnesota,1979.
    [70] Cundall P A, Strack O D L.A discrete numerical model for granular assembles[J]. Geotechnique,1979,29(1):47-65.
    [71]孙其诚,王光谦.颗粒物质力学导论[M].北京:科学出版社,2009.
    [72] P. J. Woytowitz, R. H. Richman. Modeling of damage from multiple impacts by sphericalparticles[J]. Wear,1999,233-235:120-133.
    [73] Francesco Paolo Di Maio, Alberto Di Renzo. Analytical solution for the problem of frictional-elastic collisions of spherical particles using the linear model[J]. Chemical Engineering Science,2004,59:3461-3475.
    [74]赵海波,郑楚光,陈胤密.考虑颗粒碰撞的多重Monte Carlo算法[J].力学学报,2005,37(5):564-572.
    [75] Chin-hung Hsu, Keh-chin Chang. A Lagrangian modeling approach with the direct simulationMonte-Carlo method for inter-particle collisions in turbulent flow[J]. Advanced PowderTechnology,2007,18(4):395-426.
    [76]刘红娟,邹春,田智威等.撞击流中单颗粒运动行为的数值模拟[J].华中科技大学学报(自然科学版),2008,36(5):106-109.
    [77] Kruggel-Emden H, Wirtz S, Scherer V. A study on tangential force laws applicable to the discreteelementmethod(DEM) for materials with viscoelastic or plastic behavior[J]. Chemical EngineeringScience,2008,63(6):1523-1541.
    [78] Campbell C S,Brennen C E.Computer simulation of granular shear flows[J]. J. Fluid Mech.,1985,151:167-188.
    [79] Campbell C S, Brennen C E.Chute flows of granular materials: some computer simulations[J]. J.Appl. Mech.,1985,52:172-178.
    [80] Hersir Sigurgeirsson, Andrew Stuart, Wing-Lok Wan. Algorithms for particle-field simulations withcollisions[J]. Journal of Computational Physics,2001,172:766-807.
    [81]刘阳,陆慧林,刘文铁等.气固流化床的离散颗粒运动-碰撞解耦模型与模拟[J].燃烧科学与技术,2003,9(6):551-555.
    [82]闫洁,罗坤,樊建人等.稀疏两相射流中颗粒碰撞的数值研究[J].化工学报,2008,59(4):866-874.
    [83] R.E. Stratton, C.M. Wensrich. Modelling of multiple intra-time step collisions in the hard-spherediscrete element method[J]. Powder Technology,2010,199(2):120-130.
    [84] D.C. Richardson, K.J. Walsh, N. Murdoch, et al. Numerical simulations of granular dynamics: I.Hard-sphere discrete element method and tests[J]. Icarus,2011,212(1):427-437.
    [85]李瑞霞,柳朝晖,贺铸等.各向同性湍流内颗粒碰撞率的直接模拟研究[J].力学学报,2006,38(1):25-32.
    [86] Souley M, Homand F. Stability of jointed rock masses evaluated by UDEC with an ex tendedSaeb-Amadei constitutive law[J]. International Journal of Mechanics&Mining Sciences,1996,33(3):233-234
    [87] Souley M, Homand F, Thoraval A. The effect of joint constitutive laws on the modelling of anunderground excavation and comparison with in situ measurements[J]. International Journal ofRock Mechanics and Mining Sciences,1997,34(1):97-115.
    [88] Esaki T, Jiang Y, Bhattarai T N, et al. Stability analysis and reinforcement system design in aprogressively failed steep rock slope by the distinct element method[J]. International Journal ofRock Mechanics&Mining Sciences.1998,35(4-5):664-666.
    [89] Corkum A G, Martin C D. Analysis of a rock slide stabilized with a toe-brem: a case study inBritish Columbia, Canada[J]. International Journal of Rock Mechanics&Mining Sciences,2004,41(7):1109-1121.
    [90] Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of RockMechanics and Mining Sciences,2004,41(8):1329-1364.
    [91] Bock H, Bliimling P, Konietzky H. Study of the micro-mechanical behaviour of the opalinus clay:an example of co-operation across the ground engineering disciplines [J]. Bulletin of EngineeringGeology and the Environment,2006,65(2):195-207.
    [92] T. Funatsu, T. Hoshino, H. Sawae, N. Shimizu. Numerical analysis to better Understand themechanism of the effects of ground supports and reinforcement on the stability of tunnels using thedistinct element method[J].Tunnelling and Underground Space Technology,2008(23):561-573.
    [93] S. Utili, R. Nova.DEM analysis of bonded granular geomaterials[J]. International Journal forNumerical and Analytical Methods in Geomechanics,2008,32(17):1997-2031.
    [94] Mechtcherine V, Gram A, Krenzer K, et al. Simulation of fresh concrete flow using DiscreteElement Method (DEM): theory and applications[J]. Materials and Structures,2013:1-16.
    [95] Estay D A, Chiang L E. Discrete crack model for simulating rock comminution processes with theDiscrete Element Method[J]. International Journal of Rock Mechanics and Mining Sciences,2013,60:125-133.
    [96]麻凤海,范学理,王泳嘉.岩层移动动态过程的离散单元分析.煤炭学报,1996,21(4):388~392.
    [97]周健,池永,池毓蔚等.颗粒流方法及PFC2D程序[J].2000,21(3):271-274.
    [98]周健,池永.土的工程力学性质的颗粒流模拟[J].固体力学学报,2004,25(4):377-382.
    [99] ZHOU Jian, SU Yan, CHI Yong. Simulation of soil properties by particle flow code[J]. ChineseJournal of Geotechnical Engineering,2006,28(3):390-396.
    [100]周健,王家全,曾远等.土坡稳定分析的颗粒流模拟[J].岩土力学,2009,30(1):86-90.
    [101]周健,史旦达,贾敏才等,循环加荷条件下饱和砂土液化细观数值模拟[J].水利学报,2007,38(6):397-703.
    [102]周健,王家全,曾远等.颗粒流强度折减法和重力增加法的边坡安全系数研究[J].岩土力学,2009,30(6):1549-1554.
    [103]周健,张刚,孔戈.渗流的颗粒流细观模拟[J].水利学报,2006,37(1):28-32.
    [104]周健,邓益兵,贾敏才等.基于颗粒单元接触的二维离散-连续耦合分析方法[J].岩土工程学报,2010,32(10):1479-1484.
    [105]王贵君.节理裂隙岩体中不同埋深无支护暗挖隧洞稳定性的离散元法数值分析.岩石力学与工程学报,2004,23(7):1154-1157.
    [106]吴剑.滑坡滑带剪切过程的离散元模拟研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [107]魏龙海,王明年.碎石土隧道自稳性的三维离散元分析[J].岩土力学,2008,29(7):1853-1860.
    [108]贺续文.基于离散单元法的节理岩体边坡稳定性分析[D].湘潭:湘潭大学,2010.
    [109]廖彪.基于离散单元法的土质边坡稳定性分析[D].湘潭:湘潭大学,2010.
    [110]樊赘赘,王思敬,王恩志.障碍物的设置对颗粒流动过程的影响[J].土木建与环境工程,2010,32(5):35-40.
    [111]张明鸣,徐卫亚,夏玉斌,周先齐.抛石挤淤机理及其颗粒流数值模拟研究[J].中南大学学报(自然科学版),2010,41(1):310-315.
    [112]王根龙,张茂省,苏天明,等.黄土崩塌破坏模式及离散元数值模拟分析[J].工程地质学报,2011,19(4):541-549.
    [113]贺续文,刘忠,廖彪,等.基于离散元法的节理岩体边坡稳定性分析[J].岩土力学,2011,32(7):2199-2204.
    [114]曹琰波,戴福初,许冲,等.唐家山滑坡变形运动机制的离散元模拟[J].岩石力学与工程学报,2011,30(增1):2878-2887.
    [115]崔溦,刘学昆,戚蓝.大型复杂堆积边坡稳定性的离散元分析[J].工程地质学报,2012,20(2):222-227.
    [116]张龙,唐辉明,熊承仁,等.鸡尾山高速远程滑坡运动过程PFC(3D)模拟[J].岩石力学与工程学报,2012,31(S1):2601-2611.
    [117]李祥龙,唐辉明,熊承仁,等.基底刮铲效应对岩石碎屑流停积过程的影响[J].岩土力学,2012,33(5):1527-1534.
    [118]叶健,陶和平,陈锦雄,等.基于GPU的岩石碎屑流与拦砂坝交互场景的三维建模与可视化[J].中南大学学报(自然科学版),2013,44(02):718-725.
    [119]石崇,王盛年,刘琳.地震作用下陡岩崩塌颗粒离散元数值模拟研究[J].岩石力学与工程学报,2013,32(S1):2798-2805.
    [120]蒋明镜,孙渝刚,张伏光.基于微观力学的胶结岩土材料破损规律离散元模拟[J].岩土力学,2013,34(07):2043-2050.
    [121] Hiroaki Tanaka, Koji Inooku, et al. Numerical analysis of soil loosening in subsurface tillage by avibrating type subsoiler by means of the distinct element method.Proceedings of the13thInternational Conference of the International Society for Terrain-Vehicle Systems[C].Munich,Germany, September14-17,1999:791-798.
    [122] Hiroaki Tanaka, Koji Inooku, Osamu Sumikawa, et a1.Simulation of soil behavior at subsoilingby the distinct element method. Proceedings of the6th Asia-Pacific Conference of the InternationalSociety for Terrain-Vehicle Systems[C].Bangkok, Thailand,2001:194-200.
    [123] Mishra B K, Mehrotra S P. A jig model based on the discrete element method and its experimentalvalidation[J]. Mineral processing,2001,63(4):177-189.
    [124] Asmar B N, Langston P A, Matchett A J, et al. Validation tests on a distinct element model ofvibrating cohesive particle systems[J].Computers and Chemical Engineering,2002,26(6):785-802.
    [125] Cleary P W, Sawley M L. DEM modelling of industrial granular fows:3D case studies and theeffect of particle shape on hopper discharge[J].Applied Mathematical Modelling,2002,26(2):89-111.
    [126] Onate E, Rojek J. Combination of discrete element and finite element methods for dynamicanalysis of geomechanics problems[J].Computer Methods in Applied Mechanics and Engineering,2004,193(27/28/29):3087-3128.
    [127] Kou S Q, Lindqvist P A,Tang C A, et a1.Numerical simulation of the cutting of inhomogeneousrocks[J]. International Journa1of Rock Mechanics and Mining Sciences,1999,36(5):711-717.
    [128] Gong Q M, Jiao Y Y, Zhao J. Numerical modeling of the effects of joint spacing on rockfragmentation by TBM cutters[J].Tunnelling and Underground Spacing Technology,2006,21(1):46-55.
    [129] Gong Q M, Zhao J, Hefny A M. Numerical simulation of rock fragmentation process induced bytwo TBM cutters and cutter spacing optimization[J]. Tunnelling and Underground SpacingTechnology,2006,2l(3/4):263-270.
    [130] Nakashima H,Fujii H,Oida A,et al.Parametric analysis of lugged wheel performance for a lunarmicrorover by means of DEM[J].Journal of Terramechanics,2007,44(2):153-162.
    [131] Nakashima H,Fujii H,Oida A,et a1.Discrete element method analysis of single wheel performancefor a small lunar rover on sloped terrain[J].Journal of Terramechanies,2010,47(5):307-321.
    [132] Shmulevich I, Asaf Z, Rubinstein D. Interaction between soil and a wide cutting blade using thediscrete element method[J].Soil and Tillage Research,2007,97:37-50.
    [133] Ketterhagen W R, Curtis J S, Wassgren C R, et al. Granular segregation in discharging cylindricalhoppers: A discrete element and experimental study[J].Chemical Engineering Science,2007,62(22):6423-6439.
    [134] Ketterhagen W R, Curtis J S, Wassgren C R.Modeling granular segregation in flow from quasi-three-dimensional, wedge-shaped hoppers[J].Powder Technology,2008,179(3):126-143.
    [135] Jerzy Rojek. Discrete element modelling of rock cutting [J] computer methods in materialsscience,2007,7(2):224-230.
    [136] Jerzy Rojek, Carlos Labra, Eugenio O ate. Discrete element simulation of rock cutting processes.Vilnius, Lithuania: The10th International Conference,1040-1044.
    [137] Mukherjee A K, Mishra B K. Experimental and simulation studies on the role of fluid velocityduring particle separation in a liquid–solid fluidized bed[J]. International Journal of MineralProcessing,2007,82(4):211-221.
    [138] Carlos Labra,Jerzy Rojek,Eugenio Onate, et al.. Advances in discrete element modeling ofunderground excavations [J].Acta Geotechnica,2008,3:317-322.
    [139] D.B. Hastie,P.W. Wypych.Experimental validation of particle flow through conveyor transferhoods via continuum and discrete element methods[J].Mechanics of Materials,2010,42:383-394.
    [140] Su O, Ali Akcin N. Numerical simulation of rock cutting using the discrete element method[J].International Journal of Rock Mechanics and Mining Sciences,2011,48(3):434-442.
    [141] Knuth M A,Johnson J B,Hopkins M A,et a1.Discrete element modeling of a Mars ExplorationRover wheel in granular material.Journal of Terramechanies,2012,49(1):27-36.
    [142]武锦涛,陈纪忠,阳永荣.移动床中颗粒运动的微观分析[J].浙江大学学报(工学版),2006,40(5):864-892.
    [143]张锐,李建桥,许述财,李因武.推土板切土角对干土壤动态行为[J].吉林大学学报(工学版),2007,37(4):822-827.
    [144]张锐,李建桥,周长海,许述财.推土板表面形态对土壤动态行为影响的离散元模拟[J].农业工程学报,2007,23(9):13-19.
    [145]于建群,申燕芳,牛序堂,等.组合内窝孔精密排种器清种过程的离散元法仿真分析[J].农业工程学报,2008,24(5):105-109.
    [146]黄昕,刘义伦,金晓宏.冲击载荷下炭素糊料的位移特性研究[J].振动与冲击,2008,27(3):145-159.
    [147]陈进,周韩等.基于EDEM的振动种盘中水稻种群运动规律研究[J].农业机械学报,2011,42(10):79-83.
    [148]刘瑜.井下冲撞式煤矸分离中颗粒动力学行为研究[D].中国矿业大学,2011.
    [149]崔金生.模拟月壤的填充模型及特性研究[D].哈尔滨:哈尔滨工业大学,2011.
    [150]周里群,李军,邢国.基于PFC的沥青混凝土铣削仿真及刀具安装优化[J].湘潭大学自然科学学报,2012,34(4):95-98.
    [151]李菊,赵德安,沈惠平,等.基于DEM的谷物三维并联振动筛筛分效果研究[J].中国机械工程,2013,24(8):1018-1022.
    [152]姜鹏.基于离散元法的碾米机三维仿真分析[D].哈尔滨:东北农业大学,2013.
    [153]曹学涛.掘进机截齿截割煤岩的离散元仿真研究[D].沈阳:沈阳理工大学,2013.
    [154]谢宇,韩保红,程兆刚,等.料斗结拱及改流体的数值仿真研究[J].计算机仿真,2013,30(8):221-224.
    [155]谢宇明,卿启湘,汤钦卿.月壤的钻取采样离散元动态行为研究[J].工程设计学报,2013,20(6):476-481.
    [156]刘春生.滚筒式采煤机理论设计基础[M].徐州:中国矿业大学出版社,2003.
    [157]丁飞.采煤机工作机构CAD及薄煤层小直径滚筒装煤性能的研究[D].阜新:辽宁工程技术大学,2003.
    [158]王传礼,汪胜陆.螺旋滚筒最低和最高装煤转速的确定[J].煤矿机械,1996,4:1-3.
    [159]陶驰东.采掘机械[M].北京:煤炭工业出版社,1985.
    [160]采尼契夫编,陶驰东,杨长明译.联合采煤机设计与计算[M].北京:煤炭工业出版社,1980,1.
    [161]刘送永;采煤机滚筒截割性能及截割系统动力学研究[D];中国矿业大学;2009年.
    [162] Kuidong Gao, Changlong Du, Songyong Liu, Lin Fu. Model Test of Helical Angle Effect on CoalLoading Performance of Shear Drum[J] International Journal of Mining Science And Technology,2012,22:165-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700