用户名: 密码: 验证码:
新疆巨厚煤层开采覆岩活动规律及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文针对新疆地区巨厚煤层赋存特征及地质条件,综合运用现场调研、数值计算、物理模拟及理论分析等研究方法,对巨厚煤层开采覆岩活动规律及其控制等进行了系统分析,研究成果可为该类煤层安全高效开采提供理论指导。
     本论文主要研究成果如下:
     (1)对新疆巨厚煤层赋存条件进行分类,在此基础上分析并对比了不同类型巨厚煤层覆岩活动规律。提出并证实了巨厚煤层不同开采厚度导致覆岩结构呈现“破断—铰接稳定—失稳—二次破断”的变化特征,并揭示了覆岩呈现不同结构形态的产生机理。
     (2)物理模拟与数值模拟研究表明,巨厚煤层的开采造成采空区空间大幅度的增加,采场采动影响具有较大的波及范围,使得工作面覆岩的活动空间更大,易造成大范围岩体结构失稳破坏;巨厚煤层覆岩裂隙发育、地表下沉量及采动应力集中程度均受控于关键层破断块体的结构稳定性,稳定结构一旦失稳,在后续开采过程中难以重新铰接形成结构;在巨厚煤层开采过程中,部分覆岩块体会发生再次破断。
     (3)依据岩层控制的关键层理论,建立了巨厚煤层开采关键层破断块体整体结构力学模型;基于巨厚煤层关键层铰接结构稳定性,确定了顶板控制的重点区域;提出了巨厚煤层开采临界厚度的概念,并以此作为工作面开采过程中关键层铰接结构能否维持稳定的预测指标,初步确定了关键层能够形成稳定结构的巨厚煤层开采厚度临界值。
     (4)揭示了巨厚煤层覆岩块体二次破断机理,静载荷作用下覆岩块体二次断裂形式主要为块体失稳后呈悬臂结构拉破断,冲击载荷作用下覆岩块体二次破断主要发生在块体与其它岩体碰撞过程中;并分别建立覆岩块体在静载荷和冲击载荷作用下发生二次破断的力学模型,给出了不同因素影响下覆岩块体能否发生二次破断的判别式。
     (5)对巨厚煤层覆岩呈现不同结构时支架与围岩作用关系进行了力学分析,推导出控制巨厚煤层顶板稳定性的工作阻力计算公式,并取得了良好的现场应用效果。揭示了覆岩厚度与工作面长度在巨厚煤层开采支架围岩关系中的关键作用,以目前支架能否维护工作面顶板稳定为判断依据,初步确定了巨厚煤层可否全部开采的临界条件。
According to the occurrence characteristics and geological features of extra-thickcoal seam in Xinjiang region, situ survey, numerical simulation, physical simulationand theoretical analysis were undertaken to study the overlying strata movement lawsand its control technology of extra-thick coal seam mining. This study will pay anactive role in theoretic references to efficiency and safety mining of extra-thick coalsea.
     Main achievements of this dissertation have been displayed as follows:
     (1)Occurrence conditions of extra-thick coal seam in Xinjiang region wasapplicable classified, and based on this the overlying strata movement laws indifferent types of extra-thick coal seam were analyzed and contrasted.“Fracture-Hinged stable-Unstable-Fracture again” variations of overlying stratacaused by different mining height were proposed and confirmed, and the generationmechanisms of overlying strata in different compositions were revealed.
     (2)Physical simulation and numerical simulation experiment results show thatextra-thick coal seam mining causes a significant increase in goaf space, and miningdisturbance influence scope has spread to a large range, which lead to more space ofoverlying strata movement, and could easily cause a wide range structural instabilityof overlying strata. Overlying strata fissures development, surface subsidence, andstress concentration of extra-thick coal seam mining are controlled by the structuralstability of key strata rocks. When the structural instability of key strata occurs,hinged stable structure cannot be reformed in the subsequent mining process. Part ofoverlying strata blocks will break again in the slicing mining of extra-thick coal seam.
     (3)According to key stratum theory of strata control, the overall structuralmechanical models of key strata were constructed to analyze the stability of key strata.Based on the stability of key strata, key areas of roof control were identified inextra-thick coal seam mining. The critical thickness concept of extra-thick coal seammining had been put forward, and used as the forecast index for key layer structuralstability during coalface mining process, and the critical value of extra-thick coalseam thickness for judging key layer structural stability had been preliminarilydetermined.
     (4)Secondary break mechanism of overlying strata blocks was revealed. Understatic loading, the secondary fracture mode of overlying strata block was tensile fracture, when block formed a cantilever structure after instability, and overlyingstrata blocks secondary breaking mainly occurred in the collision course with otherblocks under impact loading. Mechanical model of overlying strata secondarybreaking were respectively constructed under the conditions of static loading andimpact loading, and secondary rupture discriminants of strata blocks in differentfactors were formulated.
     (5)“support-surrounding rock” of extra-thick coal seam mining had beenmechanical analyzed under the condition of different overlying strata structures, andsupporting resistance of controlling roof structure instability had been calculated,which achieved good comprehensive application results. The central role of overlyingstrata thickness and working face length in “support-surrounding rock” relationshipswas revealed. Using the condition whether the support could control the roof or not asjudgment criterion, full mining critical condition of extra-thick coal seam wasobtained.
引文
[1]杨志远,张泓,李恒堂,等.新疆煤炭资源现状与综合评价关键问题[C].中国地质学会、中国煤炭学会煤田地质专业委员会暨中国煤炭工业劳动保护科学技术学会水害防治专业委员会学术年会论文汇编,2007:31-36.
    [2]孟宪锐,王鸿鹏,刘朝晖,等.我国厚煤层开采方法的选择原则与发展现状[J].煤炭科学技术,2009,(1):39-44.
    [3]王晓勇,张栋,张荣营.准东二号矿井巨厚煤层采煤方法探讨[J].山东煤炭科技,2010,(4):138-139.
    [4]邱振先.国外厚煤层开采和安全技术现状[J].东北煤炭技术,1996,(5):3-9.
    [5]翟德元,刘学增.房柱式开采覆岩移动机理研究[J].非金属矿,1999,(2):36-37.
    [6]张幼蒂.现代露天开采技术国际发展与我国露天采煤前景[J].露天采矿技术,2005(3):1-3.
    [7]王宁波,张农,崔峰,等.急倾斜特厚煤层综放工作面采场运移与巷道围岩破裂特征[J].煤炭学报,2013(8):1312-1318.
    [8]吴健.我国综放开采技术15年回顾[J].中国煤炭,1999,22(l):10-6.
    [9]吴健,张勇.综放采场支架-围岩关系的新概念[J].煤炭学报,2001,6(4):350-355.
    [10] Wu Jian, Fu Qiang. Current situation and prospect of top coal caving technology in China[J].Journal of China University of Mining&Technology,1998,8(2):10-112.
    [11]宋选民.综放采场顶煤冒放性研究及其控制[D].中国矿业大学博士学位论文,1997.
    [12]宋选民,靳钟铭.顶煤冒放性和夹矸赋存特征的相互关系研究[J].煤炭科学技术,1995,23(11):22-24..
    [13]宋选民.综放采场顶煤冒放性控制理论及其应用[M].北京:煤炭工业出版社,2002.
    [14]陈忠辉,谢和平,林忠明.综放开采顶煤冒放性的损伤力学分析[J].岩石力学与工程学报,2002,21(8):1136-1140.
    [15] Chen Zhonghui, Xie HePing, Wang Jiachen. Numerical simulation on three dimensionaldeformation and failure of top coal caving[J]. Chinese Journal of Rock Mechanics andEngineering,2002,21(3):309-313.
    [16]姜福兴.采场顶板控制设计及其专家系统[M].江苏徐州:国矿业大学出版社,1995.
    [17]杨淑华,姜福兴.综采放顶煤支架受力与顶板结构的关系探讨[J].岩石力学与工程学报,1999,18(3):287-290.
    [18] N.E.Yasitli, B.Unver.3D numerical modeling of long-wall mining with top-coal caving[J].International Journal of Rock Mechanics&Mining Sciences,2005,(42):219-235.
    [19] Rajendra Singh. Staggered development of a thick coal seam for full height working in asingle lift by the blasting gallery method[J]. International Journal of Rock Mechanics&Mining Sciences,2004(41):745-759.
    [20] B.Unver, N.E.Yasitli. Modeling of strata movement with a special reference to cavingmechanism in thick seam coal mining[J]. International Journal of Coal Geology,2006,(66):227-252.
    [21] S.K.Das. Observations and classification of roof strata behavior over long-wall coal miningpanels in India[J]. International Journal of Rock Mechanics and Mining Sciences,2000,(37):585-597.
    [22] S.K.Sarkar, T.K.Chatterjee. Single lift extraction of thick seam by longwall mining underIndian geo-mining conditions [J]. International Symposium on Seam Mining, Indian:1992.
    [23] Liu B, Yue Z Q, Tham L G.. Analytical design method for a truss-bolt system forreinforcement of fractured coal mine roofs-illustrated with a case study[J]. InternationalJournal of Rock Mechanics and Mining Sciences,2005,42(2):195-189.
    [24] Cai M, Morioka H, Kaiser P K, et al. Back-analysis of rock mass strength parameters usingAE monitoring data[J].International Journal of Rock Mechanics and MiningSciences,2007,44(4):538-547.
    [25] Hebblewhite B K, Lu T. Geomechanical. Behaviour of laminated, weak coal mine roof strataand the implications for a ground reinforcement strategy [J].International Journal of RockMechanics and Mining Sciences,2004,41(1):147-153.
    [26] C Chunlin Li. Rock support design based on the concept of pressure arch[J].InternationalJournal of Rock Mechanics and Mining Science,2006,43(7):1083-1092.
    [27] Moosavi M, Grayeli R. A model for cable bolt-rock mass interaction: Integration withdiscontinuous deformation analysis (DDA) algorithm[J]. International Journal of Rockmechanics and Mining Science,2006,43(4):661-670.
    [28] Goel R K, Anil Swarup, Sbeorey P R.. Bolt length requirement in underground openings[J].International Journal of Rock Mechanics and Mining Sciences,2007,44(5):802-815
    [29] E.Unal, I.Ozkan, G. Cakmakci. Modeling the behavior of longwall coal mine gate roadwayssubjected to dynamic loading [J].International Journal of Rock Mechanics&Mining Science,2001,38:181-197.
    [30]赵宏珠.特大采高液压支架发展与研究[J].采矿安全与工程学报,2007,24(3):265-269.
    [31]赵宏珠,蒋哲明,李广申.缓倾斜厚煤层整层垮落开采设备及工艺[M].煤炭工业出版社,1991:127-304.
    [32]郝海金,张勇,袁宗本.大采高开采上位岩层平衡结构及其对采场矿压显现的影响[J].煤炭学报,,2004,29(2):137-141.
    [33]郝海金,吴健,张勇,等.大采高开采上位岩层平衡结构及其对采场矿压显现的影响[J].煤炭学报,2004,29(2):137-141.
    [34]弓培林,靳钟铭.大采高采场覆岩结构特征及运动规律研究[J].煤炭学报,2004,29(1):7-11.
    [35]弓培林,靳钟铭.影响大采高综采支架稳定性的试验研究[J].太原理工大学学报,2001,32(2):666-668.
    [36]弓培林.大采高采场围岩控制原理和技术[M].北京:中国矿业大学出版社,2003:3-20.
    [37] Gong Peilin, Jin Zhongming, Hao Haijin,ete. Research on stability test for fully mechanizedmining support with large mining height [J]. Proceedings of the second internationalsymposium on mining technology,2001,246-251.
    [38]华心祝,谢广祥.大采高综采工作面煤壁片帮机理及控制技术[J].煤炭科学技术,2008,36(9):1-3.
    [39]张保春.大采高综采工作面实现安全高效开采的技术应用研究[J].安徽建筑工业学院学报(自然科学版),2007,15(4):70-73.
    [40]胡文,李维光,黄建功.大倾角煤层底板岩层运动规律与采面底板分类[J].矿山压力与顶板管理,2002,(1):81-83.
    [41]尹光志,鲜学福,代高飞.大倾角煤层开采岩移基本规律的研究[J].岩土工程学报,2001,(4):67-71.
    [42]刘长友,邹永华,王永军,等.大倾角仰斜开采工作面合理支护参数的确定[J].江苏煤炭,1998,(2):3-5.
    [43]韩德明,王德依.大倾角“三软”煤层走向长壁工作面下行收作法[J].煤炭科技,2001,(3):7-9.
    [44]李天才,刘天应.倾角煤层分走向密集采煤法[J].矿山压力与顶板管理,1990,(2):43-46.
    [45]陈炎光,钱鸣高.国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994,312-370.
    [46]李维光,黄建功.大倾角薄及中厚煤层俯伪斜走向长壁采煤法矿压显现[J].煤矿开采,1999,(3):97-100.
    [47]周光华.特厚煤层大采高开采技术研究及应用[D].西安科技大学工程硕士学位论文,2010.
    [48]闫少宏,尹希文.大采高综放开采几个理论问题的研究[J].煤炭学报,2008,33(5):481-484.
    [49]康天合,柴肇云,李义宝等.底层大采高综放全厚开采20m特厚中硬煤层的物理模拟研究[J].岩石力学与工程学报,2007,26(5):1065-1072.
    [50]马立强,张东升,孙广京,等.厚冲积层下大采高综放工作面顶板控制机理与实践[J].煤炭学报,2013,38(2):199-203.
    [51]于雷,闫少宏,毛德兵,等.基于ARAMIS M/E微震监测的大采高综放顶板活动规律[J].煤炭学报,2011,36(增刊2):293-298.
    [52]毛德兵,姚建国.大采高综放开采适应性研究[J].煤炭学报,2010,35(11):1837-1841.
    [53]王少一,高岳,朱锐杰.厚煤层分层开采覆岩破坏与变形规律的试验研究[J].现代矿业,2009,1(1):60-62.
    [54]程文东,谢俊文,王更雨,等.急斜厚煤层分层与分段放顶煤岩层移动对比[J].煤炭学报,2009,34(4):487-481.
    [55]崔希民,许家林,缪协兴.潞安矿区综放与分层开采岩层移动的相似材料模拟试验研究[J].实验力学,1999,14(3):402-406.
    [56]曹树刚,乔福祥.厚煤层倾斜分层开采的矿山压力研究[J].煤炭学报,1987,3:63-75.
    [57]虞悦生.恒底上行分层采煤法[J].煤炭科学技术,1987,12:1-5.
    [58]刘先贵,石永奎,范炜林,等.恒底开采矿压显现规律模拟研究[J].山东矿业学院学报,1990,9(3):268-272.
    [59]可自清.厚煤层分层上行垮落开采[J].陕西煤炭技术,1988,2:7-8.
    [60]王印石.厚煤层恒底分层综合机械化采煤[J].煤矿设计,1988,1(1):1-5.
    [61]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [62]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988.
    [63] Sirivardane and Amanda. Displacement Based Approach for Prediction of Subsidence Causeby Longwall Mining Using Numerical Method, Proc[J]. Thinconf on compute Method,1991.
    [64] X..L. Yao and D.J. Reddish. Nonlinear Finite Element Analysis of Surface SubsidenceArising from Indined Sean Entraction[J]. INT.I.RODK, Mech.&Mining SCI,1993(4).
    [65] Wood. Larnach Drum Constitutive Modeling and Finite Element Analysis of GroundSubsidence due to Mining[J]. University of Oklahoma,1990.
    [66] Karmis M, Triplett T, Haycocks C, etc. Mining subsidence and its prediction in coalfield[J].Rock Mechanics,22-23June1983.
    [67] Hasenfus GJ, Johnson KL, Su DWH. A hydrogeomechanical study of overburden aquiferresponse to longwall mining[J]. In: Proc.7th Conf. Ground Control in Mining,3-5August1988, Morgantown. West Virginia University, Morgantown:144-152.
    [68] Bai M, Elsworth D. Some aspects of mining under aquifers in China[J]. Mining Sci. Tech.,1990,10(1):81-91.
    [69] Palchik V. Influence of physical characteristics of weak rock mass on height of caved zoneover abandoned subsurface coal mines[J]. Environmental Geology,2002,42(1):92-101.
    [70] Holla L, Bulzen M. Strata movement due to shallow longwall mining and the effect onground permeability[J].Aus IMM Bulletin and Proceedings, Vol.295No.1May1990.
    [71] Shith GJ, Rosenbaum M S. Resent underground investigation of abandoned chalk mineworkings beneath Norwich City Norfolk[J]. Engineering geology, Vol.36No.l-2Nov.1993.
    [72] Miller R D, Steeples D W, Schulte L. Shallow seismic reflecting study of salt dissolution wellfield near Htchinson KS[J]. Mining Engineering (Littleton Colorado),Vol.45No.10Oct.1993.
    [73] Bill Reid. Longwall Mining in SouthAfrica[J]. Coal, Vol.99No.10Oct.1994.
    [74] Singh R P, Yadav R N. Subsidence due to coal mining in India[J]. In: Proceedings of the l9955th International Symposium on land Subsidence, IAHS Publication, No.234,1995.
    [75] Rajendra Singh, Singh T N, Bharaf B.Dhar.Coal Pillar loading in shallow conditions[J].Intemational Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1996,53(8).
    [76]A.A.鲍里索夫.矿山压力原理与计算[M].北京:煤炭工业出版社,1986.
    [77]钱鸣高,李鸿昌.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报,1982,(2):1-12.
    [78]钱鸣高,刘听成.矿山压力及其控制(修订本)[M].北京:煤炭工业出版社,1992.
    [79]钱鸣高,缪协兴,何富联.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994,19(6):557-563.
    [80]何富连,钱鸣高.大采高液压支架倾倒特征与控制条件[J].中国矿业大学报,1997,26(4):20-26.
    [81]何富连,钱鸣高.高产高效大采高综采技术的研究与实践[J].阜新矿业学院学报,1997,16(1):5-7.
    [82]谢和平,周宏伟,王金安,等. FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报,1999,18(4):397-401.
    [83]张建华,吕兆海,周光华,等.破碎围岩条件下开采扰动区动力失稳[J].西安科技大学学报,2007,27(4):544-549.
    [84]张建华,蔡晓芒,张世库.清水营煤矿600m疏降水法凿井技术研究[J].神华科技,2009,7(4):41-42.
    [85]来兴平,周光华,张建华.羊场湾煤矿大断面巷道冒顶现场综合调查与控制分析[J].西北煤炭,2006,4(3):19-21.
    [86]蔡晓芒.清水营煤矿井巷围岩稳定性分析与控制研究[D].西安科技大学工程硕士学位论文,2009.
    [87]马金明.羊场湾煤矿大断面软岩巷道支护研究[D].西安科技大学工程硕士学位论文,2010.
    [88] J.A. Wang, H.D. Park, Y.T. Gao. A new technique for repairing and controlling large-scalecollapse in the main transportation shaft, Chengchao iron mine[J]. China InternationalJournal of Rock Mechanics&Mining Sciences,2003,40:553-563.
    [89]宋扬,宋振骐.采场支承压力显现规律与上覆岩层的运动关系[J].煤炭学报,1984(1):47-55.
    [90]吴绍倩,石平五.倾斜煤层矿压显现规律的研究[J].西安矿业学院学报,1990,(2):4-8.
    [91]靳钟铭,徐林生.煤矿坚硬顶板控制[M].北京:煤炭工业出版社,1994.
    [92]曹树刚.采场围岩复合拱力学结构探讨[J].重庆大学学报,1989(1):72-78.
    [93]靳钟铭,张惠轩,宋选民,等.综放采场顶煤变形运动规律研究[J].矿山压力与顶板管理,1992(1):26-32.
    [94]古全忠,史元伟,齐庆新.放顶煤采场顶板运动规律[J].矿山压力与顶板管理,1995(3):76-80.
    [95]张顶立,王悦汉.综采放顶煤工作面岩层结构分析[J].中国矿业大学学报,1998,27(4):340-343.
    [96]张顶立.综放工作面岩层控制[J].山东科技大学学报,2000,19(1):8-11.
    [97]翟英达,康立勋,朱德仁,等.面接触块体结构的力学特性研究[J].煤炭学报,2003,28(3):241-245.
    [98]闫少宏,尹希文,许红杰,等.大采高综采顶板短悬臂梁-铰接岩梁结构与支架工作阻力的确定[J].煤炭学报,2011,36(11):1816-1820.
    [99]吴立新,王金庄.连续大面积开采托板控制岩层变形模式的研究[J].煤炭学报,1994,(3):233-242.
    [100]吴立新,李保生,王金庄,等.重复条采时上层煤柱应力变化及其稳定性的试验研究[J].煤矿开采,1994(2):37-40.
    [101]蒋金泉.老顶岩层板结构断裂规律[J].山东矿业学院学报,1988(1):51-58.
    [102]姜福兴,张兴民,杨淑华,等.长壁采场覆岩空间结构探讨[J].岩石力学与工程学报,2006,25(5):979-984.
    [103]谢广祥.综放工作面及其围岩宏观应力壳力学特征[J].煤炭学报,2007,30(3):309-313.
    [104]谢广祥,王磊.采场围岩应力壳力学特征的工作面长度效应[J].煤炭学报,2008,33(12):1336-1340.
    [105]杨科,谢广祥,常聚才.不同采厚围岩力学特征的相似模拟实验研究[J].煤炭学报,2009(8):1446-1450.
    [106]黄庆享.浅埋煤层长壁开采顶板控制研究[J].岩石力学与工程学报,1999(3):290.
    [107]王旭锋.冲沟发育矿区浅埋煤层采动坡体活动机理及其控制研究[D].中国矿业大学博士论文,2009.
    [108]伍永平,解盘石,王红伟,等.大倾角煤层开采覆岩空间倾斜砌体结构[J].煤炭学报,2010(8):1252-1256.
    [109]张炜,张东升,马立强.神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J].中国矿业大学学报,2011,40(2):196-201.
    [110] Xufeng Wang, Dongsheng Zhang, Gangwei Fan, et al. Underground pressure characteristicsanalysis in back-gully mining of shallow coal seam under a bedrock gully slope [J]. MiningScience and Technology(China),2011,21(4):563-566.
    [111] Dongsheng Zhang, Gangwei Fan, Xufeng Wang. Characteristics and stability of slopemovement response to underground mining of shallow coal seams away from gullies[J].International Journal of Mining Science and Technology,2012,22(1):47-50.
    [112] Gangwei Fan, Dongsheng Zhang, Deyuan Zhai, et al. Laws and mechanisms of slopemovement due to shallowly buried coal seam mining under ground gully [J]. Journal of CoalScience&Engineering(China)2009,15(4):346-350.
    [113] Xufeng Wang, Dongsheng Zhang, Tingfeng Cui, et al. Study on Rational Width of EntryProtection Coal-Pillar in Large Mining Height Working Face[J]. Advanced MaterialsResearch.2011,413:404-409
    [114] Xufeng Wang, Dongsheng Zhang, Deyuan Zhai, et al. Analysis of activity characteristics ofmining-induced slope and key area of roof controlling under bedrock gully slope in shallowcoal seam[J]. ICMHPC-2010International Conference on Mine Hazards Prevention andControl.2010:90-97.
    [115] Wei Zhang, Dongsheng Zhang, Liqiang Ma, et al. Dynamic evolution characteristics ofmining-induced fractures in overlying strata detected by radon[J]. Nuclear Science andTechniques,2011,22(6):334-337.
    [116] Dongsheng Zhang, Gangwei Fan, Liqiang Ma, et al. Aquifer protection during longwallmining of shallow coal seams: A case study in the Shendong Coalfield of China[J].International Journal of Coal Geology,2011,86(2-3):190-196.
    [117] Dongsheng Zhang, Gangwei Fan, Yude Liu, et al. Field trials of aquifer protection inlongwall mining of shallow coal seams in China [J] International Journal of Rock Mechanicsand Mining Sciences,2010,47(6):908-914.
    [118]张炜,张东升,马立强,等.一种氡气地表探测覆岩采动裂隙综合试验系统研制与应用[J].岩石力学与工程学报,2011,30(12):2531-2539.
    [119]张炜.覆岩采动裂隙及其含水性的氡气地表探测机理研究[D].中国矿业大学博士论文,2012.
    [120]许猛堂.厚黄土层薄基岩条带开采地表变形规律及合理采留宽度研究[D].中国矿业大学硕士论文,2011.
    [121]李全生,张忠温,南培珠.多煤层开采相互采动的影响规律[J].煤炭学报,2006,3(4):425-428.
    [122]郑百生,谢文兵,窦林名,等.近距离孤岛工作面动压影响巷道围岩控制[J].中国矿业大学学报,2006,35(4):483-487.
    [123]方新秋,郭敏江,吕志强.近距离煤层群回采巷道失稳机制及其防治[J].岩石力学与工程学报,2009,28(10):2059-2067.
    [124]孙玉宁,李化敏.煤层群开采矿压显现的时空关系及相互影响研究[J].煤炭工程,2004(1):54-58.
    [125]李良林,陈怀合,聂建湘.近距离煤层开采的矿压显现[J].煤炭技术,2004,23(11):51-53.
    [126]侯多茂.近距离煤层开采时矿压显现规律[J].煤矿开采,2007,12(6):71-74.
    [127]杨宝智,马云.浅析近距离煤层开采巷道集中压力显现规律[J].煤矿支护,2006,2:13-16.
    [128]王晓振,许家林,朱卫兵,等.走向煤柱对近距离煤层大采高综采面矿压影响[J].煤炭科学技术,2009,37(2):1-21.
    [129]王晓振,石飞,朱卫兵,等.活鸡兔井沟谷地形下初次来压规律分析[J].能源技术与管理,2009(4):9-11.
    [130]朱涛.极近距离煤层刀柱采空区下长壁开采矿山压力及其控制研究[D].太原理工大学硕士学位论文,2007.
    [131]胡仲国,杨金顺,彭小元,等.极近距离煤层刀柱采空区下走向长壁开采的探讨[J].煤炭科学技术,2000,28(4):43-46.
    [132]杨光玉,贺兴元.局部煤柱下安全采煤技术[J].煤炭科学技术,2001,29(10):16-19.
    [133]吴爱民,左建平.多次动压下近距离煤层群覆岩破坏规律研究[J].湖南科技大学学报(自然科学版),2009,24(4):1-6.
    [134]吴立新,李保生,王金庄,等.重复条采时上层煤柱应力变化及其稳定性的试验研究[J].煤矿开采,1994(2):37-40.
    [135]胡炳南.长壁重复开采岩层移动规律研究[J].煤炭科学技术,1999,27(11):43-45.
    [136]余学义,李星亮,王鹏.特厚煤层分层综放开采覆岩破坏规律数值模拟[J].煤炭工程,2012,9:67-69.
    [137]余学义,刘俊,王鹏,等.特厚煤层分层开采导水裂隙带高度探测研究[J].中州煤炭,2013,7:4-7.
    [138]康永华,国玺.覆岩性质对“两带”高度的影响[J].煤矿开采,1998,1:52-54.
    [139]康永华.采煤方法变革对导水裂缝带发育规律的影响[J].煤炭学报,1998,23(3):262-266.
    [140]康永华,黄福昌,席京德.综采重复开采的覆岩破坏规律[J].煤炭科学技术,2001,29(1):22-24.
    [141]王庆照,蒋升,司马俊杰.厚煤层重复采动覆岩破裂发育规律研究[J].山东科技大学学报(自然科学版),2010,29(4):67-71.
    [142]郭惟嘉,孙熙震,穆玉娥,等.重复采动地表非连续变形规律与机理研究[J].煤炭科学技术,2013,41(2):1-4.
    [143]王悦汉,邓喀中,张冬至.重复采动条件下覆岩下沉特性的研究[J].煤炭学报,1998,23(5):470-475.
    [144]麻凤海.大倾角多煤层开采地表移动规律的数值模拟研究[J].中国矿业,2009,18(6):71-73.
    [145]麻凤海,范学理,王泳嘉.巨系统复合介质岩层移动模型及工程应用[J].岩石力学与工程学报,1997,16(6):536-543.
    [146] Wu Kan, Wang Yuehan, Deng Kazhong. Application of dynamic mechnics model ofoverlying strata movement and damage above goaf[J]. Journal of China University ofMining&Technology,2000,29(1):34-36.
    [147]高明中,余忠林.厚冲积层急倾斜煤层群开采重复采动下的开采沉陷[J].煤炭学报,2007,32(4):347-352.
    [148]朱卫兵.浅埋近距离煤层重复采动关键层结构失稳机理研究[D].中国矿业大学博士学位论文,2010.
    [149]张百胜.极近距离煤层开采围岩控制理论及技术研究[D].太原理工大学博士学位论文,2008.
    [150]杨起,韩德馨.中国煤田地质学(上册)[M].北京:煤炭工业出版社,1979:82-96.
    [151]朱涛.软煤层大采高综采采场围岩控制理论及技术研究[D].太原:太原理工大学博士论文,2010.
    [152]康天合,柴肇云,李义宝,等.底层大采高综放全厚开采20m特厚中硬煤层的物理模拟研究[J].岩石力学与工程学报,2007,26(5):1065-1071
    [153]卿笃乐.21m厚煤层综放一次采全高技术研究[D].西安:西安科技大学硕士论文,2004.
    [154]胡社荣,蔺丽娜,黄灿,等.超厚煤层分布与成因模式[J].中国煤炭地质,2011,23(1):1-5.
    [155]程日辉,易海永,刘招君.含煤旋回层形成的控制因素[J].世界地质,1994,13(3):92-97.
    [156]魏恒飞,陈践发,王冠男,等.含煤岩系层序地层学研究进展[J].煤田地质与勘探,2013,41(1):1-7.
    [157]李鑫.新疆准东煤田中部矿区中侏罗统西山窑组层序地层分析及聚煤规律研究[D].北京:中国地质大学硕士论文,2010.
    [158]张东升,刘洪林,管伟明,等.新疆大学采矿工程专业人才培养方案构建与特色[J].煤炭高等教育,2013,31(5):99-101.
    [159]陶明信.吐-哈盆地大地构造环境分析-兼论大陆板内盆地与造山带的成因关系[J].沉积学报,1994,(12)4:40-49.
    [160]吕锡敏.吐哈盆地构造特征与油气赋存[J].江汉石油学院学报,2001,(23)2:75-79.
    [161]赵文智,袁非,曾晓明.吐鲁番哈密盆地的构造特征[J].石油学报,1992,13(3):9-17.
    [162]姚慧君.吐鲁番-哈密盆地板块构造演化及其含油气远景评价[J].石油勘探与开发1988,(6):12-18.
    [163]马瑞士,王赐银,叶尚夫,等.东天山构造格架及地壳演化[M].南京:南京大学出版社,1993.
    [164]张德润.新疆东部地区大地构造问题探讨[J].新疆地质,1990,8(2):99-106.
    [165] Hendrix M S, Graham S A, Carroll A R, et al. Sedimentary record and climatic implicationsof recurrent deformation in the Tianshan: Evidence from Mesozoic strata of the north Tarim,south Junggar, and Turpan basin, northwest China[J]. Geological Society of America Bulletin,1992,104:53-79.
    [166] Allen M B, Windley B F, Zhang C and Guo J H. Evolution of the Turfan basin, ChineseCentralAsia[J]. Tectonics,1993,12:889-896.
    [167] Gao Jun, Li Maosong, Xiao Xuchang, et al. Paleozoic tectonic evolution of the Tianshanorogen, northwestern China[J]. Tectonophysics,1998,287:213-231.
    [168]王世新.新疆吐哈盆地南缘构造演化地质特征及聚—成煤规律[D].吉林:吉林大学博士论文,2013.
    [169]范钢伟.浅埋煤层开采与脆弱生态保护相互响应机理与工程实践[D].徐州:中国矿业大学,2011.
    [170]刘玉德.沙基型浅埋煤层保水开采技术及适用条件分类[D].徐州:中国矿业大学,2009.
    [171]范钢伟,张东升,马立强.神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J].中国矿业大学学报,2011,40(2):196-201.
    [172]王红胜.沿空巷道窄帮蠕变特性及其稳定性控制技术研究[D].徐州:中国矿业大学,2011.
    [173]钱鸣高,采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):97-105.
    [174]冯国瑞.残采区上行开采基础理论及应用研究[D].太原:太原理工大学,2009.
    [175]黄庆享.浅埋煤层长壁开采顶板结构及岩层控制研究[M].江苏徐州:国矿业大学出版社,2000.
    [176]刘鸿文.材料力学Ⅱ[M].北京:高等教育出版社,2004:44-47.
    [177]杜计平,汪理全.煤矿特殊开采方法[M].徐州:中国矿业大学出版社,2003:1-15.
    [178] Xu Mengtang, Zhang Dongsheng, Zhang Wei. Mechanical Properties of Superhigh-waterMaterial and Its Application to Backfill Mining[J]. Electronic Journal of GeotechnicalEngineering,2013,18L:2369-2381.
    [179]黄艳利.固体密实充填采煤的矿压控制理论与应用研究[D].徐州:中国矿业大学,2012.
    [180]缪协兴,张吉雄,郭广礼.综合机械化固体废物充填采煤方法与技术[M].徐州:中国矿业大学出版社,2010.
    [181] Qian Minggao. A Study of the Behavior of Overlying Strata in Longwall Mining and itsApplication to Strata Control, Proceedings of the Symposium on Strata Mechanics, ElsevierScientific Publishing Company,1982:13-17.
    [182]曹胜根,缪协兴,钱鸣高.“砌体梁”结构的稳定性及其应用[J].东北煤炭技术,1998,(5):21-26.
    [183]钱鸣高,李鸿昌.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报,1982(2):1-12.
    [184]贾喜荣,杨永善,杨金梁.老顶初次断裂后的矿压裂隙带[J].山西煤炭,1994,(4):21-22.
    [185]贾喜荣,李海,王青平,等.薄板矿压理论在放顶煤工作面中的应用[J].太原理工大学学报,1999,(2):179-183.
    [186]刘广责,姬刘亭,王志强.采场上覆关键层弹性薄板断裂条件判定[J].煤炭工程,2009,(7):83-86.
    [187]翟所业,张开智.用弹性板理论分析采场覆岩中的关键层[J].岩石力学与工程学报,2004,23(11):1856-1860.
    [188]王红卫,陈忠辉,杜泽超,等.弹性薄板理论在地下采场顶板变化规律研究中的应用[J].岩石力学与工程学报,2006,25(增2):3769-3774.
    [189]陈忠辉,谢和平,李全生.长壁工作面采场围岩铰接薄板组力学模型研究[J].煤炭学报,2005,(4):172-176.
    [190]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,(1):39-42.
    [191]茅献彪,缪协兴,钱鸣高.采动覆岩中复合关键层的断裂垮距计算[J].岩土力学,1999,20(2):1-4.
    [192] Wang Yuehan. Integral system research of prediction of mining subsidence,21ThAPCOM.2001,5.
    [193] Peng SS. Coal mine ground control[M]. John Wiley&Sons, Inc, New York,1978.
    [194] Arutyunyan N, Metlov V V. Some problems in the theory of creep in bodies with variableboundaries[J]. Mechanics of Solids,1982,17(5):92-103.
    [195]张勇,刘传安,张西斌.煤层群上行开采对上覆煤层运移的影响[J].煤炭学报,2011,36(12):1990-1995.
    [196]曹树刚,乔福祥.厚煤层倾斜分层开采的矿山压力研究[J].煤炭学报,1987(3):63-72.
    [197]李铁,蔡美峰,蔡明.分层开采煤矿的矿震能量释放模型与能量释放谱[J].煤炭学报,2007,32(12):1258-1263.
    [198]刘长友,钱鸣高,曹胜根,等.采场直接顶对支架与围岩关系的影响机制[J].煤炭学报,1997,5:471-476.
    [199]蒋金泉.采场围岩应力与运动[M].北京:煤炭工业出版社,1993.
    [200]杨培举.两柱掩护式放顶煤支架与围岩关系及适应性研究[D].徐州:中国矿业大学,2009.
    [201]钱鸣高,缪协兴,何富连,等.采场支架与围岩耦合作用机理研究[J].1996,21(1):40-44.
    [202]李世平.岩石力学简明教程[M].徐州:中国矿业大学出版社,1994.
    [203]许惠德,马金荣,等.土质学及土力学[M].徐州:中国矿业大学出版社,1995.
    [204]夏小刚.采动岩层与地表移动的“四带”模型研究[D].西安:西安科技大学博士学位论文,2012.
    [205]王国法.液压支架技术体系研究与实践[J].煤炭学报,2010,35(11):1903-1908.
    [206]苏华友.双护盾TBM开挖深埋隧洞围岩稳定性研究[D].成都:西南交通大学博士研究生学位论文,2009.
    [207]林达明,尚彦军,孙福军,等.岩体强度估算方法研究及应用[J].岩土力学,2011,32(3):837-848.
    [208]周纪军.岩石破坏的演变过程及强度衰减研究[D].徐州:中国矿业大学硕士研究生学位论文,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700