用户名: 密码: 验证码:
Zn/Mg/Al-LDHs/神府煤复合材料结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以煤炭自燃防治材料和新型无卤阻燃材料的制备及应用为背景,基于煤特殊的微纳米孔隙结构和官能团结构特征,借鉴锌镁铝层状双氢氧化物(Zn/Mg/Al-LDHs)的制备方法及影响因素研究,探讨了Zn/Mg/Al-LDHs/神府煤复合材料(CLCs)的制备方法、结构及性能。研究成果对新型矿物功能材料制备及应用具有重要的理论意义和应用价值。
     通过FTIR、XRD、GC-MS和低温氮气吸附等手段,系统研究了低温氧化对神府煤(SFC)腐植酸产率及其各级分腐植酸分布的影响,以及低温氧化、脱灰及脱腐植酸等预处理对SFC孔结构分布的影响。结果表明,氧化SFC的总腐植酸产率随着氧化温度的升高及氧化时间的延长而迅速增加。预处理SFC中的黑腐酸产率最高,其次为棕腐酸,黄腐酸产率最低。预处理SFC的中孔增加、比表面积减小。
     用共沉淀法制备了Zn/Mg/Al-LDHs。通过XRD、FTIR、SEM和TG-DSC分析研究了金属离子比例、阴离子(煤基腐植酸及其不同级分)种类、以及微波和超声强化方式等对Zn/Mg/Al-LDHs组成、结构和热性能等的影响。结果表明,腐植酸在水滑石层板表面的络合及吸附作用诱导Zn/Mg/Al-CO3-LDHs层板沿着腐植酸的表面弯曲生长,从而形成球形团簇状Zn/Mg/Al-HAs-LDHs复合材料。微波、超声辅助共沉淀法可提高Zn/Mg/Al-LDHs晶体颗粒的均匀性、使粒径减小、团聚降低。Zn/Mg/Al-LDHs的热稳定性与其中的金属元素的比例有关,镁离子增加时热稳定性降低,吸热分解温度范围变宽。
     采用原位共沉淀法方法合成了CLCs。CLCs的结晶度随SFC的质量分数的增加而降低。结果表明,改变煤低温氧化温度及LDHs的晶化时间,可对CLCs表面Zn/Mg/Al-LDHs的形貌进行调控,其调控机理为煤表面官能团对金属离子络合与孔道吸附之间耦合作用。
     采用TG-DSC热分析方法,系统研究LDHs-煤复配材料及CLCs的热性能,探讨CLCs的煤自燃防治性能。结果表明,当Zn2Al1-CO3-LDHs、 Mg2Al1-CO3-LDHs、Zn1Mg1Al1-CO3-LDHs以物理混合方式加入SFC,添加量分别为3%、5%和15%时,SFC自燃临界温度较高。当Zn1Mg2Al1-CO3-LDHs以纳米纤维状复合分散于SFC时,预防煤炭自燃效果最好,这主要归因于在煤炭自燃过程中,CLCs可形成致密的金属氧化物-碳(LDOs-C)阻隔层。Zn/Mg/Al-LDHs和CLCs预防煤炭自燃的机理为煤低温氧化放热过程与LDHs和CLCs吸热分解过程耦合作用。CLCs具有独特的自修复性能。
     用共混方法制备CLCs/EVA复合材料。用热释放速率、氧指数和UL94阻燃级别等指标评价了CLCs/EVA的阻燃特性。结果表明,CLCs具有高效抑烟的阻燃优势。CLCs/EVA复合材料的阻燃性能随CLCs的填充量的增加而增加,因此,LDHs和SFC之间具有协同阻燃效应。CLCs在CLCs/EVA复合材料中呈现增强增韧作用。
Focus on the preparation and application of the prevention materials for the coalspontaneous combustion and the novel halogen-free flame retardant materials, the preparation,structure and properties of Zn/Mg/Al-LDHs/Shenfu coal composites (CLCs) were explored,according to the micro-nano pore structure and functional group characteristic of Shenfu coal(SFC) as well as the studies on the preparation and properties of Zn/Mg/Al layered doublehydroxides (Zn/Mg/Al-LDHs). The results are with significant theoretical meaning to thepreparation and application of the novel mineral functional nano-composites.
     Effect of low temperature oxidation of SFC on its humic acid (HA) yield and thedistribution of its different HA fractions (black humic acid (HAIII), brown humic acid (HAII)and fulvic acid (HAI)), and effect of pretreatments (low temperature oxidation, de-ashing aswell as removing HA) on the pore distribution of SFC were investigated by FTIR, XRD,GC-MS and the low temperature nitrogen gas adsorption methods. The results show that thetotal HA yields in the oxidized SFC increase with the oxidation temperature and the oxidationtime. The yields of different HA fractions for the pretreated SFC are in the increasing order ofHAI, HAII, HAIII. The mesopore system of pretreated SFC increases, while the specific surfacearea decreases.
     Zn/Mg/Al layered double hydroxides (Zn/Mg/Al-LDHs) were prepared by using theco-precipitation method, and effects of metal ion ratio, anion species, microwave andultrasound irritation, pH and the crystallization time on the composition, structure and thermalproperties of Zn/Mg/Al-LDHs were also investigated by using XRD, FTIR, SEM andTG-DSC analysis. The results indicate that the complexation and adsorption interactionbetween HAs and metal ions on the surface of LDH layers induce a bending growth ofZn/Mg/Al-CO3-LDH layers along the curved HA surface, which leading to theZn/Mg/Al-HAs-LDHs clusters with spherical shape. The uniformity of Zn/Mg/Al-LDHsparticles can be improved, and the particle size and the agglomeration degree can be decreased by microwave and ultrasound assisted co-precipitation method. The thermal stabilities ofZn/Mg/Al-LDHs are related to the metal ratio. When increasing Mg2+ion ratio, the thermalstabilities of Zn/Mg/Al-LDHs decrease, and their temperature range of endothermicdecomposition become broad.
     CLCs were prepared by using the in-situ co-precipitation method. The results show thatthe crystalline degree of CLCs decreases with increasing the mass fraction of SFC. Themorphology of Zn/Mg/Al-LDHs on the surface of CLCs can be controlled through changingthe oxidation temperature of SFC and the crystallization time. The controlling mechanism isthe coupling interaction of the complexation and adsorption between metal ions with thesurface functional group and the pore of SFC.
     The thermal properties of LDHs-SFC mixture and CLCs were studied by using theTG-DSC analysis method, and the prevention property of the coal spontaneous combustionwas also investigated. The results show that when Zn2Al1-CO3-LDHs, Mg2Al1-CO3-LDHs,Zn1Mg1Al1-CO3-LDHs are mechanically added in SFC, the critical temperature of SFCspontaneous combustion is higher when the loading amount is3%,5%and15%, respectively.The fire prevention efficiency is the highest when nano-fiberous Zn1Mg2Al1-CO3-LDHscomponents are dispersed in SFC in the CLCs composting form, because of the formation ofmetal oxides-carbon (LDOs-C) barrier from CLCs in coal spontaneous combustion process.The prevention mechanism of the coal spontaneous combustion process is the processes ofcoupling interaction between the exothermic oxidation process of SFC and the endothermicdecomposition process of Zn/Mg/Al-LDHs and CLCs. CLCs behave a special self-healingproperty.
     CLCs/EVA composites were prepared by using the blending method. The fire retardantproperties of CLCs/EVA composites were also evaluated by using the indexes such as the heatrelease rate, the limiting oxygen index and the UL94fire retardant level. The results show thatCLCs have higher fire retardants efficiency and smoke suppressing properties. The fireretardant level increases with increasing the filling amount of CLCs, so that, the synergy fireretardant effect lies in Zn/Mg/Al-LDHs with SFC. CLCs have significant strengthening andtoughening effect in CLCs/EVA composites.
引文
[1]张宏亮,林木松,陈刚,等.火力发电厂煤炭自燃现象分析及其防治措施[J].热力发电,2007,36(1):32-34.
    [2]牛会永,张辛亥.煤炭自燃机理及防治技术分类研究[J].工业安全与环保,2007,33(10):45-48.
    [3]项宗文.高分子防灭火材料在煤炭自燃防治中的应用[J].能源技术与管理,2006,(5):10-11.
    [4] Nalawade P, Awar B E, Kadam J V, et al. Layered double hydroxides: a review [J].Journal of Scienti-fic&Industrial Research,2009,68(4):267-272.
    [5] Stanimirova T S, Kirov G, Dinolova E. Mechanism of hydrotalcite regeneration [J].Journal of Material Science Letter,2001,20(5):453-455.
    [6]王国利,周安宁,葛岭梅.煤基聚乙烯/蒙脱土复合材料的阻燃特性[J].高分子材料科学与工程,2005,1(21):164-167.
    [7] Nyambo C, Wilkie C A. Layered double hydroxides intercalated with borate anions: Fireand thermal properties in ethylene vinyl acetate copolymer [J]. Polymer Degradation andStability,2009,(94):506-512.
    [8] Manzi-Nshuti C, Hossenmlopp J M, Wilkie C A. Comparative study on the flammabilityof polyethylene modified with commercial fire retardants and a zinc aluminum oleatelayered double hydroxide [J]. Polymer Degradation and Stability,2009,(94):782-788.
    [9] Nyambo C, Kandare E, Wilkie C A. Thermal stability and flammability characteristics ofethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalatedlayered double hydroxide (LDH), melamine polyphosphate and/or boric acid [J]. PolymerDegradation and Stability,2009,(94):513-520.
    [10]樊晓萍.煤纳米孔结构及官能团对煤/PAN复合材料导电性能的影响[D].西安:西安科技大学,2000.
    [11]张广洋,谭学术,解学福,等.煤的导电性与煤大分子结构关系的实验研究[J].煤炭转化,1994(5):10-13.
    [12]葛玲梅,舒新前,周安宁.洁净煤技术概论[M].北京:煤炭工业出版社,1997:18-32.
    [13]曾凡桂,谢克昌.煤结构化学的理论体系与方法[J].煤炭学报,2004,29(4):443-447.
    [14]程君,周安宁,李建伟.煤结构研究进展[J].煤炭转化,2001,24(4):1-6.
    [15]陈红.微波辅助溶剂对煤抽提机制研究及煤组成结构分析[D].西安:西安科技大学,2009.
    [16]虞继舜.煤化学[M].北京:冶金工业出版社,2000:50-75.
    [17]Mathews J P, ChaffeeA L. The molecular representations of coal-A review [J]. Fuel,2012,(96):1-14.
    [18]Fuchs W, Sandoff A G. Theory of coal pyrolysis [J]. Industrial&Engineering ChemistryResearch,1942,34:567.
    [19]Hill G R, Lyon L B. A new chemical structure for coal [J]. Industrial and EngineeringChemistry,1962,54(6):36-39.
    [20]Given P H. The distribution of hydrogen in coals [J]. Fuel,1960,39:147-153.
    [21]Wiser W H. Conversion of bituminous coals to liquids and gases. In: Petrakis L, FraissardJ, editors. Magnetic resonance. Introduction, advanced topics and applications to fossilenergy (NATO ASI Series C), vol.124. D. Reidel Publishing Company;1984.325.
    [22]Solomon P R. Coal structure and thermal decomposition. In: Blaustein BD, Bockrath BC,Friedman S, editors. New approaches in coal chemistry, vol. ACS symposium series no.169. Washington DC: American Chemical Society;1981. p.61-71.
    [23]Shinn J H. From coal to single stage and two-stage products: a reactive model of coalstructure [J]. Fuel,1984,63:1187-1196.
    [24]陈文敏,张自勋.煤化学基础[M].北京:煤炭工业出版社,1993:212-218.
    [25]陈昌国,鲜学福.煤结构的研究进展[J].煤炭转化,1998,21(2):7-13.
    [26]Given P H, Marzee A, Barronw A.The concept of a mobile or molecular phase with in themacromolecular network of coals: A debate [J]. Fuel,1986,65:155.
    [27]Masaharu N. The associated molecular nature of bituminous coal [J]. Fuel,1992,71:941-948
    [28]Marzec A. Macromolecular and molecular-model of coal structure [J]. Fuel ProcessTechnology,1986,14:39-46.
    [29]Mathews JP, van Duin ACT, Chaffee AL.The utility of coal molecular models [J]. FuelProcessing Technology,2011,92(4):718-728.
    [30]卢建军,谢克昌.煤基高分子复合材料研究进展及发展趋势[J].化工进展,2003,22(12):1265-1268.
    [31]Rojek M, Stabik J, Szymiczek M, et al. Research on polyamide matrix composites filledwith hard coal [J]. Archievs of Materials Science and Engineering,2012,57(1):13-20.
    [32]Yang F S, Qu J L, Yang Z Y, et al. Thermal decomposition behavior and kinetics ofcomposites from coal and polyethylene [J]. Journal of China University of Mining andTechnology,2007,17(1):25-29.
    [33]卢建军.煤填充高分子复合材料的研究[D].太原:太原理工大学,2003.
    [34]Rojek M, Szymiczek M, Suchon L, et al. Mechanical properties of polyamide matrixcomposites filled with titanates modified-coal [J]. Journal of Achievements in Materialsand Manufacturing Engineering,2011,46(1):25-32.
    [35]章结兵,周安宁,张小里.溶胀处理煤对煤结构与煤基聚苯胺导电性影响[J].化学工程,2010,38(6):83-86.
    [36]谢克昌.煤结构与反应性[M].北京:科学出版社,2002:88-97.
    [37]Clemens A H, Matheson T H, Rogers K E. Low temperature oxidation studies of driednew zealand coals [J]. Fuel,1991,70(2):215-221.
    [38]Wang H, Dlugogorski B Z, Kennedy E M. Kinetic modeling of low temperatureoxidation of coal [J]. Combustion and Flame,2002,131(4):452-464.
    [39]葛岭梅,李建伟.神府煤低温氧化过程中官能团结构演变[J].西安科技学院学报,2003,23(2):117-190.
    [40]王晓华,葛岭梅,周安宁,等.流化床空气氧化过程中煤化学结构变化的研究[J].煤炭加工与综合利用,2000,(1):28-30.
    [41]董庆年,陈学艺,靳国强,等.红外发射光谱法原位研究褐煤的低温氧化过程[J].燃料化学学报,1997,25(4):334-338.
    [42]陈文敏,李文华,徐振刚,等.洁净煤技术基础[M].北京:煤炭工业出版社,1997:235-285.
    [43]Song C. Recent advances in shape-seleetive catalysis over zeolites for synthesis ofspecialty chemicals [J]. Studies in surface science and catalysis,1998,113,163-186.
    [44]应卫勇.煤基合成化学品[M].北京:化学工业出版社,2010:75-90.
    [45]Wilson M A, Patney H K, Kalman J. New developments in the formation of nanotubesfrom coal [J]. Fuel,2002,81,5-14.
    [46]张凡.煤基纳米碳材料的制备提纯及其催化加氢性能的研究[D].大连理工大学,2001.
    [47]任耀剑,孙智.聚合物/煤复合材料的研究进展[J].工程塑料应用,2009,37(1):84-87.
    [48]Zhou A N. Study of polyaniline/coal conductive composite material [A].6th PacificPolymer Conference[C]. Guangzhou:1999.12.
    [49]张坤.太西无烟煤/聚苯胺导电复合材料制备及其应用研究[D].西安:西安科技大学.2010.
    [50]王嘉.聚苯胺/超纯太西无烟煤复合材料的制备与性能研究[D].西安:西安科技大学.2010.
    [51]Yang F S, Qu J L, Yang Z Y, et al. Thermal Decomposition Behavior and Kinetics ofComposites from coal and Polyethylene [J]. Journal of China University of Mining andTechnology,2007,17(1):25-29.
    [52]樊晓萍,周安宁,葛岭梅,等.煤孔结构和官能团对煤/PANI电导率的协同效应[J].煤炭转化,2010,33(1):1-4.
    [53]王美健,杜美利.煤/聚苯胺复合材料的导电性能研究[J].化工新型材料,2006,34(8):60-64.
    [54]Suchoń. Mechanical properties of polyamide filled with hard coal [J].Chemist,2008.
    [55]Suchoń, Stabik J, Rojek M,et al. Investigation of processing properties of polyamidefilled with hard coal [J]. Journal of Achievements in Materials and ManufacturingEngineering,2009,33(2):142-149.
    [56]Rojek M, Stabik J, Suchoń. Hard coal modified with silanes as polyamide filler [J].Journal of Achievements in Materials and Manufacturing Engineering,2010,39(1):43-51.
    [57]杨云翠,兰勇晋,亢小丽,等.尼龙66/煤系高岭土复合材料的制备及性能研究[J].工程塑料应用,2013,01:31-34.
    [58]李书同,何素芹,朱诚身,等. PA6/煤系高岭土复合材料的制备与性能[J].能源环境保护,2005,04:22-25.
    [59]沈家骢.超分子层状结构—组装与功能[M].北京:科学出版社,2004:126
    [60]段雪,张法智.插层组装与功能材料[M].北京:化学工业出版社,2006:10.
    [61]Rives V. Characterisation of layered double hydroxides and their decomposition products[J]. Materials Chemistry and Physics,2002,75(1-3):19-25.
    [62]杨亲正,张春光,孙德军,等. Mg2Al2NO3层状双氢氧化物的制备及性能研究[J].化学学报,2002,60(9):1712-1715.
    [63]陈天虎,樊明德,庆承松,等.热处理Mg/Al-LDH结构演化和矿物纳米孔材料制备[J].岩石矿物学杂志,2005,24(6):522-525.
    [64]刘岩峰. LDHs结构记忆效应及其结构塌陷动力学行为研究[D].哈尔滨:哈尔滨工程大学,2009.
    [65]Marchi A J and Apesteguia C R. Impregnation-induced memory effect of thermallyactivated layered double hydroxides [J]. Applied Clay Science,1998,13(1):35-48.
    [66]Takehira K, Shishido T, Shouro D,et al. Novel and effective surface enrichment of activespecies in Ni-loaded catalyst prepared from Mg–Al hydrotalcite-type anionic clay [J].Applied Catalysis,2005,279(1-2):41-51.
    [67]Han J B, Dou Y B, Wei M, et al. Erasable nanoporous antieflection coatings based on thereconstruction effect of layered double hydroxides [J]. Angewandte Chemie InternationalEdition,2010,49(12):2171-2174
    [68]Teodorescu F, P l du A M, Pavel O D. Memory effect of hydrotalcites and its impacton cyanoethylation reaction [J]. Materials Research Bulletin,2013,48(6):2055-2059.
    [69]Prasanna S V and Kamath P V. Synthesis and characterization of arsenate-intercalatedlayered double hydroxides (LDH): Prospects for arsenic mineralization [J]. Journal ofColloid and Interface Science,2009,331(2):439-445;
    [70]Hussein M Z, Ghotbi M Y, Yahaya A H, et al. Synthesis and characterization of(zinc-layered-gallate) nanohybrid using structural memory effect [J]. Materials Chemistryand Physics,2009,113(1):491-496;
    [71]Li S, Bai Z M, Zhao D. Characterization and friction performance of Zn/Mg/Al-CO3layered double hydroxides [J]. Applied Surface Science,2013,284(1):7-12
    [72]姜鹏,侯万国,韩书华,等. Zn-Mg-Al型类LDHs纳米颗粒制备及晶体结构[J].高等学校化学学报,2002,(01):78-82.
    [73]任玲玲,李峰,何静,等.镁锌铝三元LDHs的合成与结构分析[J].北京化工大学学报(自然科学版),2002,(02):77-79.
    [74]Jellicoe T C, Fogg A M. Synthesis and characterization of layered double hydroxidesintercalated with sugar phosphates [J]. Journal of Physics and Chemistry of Solids,2012,73(12):1496-1499.
    [75]Filho J F N, Leroux F, Verney V, et al. Percolated non-Newtonian flow for siliconeobtained from exfoliated bioinorganic layered double hydroxide intercalated with aminoacid [J]. Applied Clay Science,2012,55:88-93.
    [76]Dasari A, Yu Z Z, Cai G P, et al.Recent developments in the fire retardancy of polymericmaterials [J]. Progress in Polymer Science,2013,38(9):1357-1387.
    [77]杜亚丽,谢鲜梅,吴旭,等. TG-DTA技术在类LDHs化合物热分解研究中的应用[J].应用化工,2005,31(9):12-15
    [78]Matusinovic Z, Feng J X, Wilkie C A. The role of dispersion of LDH in fire retardancy:The effect of different divalent metals in benzoic acid modified LDH on dispersion andfire retardant properties of polystyrene–and poly(methyl-methacrylate)–LDH–Bnanocomposites [J]. Polymer Degradation and Stability,2013,98(8):1515-1525.
    [79]Xu S L, Zhang L X, Lin Y J, et al. Layered double hydroxides used as flame retardant forengineering plastic acrylonitrile–butadiene–styrene (ABS)[J]. Journal of Physics andChemistry of Solids,2012,73(12):1514-1517.
    [80]Matusinovic Z, Lu H D, Wilkie C A. The role of dispersion of LDH in fire retardancy:The effect of dispersion on fire retardant properties of polystyrene/Ca Al layered doublehydroxide nanocomposites [J]. Polymer Degradation and Stability,2012,97(9):1563-1568.
    [81]Zhang R, Huang H, Yang W, et al. Preparation and characterization ofbio-nanocomposites based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and CoAllayered double hydroxide using melt intercalation [J]. Composites Part A: AppliedScience and Manufacturing,2012,43(4):547-552.
    [82]Yang W, Ma L Y, Song L, et al. Fabrication of thermoplastic polyester elastomer/layeredzinc hydroxide nitrate nanocomposites with enhanced thermal, mechanical andcombustion properties [J]. Materials Chemistry and Physics,2013,141(1):582-588.
    [83]程化,雷秀清.水滑石类热稳定剂在PVC中应用研究进展[J].广州化工,2011,39(13):21-23.
    [84]许家友,周细濠,叶常青,等.聚氯乙烯/插层水滑石的热稳定性和力学性能[J].硅酸盐学报,2013,41(4):516-520.
    [85]Yi S,Yang Z H,Wang S W,et al.Effect of Mg/Al/Ce-CO3layered double hydroxides onthe thermal stability of PVC resin [J]. Journal of Applied Polymer Science,2011,119(5):2620-2626.
    [86]Tang Q H, Wu C M, Qiao R, et al. Catalytic performances of Mn–Ni mixed hydroxidecatalysts in liquid-phase benzyl alcohol oxidation using molecular oxygen [J]. AppliedCatalysis A: General.2011,403(1-2):136-141.
    [87]He S, An Z, Wei M, et al. Layered double hydroxide-based catalysts: nanostructuredesign and catalytic performance [J]. Chemical Communications,2013,49:5912-5920.
    [88]唐玉菲,吴茂英,罗勇新. LDHs的结构特性及作为塑料助剂的应用[J].综述专论,2006,14(2):65-69.
    [89]段雪,矫庆泽.全返混液膜反应器及其在制备超细阴离子层状材料中的应用[P].中国专利,CN00132145.
    [90]杨飘萍,宿美平,杨骨微,等.尿素法合成高结晶度类LDHs[J].无机化学学报,2003,19(5):485-489.
    [91]郑晨.层状双金属氢氧化物制备及形貌控制研究[D].北京:北京化工大学,2008.
    [92]Xu Z P, Lu G Q. Hydrothermal synthesis of layered double hydroxides (LDH) frommixed MgO and A12O3: LDH formation mechanism [J]. Chemical Material,2005,17:1055-1062
    [93]Geraud E, Prevot V, Ghanbaja J, et al. Macroscopically ordered hydrotalcite-typematerials using self-assembled colloidal crystal template [J]. Chemical Material,2006,18:238-240.
    [94]杨晶,连建设,董奇志,等.自蔓延法制备ZrO2-Y2O3纳米粒子的影响因素[J].功能材料与器件学报,2003,9(3):272-276.
    [95]易求实,王德慧.过饱和度对纳米材料粒度的影响[J].湖北教育学院学报,2001,18(5):26-28.
    [96]Mairko A P, Claude F, Besse J P. Synthesis of Al-rich hydrotalcite-like compounds byusing the urea hydrolysis reaction-control of size and morphology [J]. Journal of materialchemistry,2003,13:1988-1993.
    [97]He J X, Li B, Evans D G, et al. Synthesis of layered double hydroxides in an emulsionsolution [J]. Colloid Surface A,2004,251:191.
    [98]周心权,邬燕云,朱红青,等.煤矿灾害防治科技发展现状与对策分析[J].煤炭科学技术,2002,30(1):1-5.
    [99]卢国斌,耿铭.采空区煤自燃机理及其防治技术研究现状[J].辽宁工程技术大学学报,2009,28(S2):28-30.
    [100]吴会平.煤炭自燃气溶胶阻化防火技术研究[D].西安:西安科技大学,2012.
    [101]张福成.浅埋易自燃煤层防灭火关键技术[J].2011,(02):35-38.
    [102]陈波,李宝昌.煤炭自燃过程的物理化学机理探讨[J].煤炭技术,2013,32(6):212-214.
    [103]李金亮,陆伟,王正辉,杨兴兵.防止煤炭自燃的阻化机理分析[J].矿业安全与环保,2012,39(2):71-72+76+90.
    [104]郭鹏.煤自燃的原因及防治处理[J].科技情报开发与经济,2007,17(20):274-275
    [105]刘娜,任国强,沈静,等.关于粘结性防灭火材料的可行性分析[J].高教论述,2011(17):111,135
    [106]Qin H, Zhang S, Zhao C. Flame retardant mechanics of polymer/clay nano compositesbased on polypropylene [J]. Polymer,2005,46:8836-8395
    [107]时国庆.防灭火三相泡沫在采空区中的流动特性与应用[J].煤炭学报,2011,02:355-356.
    [108]Morphy J. Flame retardants fire retardant systems [J]. Polymer degradation and stability,2009,23(3):359-376.
    [109]涂永杰,周达飞.阻燃剂复配技术在高分子材料中的应用[J].现代塑料加工应用,1997,9(2):43-46
    [110]赵云,吴雪云,莫晓杰,等.煤阻燃体系应用开发研究[J].苏州大学学报(工科版),2012,32(3):31-37.
    [111]周安宁,郭树才,葛岭梅. HDPE与神府煤共混材料的相容性研究[J].煤炭学报,1998,23(1):71-75
    [112]孙建忠,汪济奎,王耀先,等.茂金属聚乙烯的阻燃改性研究[J].塑料,2009,(03):75-77,71
    [113]徐寒松.煤与含氟聚合物对聚酯结构与性能的影响研究[D].苏州大学,2008.
    [114]Shen Z Q, Chen L, Lin L, et al. Synergistic Effect of Layered Nanofillers in IntumescentFlame-Retardant EPDM: Montmorillonite versus Layered Double Hydroxides [J].Industrial&Engineering Chemistry Research,2013,52(25):8454-8463
    [115]Huang G B, Fei Z D, Chen X Y, et al. Functionalization of layered double hydroxides byintumescent flame retardant: Preparation, characterization, and application in ethylenevinyl acetate copolymer [J]. Applied Surface Science,2012,258(24):10115-10122
    [116]Gao L P, Zheng G Y, Zhou Y H, et al. Synergistic effect of expandable graphite,melamine polyphosphate and layered double hydroxide on improving the fire behaviorof rosin-based rigid polyurethane foam [J]. Industrial Crops and Products,2013,50:638-647
    [117]Wang L L, Li B, Zhang X C, et al. Effect of intercalated anions on the performance ofNi–Al LDH nanofiller of ethylene vinyl acetate composites [J]. Applied Clay Science,2012,56:110-119.
    [118]Wang L L, Li B, Zhang X C, et al. Effect of nickel on the properties of compositescomposed of layered double hydroxides and ethylene vinyl acetate copolymer [J].Applied Clay Science,2013,72:138-146.
    [119]Becker C M, Dick T A, Wypych F, et al. Synergetic effect of LDH and glass fiber on theproperties of two-and three-component epoxy composites [J]. Polymer Testing,2012,31(6):741-747
    [120]Nyambo C, Chen D, Su S, et al. Variation of benzyl anions in MgAl-layered doublehydroxides: Fire and thermal properties in PMMA [J]. Polymer Degradation andStability,2009,(94):496-505.
    [121]Manzi-Nshuti C, Wang D, Hossenlopp J M, et al. The role of the trivalent metal in anLDH: Synthesis, characterization and fire properties of thermally stable PMMA/LDHsystems [J]. Polymer Degradation and Stability,2009,(94):705-711.
    [122]Manzi-Nshuti C, Songtipya P, Manias E, et al. Polymer nanocomposites using zincaluminum and magnesium aluminum oleate layered double hydroxides: effect of LDHdivalent metals on dispersion, thermal,mechanical and fire performance in variouspolymers [J]. Polymer,2009,(50):3564-3574.
    [123]Nyambo C, Chen D, Su S, et al. Does organic modification of layered double hydroxidesimprove the fire performance of PMMA [J]. Polymer Degradation and Stability,2009,(94):1298-1306.
    [124]赵芸,李峰, EvansD.G.,等.纳米LDH对环氧树脂燃烧的抑烟作用[J].应用化学,2002,(10):954-957.
    [125]郑秀婷,吴大鸣,刘颖,等.纳米双羟基复合金属氧化物(LDH)对聚氯乙烯(PVC)阻燃抑烟研究[J].塑料,2004,3(3):62-65.
    [126]陆伟,胡千庭.煤低温氧化结构变化规律与煤自燃过程之间的关系[J].煤炭学报,2007,32(9):939-944.
    [127]褚廷湘,杨胜强,孙燕,等.煤的低温氧化实验研究及红外光谱分析[J].中国安全科学学报,2008,01:171-177.
    [128]樊晓萍,周安宁,葛岭梅.煤孔结构对煤/PAN复合材料导电性能的影响[J].煤炭转化,2005,28(1):82-84.
    [129]张树川.煤样粒径对煤低温氧化影响的实验研究[J].安徽理工大学学报(自然科学版),2013,04:62-66.
    [130]陆宝宽.对煤氧化过程的相关变化分析[J].科技致富向导,2013,14:363.
    [131]陈茺,刘新兵,魏贤勇,等.温和条件下碱/酸法脱除煤中矿物质的研究[J].华东理工大学学报,1995,21(3):311-315.
    [132]张洪,蒲文秀,哈斯,等.化学脱灰对低灰煤粉性质的影响[J].工程热物理学报,2009,04:699-702.
    [133]李鑫,凌开成,何敏,等.脱矿物质过程对煤结构影响的研究[J].洁净煤技术,2009,03:39-42.
    [134]刘转年.煤基超细复合吸附剂的制备及吸附特性研究[D].西安建筑科技大学,2004.
    [135]刘转年,张万松,陈亮,等.神府煤对重金属离子的吸附性能和机理研究[A].Proceedings of Conference on Environmental Pollution and Public Health[C].武汉:武汉大学,2010:4.
    [136]刘转年,周安宁,金奇庭.不同粒度煤粉对Ni-(2+)的吸附特性[J].煤炭学报,2005,05:85-89.
    [137]Peuravuori J, Zbánková P, Pihlaja K. Aspects of structural features in lignite and lignitehumic acid [J]. Fuel Processing Technology,2006,87(9):829-839.
    [138]巨文军,申丽红,郭丹丹.氮气吸附法和压汞法测定Al2O3载体孔结构[J].广东化工,2009,08:213-214,228.
    [139]杨峰,宁正福,张世栋,等.基于氮气吸附实验的页岩孔隙结构表征[J].天然气工业,2013,04:135-140.
    [140]Wang H, Dlugogorski B Z, Kennedy E M. Theoretical analysis of reactionregimes inlow-temperature oxidation of coal [J]. Fuel,1999,78(9):1073-1081.
    [141]程志强,蔡磊,王军.神华煤的氧化自燃机理[J].华东电力,2002,(5):40-41.
    [142]战婧.添加剂对煤低中温氧化过程的影响及其机理研究[D].中国科学技术大学,2012.
    [143]张玉涛,玉都霞,仲晓星.水分在煤低温氧化过程中的影响研究[J].煤矿安全,2007,38(11):1-4.
    [144]李丽,冉勇,傅家谟,等.超滤分级研究腐植酸的结构组成[J].地球化学,2004,33(4):387-394.
    [145]Jackson R W, Bongers D G, Redlich J P, et al. Characterisation of brown coal humicacid and modified humic acid using pyrolysis gems and other techniques [J].International Journal of Coal Geology,1996,32:229-240.
    [146]李丽.不同级分腐植酸的分子结构特征及对菲的吸附行为的影响[D].广州:中国科学院广州地球化学研究所.2003.
    [147]Boer de H J. The shape of capillaries[A].Everett D H,Stone F S.The Structure andProperties of Porous Materials[C].London: But-terworth,1958.
    [148]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):552-556.
    [149]乔军伟.低阶煤孔隙特征与解吸规律研究[D].西安:西安科技大学,2009
    [150]王飞,张代钧,杨明莉,等.煤的溶剂抽提规律及其产物性能的研究进展[J].煤炭转化,2003,26(1):8-11.
    [151]水恒福,曹美霞,王知彩.几种烟煤及其热处理后的溶胀性能研究[J].燃料化学学报,2007,35(2):141-145.
    [152]张玉涛,王德明,仲晓星.煤孔隙分形特征及其随温度的变化规律[J].煤炭科学技术,2007,35(11):73-76.
    [153]童宏树,胡宝林.鄂尔多斯盆地煤储层低温氮吸附孔隙分形特征研究[J].煤炭技术,2004,23(7):1-3.
    [154]周良芹,付大友,袁东. LDHs的研究进展[J].四川理工学院学报(自然科学版),2013,26(5):1-10
    [155]Zhang W H, Guo X D, He J. Preparation of Ni(II)/Ti(IV) layered double hydroxide athigh supersaturation [J]. Journal of the European Ceramic Society,2008,28(8):1623-1629.
    [156]Bai Z M, Wang Z Y, Zhang T G. Characterization and friction performances ofCo-Al-Layered double metal hydroxides synthesized in the presence of dodecyl-sulfate[J]. Applied Clay Science,2003,75-76(5):22-27.
    [157]Carja G, Birsanu M, Okada K, et al. Composite plasmonic gold/layered doublehydroxides and derived mixed oxides as novel photocatalysts for hydrogen generationunder solar irradiation [J]. Journal of Materials Chemistry A,2013,1:9092-9098
    [158]Birsanu M, Puscasu M, Gherasim C, et al.Highly efficient room temperature degradationof two industrial dyes using hydrotalcite–like anionic clays and their derived mixedoxides as photocatalysts [J]. Environmental Engineering and Management Journal,2013,5(12):1535-1540
    [159]张立红.高分散铜基复合氧化物的均匀性制备及其结构与催化性能[D].北京:北京化工大学,2006
    [160]Crepaldi E L, Tronto J, Cardoso L P, et al. Sorption of terephthalate anions by calcinedand uncalcined hydrotalcite like compounds[J]. Colloids and Surfaces A:Physicochemival Engineering Aspects,2002,211(2-3):103-113
    [161]王巧巧,倪哲明,张峰,等.镁铝二元LDHs的焙烧产物对燃料废水酸性红88的吸附[J].无机化学学报,2009,25(12):2156-216
    [162]黄宝晟.纳米双羟基复合金属氧化物的制备及其在Pvc中的应用性能研究[D].北京:北京化工大学.2001
    [163]Shi L, Li D Q, Li S F, et al. Structure, flame retarding and smoke suppressing propertiesof Zn-Mg-Al-CO3layered double hydroxides. Chinese Sci. Bull.,2005,50(4):327-330.
    [164]史翎,李殿卿,李素锋,等. Zn-Mg-Al-CO3LDHs的结构及其抑烟和阻燃性能[J].科学通报,2005,50(4):327-330.
    [165]Santosa S J, Kunarti E S, Karmanto. Synthesis and utilization of Mg/Al hydrotalcite forremoving dissolved humic acid [J]. Applied Surface Science,2008,254(23):1302-1304
    [166]王海晖.中国矿井火灾安全与煤自燃现象研究[J].科技促进发展,2009,(12):22-23
    [167]张嬿妮,邓军,金永飞,等.煤自燃特性的油浴程序升温实验研究[J].煤矿安全,2010(11):7-10.
    [168]周新华,齐庆杰.基于模糊综合评判的煤自燃发火倾向性研究[J].煤田地质与勘探,2011,29(6):16-19,23
    [169]舒新前,王祖讷,徐精彩,等.神府煤煤岩组分的结构特征及其差异[J].燃料化学学报,1996,05:50-57.
    [170]季伟,吴国光,孟献梁,等.神府煤孔隙特征及活性结构对自燃的影响研究[J].煤炭技术,2011,04:87-90.
    [171]章结兵,周安宁,张小里.双氧水氧化煤对煤基聚苯胺性能的影响[J].材料导报,2010,24(7):41-44.
    [172]肖旸,李树刚,李明,等.煤自燃预测预报技术研究进展[J].陕西煤炭,2010,(6):4-7.
    [173]肖旸,马砺,王振平,邓军,王威,向欣.采用热重分析法研究煤自燃过程的特征温度[J].煤炭科学技术,2007,05:73-76.
    [174]肖旸,王振平,马砺,翟小伟.煤自燃指标气体与特征温度的对应关系研究[J].煤炭科学技术,2008,06:47-51.
    [175]张嬿妮,邓军,罗振敏,等.煤自燃影响因素的热重分析[J].西安科技大学学报,2008,02:388-391.
    [176]张嬿妮,邓军,文虎,等.华亭煤自燃特征温度的TG/DTG实验[J].西安科技大学学报,2011,06:659-662+667.
    [177]朱红青,郭艾东,屈丽娜.煤热动力学参数、特征温度与挥发分关系的试验研究[J].中国安全科学学报,2012,03:55-60.
    [178]邱建荣,马毓义,曾汉才,等.混煤着火特征温度的试验测定及模型预测[J].电站系统工程,1993,05:53-56+65.
    [179]周沛然,王乃继,周建明,等.热重分析法对不同粒度煤自燃过程特征温度的研究[J].洁净煤技术,2010,03:64-66+119.
    [180]刘文永,金永飞,邓军,等.水分对孟巴矿煤特征温度影响的实验研究[J].矿业安全与环保,2013,04:1-3+7.
    [181]王志伟,李荣勋,周兵,等.可膨胀石墨阻燃ABS分解成炭性能研究[J].塑料科技,2011,02:43-47
    [182]唐涛,于海鸥,姜治伟,等.调控聚合物碳化反应与阻燃性能的研究进展[A],2009年全国高分子学术论文报告会论文摘要集(下册)[C].天津:[出版者不详],2009年
    [183]廖凯荣,卢泽俭,倪跃新.膨胀型阻燃剂中协效剂的碳化作用及其对阻燃性能的影响[J].高分子材料科学与工程,1999,01:101-104.
    [184]朱新生,戴建平,李引擎,等.聚苯乙烯热降解(Ⅱ):碳化与阻燃机理[J].燃烧科学与技术,2000,04:346-350.
    [185]刘振宇,梅文杰,熊玉竹.纳米无机阻燃剂及其阻燃机理研究进展[J].现代塑料加工应用,2012,05:60-63.
    [186]朱小燕,严春杰.矿物在高分子材料中的阻燃机理及其研究进展[J].化工矿物与加工,2007,11:6-10.
    [187]蔡晓霞,王德义,彭华乔,等.聚磷酸铵/膨胀石墨协同阻燃EVA的阻燃机理[J].高分子材料科学与工程,2008,24(1):109-112
    [188]常志宏,郭奋,陈建峰,等.纳米氢氧化铝填充LDPE/EVA的力学和阻燃性能[J].化工学报,2005,56(9):1771-1775.
    [190]高鑫. EVA/纳米LDHs阻燃包装材料的制备、结构及其性能[D].湖南工业大学,2012.
    [191]刘跃军,高鑫,刘亦武,等.多元LDHs/EVA纳米复合材料的制备及性能研究[J].功能材料,2012,15:2009-2013.
    [192]李鑫.层状镁铝氢氧化物的设计合成与阻燃性研究[D].大连:大连理工大学,2010.
    [193]王丽丽.含镍LDH的制备及LDH/EVA复合材料的研究[D].哈尔滨:东北林业大学,2011.
    [194]赵斌.无卤阻燃EVA复合材料的制备和表征[D].北京:北京化工大学,2012.
    [195]Ding Y Y, Xu L, Hu G S. Performance of halogen-free flame retardant EVA/MH/LDHcomposites with nano-LDHs and MH [J]. Chinese Science Bulletin,2011,35:3878-3883.
    [196]Wang X L, Rathore R, Songtipya P, et al. EVA-layered double hydroxide(nano)composites: Mechanism of fire retardancy [J]. Polymer Degradation and Stability,2011,(96):301-313
    [197]Jiao C M, Chen X L, Zhang J. Synergistic effect of Fe2O3with Layered DoubleHydroxides in EVA/LDH Composites [J]. Journal of Fire Sciences,2009,27(5):465-479
    [198]Nyambo C, Kandare E, Wilkie C.A.Thermal stability and flammability characteristics ofethylene vinyl acetate (eva) composites blended with a phenyl phosphonate-intercalatedlayered double hydroxide (ldh), melamine polyphosphate and/or boric acid [J]. PolymerDegradation and Stability.2009,94(4):513-520.
    [199]Jiao C M, Chen X L. Synergistic effect of titanium dioxide with layered doublehydroxides in EVA/LDH composites [J]. Polymer Engineering&Science,2011,51(11):2166-2170
    [200]胡源,宋磊.阻燃聚合物纳米复合材料[M].北京:化学工业出版社,2008:5
    [201]Schartell B, Hull T R. Development of fire-retarded materials-Interpretation of conecalorimeter data [J]. Fire and Materials,2007,31(5):327-354
    [202]舒中俊,徐晓楠,李响.聚合物材料火灾燃烧性能评价:锥形量热仪试验方法[M].北京:化学工业出版社,2007:5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700