用户名: 密码: 验证码:
锌铝水滑石纳米复合材料的制备及其在锌镍电池中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:锌镍电池是一种高能量密度的碱性蓄电池,其电池性能远远高于镉镍和镍氢电池,加上这种电池原材料丰富,电解液和活性物质无毒,电池体系绿色无污染,越来越受到各国研究机构的重视。然而镍锌二次电池中常规负极材料的放电产物易溶于碱性电解液,从而会导致电池循环寿命降低oZnAl-LDH材料由于其新颖的二维纳米结构,在碱性电解液中具有很好的稳定性和电化学活性等优点,被认为最有潜力成为下一代锌镍电池的新型负极材料。然而,单相的ZnAl-LDH材料本身的导电性较差限制了其电化学性能的进一步提升。因此,将ZnAl-LDH材料与导电性较好的碳、金属等复合,通过发挥两种材料各自的优势,改善复合材料的导电性和机械强度,从而极大地提高复合材料的电化学性能。本文围绕新型ZnAl-LDH纳米复合材料的制备和相关电化学性能展开研究,主要内容如下:
     (1)通过离心分离的方法将ZnAl-LDH固体沉淀和盐溶液分离,再重新分散在超纯水中,使ZnAl-LDH在超纯水环境中水热生长结晶,水热反应24小时后得到了晶形规则、大小均一的二维纳米片材料。相比于常规的水热法和共沉淀法,本方法合成的水滑石结构更加规则,分布更加均匀,没有出现团聚现象,ZnAl-LDH样品呈规则的六边形晶体结构,质量和纯度较高,非常适合应用到锌镍电池负极材料中。
     (2)利用正负电荷之间的静电力作用,将表面修饰后的碳纳米管和ZnAl-LDH两种纳米材料结合在一起,生成三维ZnAl-LDH/CNTs复合物。对复合物的结构进行表征后发现,CNTs均匀分布在ZnAl-LDH纳米片表面,形成一种导电网状结构。将其作为负极活性物质应用到锌镍电池中,通过恒流充放电曲线研究、CV曲线测试、电池循环性能实验,证明电池的循环稳定性、充放电性能以及电极的放电比容量均有显著提升。
     (3)运用银镜反应技术,在ZnAl-LDH纳米片表面进行纳米银修饰,首次制备出银包覆ZnAl-LDH纳米片材料。通过电池的恒流充放电实验,发现这种银包覆ZnAl-LDH纳米片材料具有更高的放电容量、更为优异的充放电性能和循环稳定性。进一步采用交流阻抗技术对其进行研究,发现这种银包覆ZnAl-LDH纳米片的电荷转移电阻相比于没有包覆之前有明显的下降,证明了银包覆技术可以显著改善电极的导电性,降低电极的电荷转移电阻,使活性物质的电化学性能显著提升。
     (4)合成不同银含量的Ag/ZnAl-LDH复合物,研究复合物中银的含量对其电化学性能的影响。通过各种结构表征手段,证明了导电相银包覆在ZnAl-LDH纳米片表面,不同银含量的复合物样品中银包覆层的分布和存在状态不同,当银的含量达到7.49wt.%(AL15)时,形成一层均匀的银包覆层。综合考虑电池的循环稳定性和放电容量,AL15样品的性能最佳,在循环300次以后,AL15的放电容量没有出现明显衰减,在整个300次充放电循环中放电容量始终稳定在-400mAh g-。
     (5)采用溶液直接还原法,在不用任何还原剂的情况下,将硝酸银溶液中的银离子直接还原成纳米银颗粒,沉积在ZnAl-LDH纳米片表面。电化学性能测试表明Ag-LDH复合物样品相比于纯的ZnAl-LDH,其电化学性能得到了显著改善。电化学交流阻抗谱分析结果表明,Ag-LDH复合物的电荷转移电阻明显降低。这证明了高导电的纳米银颗粒沉积在ZnAl-LDH纳米片表面,可以通过降低电荷转移电阻的方式,提高电极材料的电荷传输速率和电子导电性,改善电极材料的电化学性能。(6)采用自组装的方法将GO和ZnAl-LDH组装在一起,然后通过水热还原法,将GO还原成石墨烯,得到graphene/ZnAl-LDH复合物。对graphene/ZnAl-LDH复合物样品的结构进行表征,证明了超薄的石墨烯将ZnAl-LDH纳米片包裹在中心,形成新颖的胶囊状结构。由于外层的graphene具有非常好的电子传导特性,可以大大加快电子在活性物质之间以及活性物质与集流体之间的传导过程。由于胶囊状graphene/ZnAl-LDH复合物具有以上优点,在电池的循环性能和放电容量方面均有大幅提升。在1C条件下电池恒流充放电循环1000次以后,电池容量仅衰减3%,稳定在~405mAh g-1,这种优异的循环特性,非常适合作为锌镍电池负极活性材料。
Abstract:The nickel-zinc rechargeable battery is an attractive power source for various electric appliances and large-scale energy storage systems due to its high specific energy, excellent specific power and high open-circuit voltage. Its battery performance is much than Ni-Cd and Ni-MH battery. However, the most critical problems of Ni-Zn rechargeable batteries are shape change and dendrite formation on the negative side resulting in poor cycling effciency, which limit their widespread commercialization. As is well known, the novel2D architecture of ZnAl-LDH can offer it to the replacement of conventional ZnO anode material in Ni-Zn secondary batteries. However, the practical implementation of ZnAl-LDH as an anode material for Ni-Zn batteries is hampered dramatically by its low intrinsic electrical conductivity. To alleviate this problem and further enhance the electrochemical performance of the ZnAl-LDH, one effective strategy is to design specific nanocomposites (carbon or metal), which could obviously increase the electrical conductivity of the ZnAl-LDH. The main points in this research can be summarized as following:
     (1) We adopt a new rapid method for the preparation of ZnAl-LDH nanoparticles. In our method, the ZnAl-LDH seeds separated from the mother liquor are re-dispersed in the deionized water and subsequently the ZnAl-LDH nanoparticles are developed at the crystal growth stage under hydrothermal conditions for24h. In contrast to the conventional co-precipitation method and conventional hydrothermal method, this simple process allows us to fabricate ZnAl-LDH nanosheets of high quality and purity. The ZnAl-LDH nanosheets prepared by our method represent a high crystallinity and a hexagonal plate-like structure. These features afford the ZnAl-LDH nanosheets much suitable for anode material in Ni-Zn battery application.
     (2) Nanostructured ZnAl-LDH/CNTs composite is successfully synthesized by a simple precipitation technique through the electrostatic interaction between positively charged layer of LDH and negatively charged functional groups on modified CNTs. The ZnAl-LDH/CNT composite with unique3D nanostructure is a novel nanomaterial which combines2D LDH nanosheet and ID carbon nanotubes together. The as-prepared LDH/CNT composite samples are used as anode materials for Ni-Zn battery, whose charge-discharge properties, electrochemical impedance spectroscopy and cycle performances are examined in detail. The results show that the improvement in the electrochemical properties is obtained.
     (3) Ag-coated ZnAl-LDH nanosheets are successfully prepared by a facile silver mirror reaction. The as-prepared Ag-coated ZnAl-LDH demonstrates high discharge capacity, good charge-discharge performance and excellent cycle stability. The EIS indicates that the Ag coating can remarkably decrease the charge-transfer resistance and improve the activity of anode material. This superior electrochemical performance is attributed to the anchored Ag coating which increases the electronic conductivity of anode.
     (4) The Ag/ZnAl-LDH composites with different Ag contents are fabricated. We investigate the effect of silver additive on the electrochemical performance of ZnAl-LDH. Structure and morphology analysis show that silver additive is dispersed on the surface of ZnAl-LDH nanosheets and the silver phases of composite samples with different Ag contents are not the same. When the silver content reaches to7.49wt.%(AL15), the uniform silver layer is formed. Electrochemical performances were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge tests. The AL15composite electrode has the highest reversible capacity (-406mAh g-1) than the others and the best cycling stability.(5) Surface decoration of ZnAl-LDH nanosheets with Ag nanoparticles is performed by a novel wet chemical method and no reducing agent is used. The electrochemical performance of the as-prepared Ag-LDH composites is significantly enhanced compared with the pure LDH nanosheets. The EIS measurement shows that the silver nanoparticles decrease the charge transfer resistance of Ag-LDH anodes by high conductive of Ag nanoparticles. Such intriguing electrochemical behavior is attributed to the conductive two-dimensional nanostructure with synergistic effects between a large specific surface area of LDH nanosheets and high conductivity of Ag nanoparticles.
     (6) GO/ZnAl-LDH composite is fabricated via the electrostatic interaction between positively ZnAl-LDH nanosheets and negatively charged graphene oxide. After hydrothermal reduction, the graphene/ZnAl-LDH composite is obtained. Such excellent electrochemical behavior is attributed to the synergistic effects between ZnAl-LDH nanosheets and high conductive graphene layers on the surface of LDH. The graphene/ZnAl-LDH shows outstanding cyclability, it is only decreased by~3%of the initial capacity at1C-rate even after1000charge-discharge cycles. Based on these observations, these newly designed3D graphene/ZnAl-LDH capsule may offer a promising anode active material for Ni-Zn secondary battery applications.
引文
[1]郭炳煜,李新海,杨松青.化学电源-电池原理及制造技术[M].长沙:中南工业大学出版社,2000,86-87.
    [2]陈景贵.跨入新世纪的中国新型绿色电池工业[J].电源技术,2000,24(1):2-8.
    [3]程春华,欧盟新能源政策与能源安全[J],中国社会科学院研究生院学报,2009,1(1):1.13-118.
    [4]A.L. Ferreira, G. Zguris, Development of an inorganic additive to active materials of lead acid batteries [C], The Seventeenth Annual Battery Conference on Applications and Advances, Long Beach, CA,2002:79-79.
    [5]Chan C K, Zhang X F, Cui Y. High capacity Li ion battery anodes using Ge nanowires[J]. Nano Letters,2008,8(1):307-309.
    [6]Wen Z, Cao J, Gu Z, et al. Research on sodium sulfur battery for energy storage[J]. Solid State Ionics,2008,179(27):1697-1701.
    [7]Skyllas-Kazacos M, Rychcik M, Robins R G, et al. New all-vanadium redox flow cell[J]. Journal of the Electrochemical Society,1986,133(5):1057-1058.
    [8]Zhao P, Zhang H M, Zhou H T, et al. Characteristics and performance of 10 kW class all-vanadium redox-flow battery stack[J]. Journal of Power Sources,2006, 162(2):1416-1420.
    [9]Fabjan C, Garche J, Harrer B, et al. The vanadium redox-battery:an efficient storage unit for photovoltaic systems[J]. Electrochimica Acta,2001,47(5): 825-831.
    [10]Lund H, Mathiesen B V. Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050[J]. Energy,2009,34(5): 524-531.
    [11]Chen H, Cong T N, Yang W, et al. Progress in electrical energy storage system: A critical review[J]. Progress In Natural Science,2009,19(3):291-312.
    [12]Hassenzahl W V. Superconductivity, an enabling technology for 21st century power systems?[J]. Ieee Transactions On Applied Superconductivity,2001, 11(1):1447-1453.
    [13]管从胜,杜爱玲,杨玉国.高能化学电源[M].北京:化学工业出版社,2005,228-251.
    [14]朱松然.蓄电池手册[M].天津:天津大学出版社,1998:295-196.
    [15]Shepherd C M, Langelan H C. High rate battery electrodes[J]. Journal of the Electrochemical Society,1967,114(1):8-13.
    [16]尤金跨,王挣建,孙杰,等.一种适合于高高速充电的新化学电源电极的研究[J].电化学,1999,4:418-423.
    [17]李荻.电化学原理[M].北京:北京航空航天大学出版社,1999:406-411.
    [18]Tomohiko I. Charging operation with high energy efficiency for electric vehicle valve-regulated lead-acid battery system[J]. Journal of Power Sources,2000, 91:130-136.
    [19]Pavlov D, Petkova G, Dimitrov M, et al. Influence of fast charge on the life cycle of positive lead-acid battery plates[J]. Journal of Power Sources,2000, 87:39-56.
    [20]袁永锋.锌镍电池电极材料氧化锌纳米化与表面修饰的结构及电化学性能:[D].杭州:浙江大学,2007.
    [21]孙烨,张宝宏,张娜.碱性二次锌电极的新进展[J].应用科技,2002,29(2):47-49.
    [22]石建珍,朱纪凌,高翠琴,等.二次碱性锌电极[J].电池工业,1996,1(2):37-43.
    [23]曾利辉.密封圆柱形锌镍电池负极及相关问题的研究:[D].长沙:中南大学,2007.
    [24]高自明,武彩霞.镍-锌电池研究进展[J].电源技术,1997,21(2):83-85.
    [25]王家捷,穆举国,茹海涛.锌镍动力电池的发展和应用[J].电池工业,2006,11(3):194-196.
    [26]Mclarnon F R, Cairns E J. The Secondary Alkaline Zinc Electrode[J]. Journal of The Electrochemical Society,1991,138(2):645-656.
    [27]Geng M, Northwood D O. Development of advanced rechargeable Ni/MH and Ni/Zn batteries[J]. Inter. J. Hydrogen Energy,2003,28(6):633-636.
    [28]McLarnon F R, Cairns E J. The secondary alkaline zinc electrode[J]. Journal of the Electrochemical Society,1991,138(2):645-664.
    [29]Bronoel G, Millot A, Tassin N. Development of Ni-Zn cells[J]. Journal of Power Sources,1991,34(3):243-255.
    [30]Jindra J. Sealed nickel-zinc cells[J]. Journal of Power Sources,1992,37(3): 297-313.
    [31]Shukla A K, Venugopalan S, Hariprakash B. Nickel-based rechargeable batteries[J]. Journal of Power Sources,2001,100(1-2):125-148.
    [32]Taucher W, Adler T C, McLarnon F R, et al. Development of lightweight nickel electrodes for zinc/nickel oxide cells[J]. Journal of Power Sources,1996,58(1): 93-97.
    [33]Biegler C, Deutscher R L, Fletcher S, et al. Accelerated testing of additive in zinc plates of nickel zinc cells[J]. Journal of the Electrochemical Society,1983, 130(12):2303-2309.
    [34]Zhu W H, Flanzer M E, Tatarchuk B J. Nickel-zinc accordion-fold batteries with microfibrous electrodes using a papermaking proeess[J]. Journal of Power Sources,2002,112(2):353-366.
    [35]McBreen J, Gannon E. Bismuth oxide as an additive in pasted zinc electrodes [J]. Journal of Power Sources,1985,15(2-3):169-177.
    [36]Lewis H, Jackson P, Salkind A, et al. Advanced membranes for alkaline primary and rechargeable alkaline cells with zinc anodes[J]. Journal of Power Sources, 2001,96(1):128-132.
    [37]Pavlov A P, Grigorieva L K, Chizhik S P, et al. Nickel-zinc batteries with long cycle life[J]. Journal of Power Sources,1996,62(1):113-116.
    [38]Bass K, Mitchell P J, Wilcox G D, et al. Methods for the reduction of shape change and dendritic growth in zinc-based secondary cells [J]. Journal of Power Sources,1991,35(3):333-351.
    [39]杨恩东,杨化滨,冀惊涛,等.锌镍蓄电池负极集流体的研制[J].电源技术,2003,27(1):31-35.
    [40]冀惊涛,杨化滨,孙华,等.以泡沫镍为集流体的锌电极腐蚀性能[J].电源技术,2001,25(6):389.
    [41]Kiohimoto N, Bogauchi T. Sealed secondary alkaline zinc batteries[P]. Japan Patent 06 267 587,1994.
    [42]Nakagawa H, Bogauchi T, Kishimoto. Long cycle life sealed secondary alkaline zinc batteries[P]. Japan patent 06 283 194,1994,
    [43]Zhang L, Cheng J, Yang Y S, et al. Study of zinc electrodes for single flow zinc/nickel battery application[J]. Journal of Power Sources,2008,179(1): 381-387.
    [44]Guinot S, Bouzir N, Penneau, et al. Alkaline solid polymer electrolyte Ni/Zn secondary batteries. Salkind A J, McLarnon F R, Bagotzky V S, Rechargeable Zinc Batteries, PV95-14, Pennington, NJ:the Electrochem Soc Inc,1996. 182-194.
    [45]Falk S U, Salkind A J. Alkaline Storage Batteries. New York; John Wiley & Sons Inc,1969.34-41.
    [46]高效岳,沈涛,唐琛明,等.Zn-Ni电池的发展[J].电池工业,2002,7(3-4):220-224.
    [47]唐有根,唐赞谦,桑商斌.锌镍电池负极X射线衍射研究[J].电源技术,2004,28(11):691-692.
    [48]李景威,杨占红,赵玉彬,等.丙三醇对Zn-Ni电池性能的影响[J].电池,2008,38(1):58-60.
    [49]曾利辉,杨占红,桑商斌,等.电解液添加剂对密封锌镍电池的影响[J].电源技术,2007,31(1):45-48.
    [50]李景威,杨占红,谷鹏,等.表面经炭黑处理的锌负极的性能[J].电池,2008,38(2):103-105.
    [51]杨恩东.密封锌镍电池锌负极的研究:[D].天津:南开大学.2002.
    [52]朱晓明.Zn/Ni二次电池新材料的应用基础研究:[D].武汉:武汉大学,2003.
    [53]喻敬贤.锌负极的若干应用基础研究:[D].武汉:武汉大学,2000.
    [54]郑奕.碱性介质中锌负极电化学行为的研究:[D].杭州:浙江大学,2004.
    [55]陈雪梅,刘春,裴东,等.电沉积锌负极的性能[J].电源技术,2005,29(12):816-818.
    [56]张胜涛,陈际达,黄宗卿.钴离子对镍电极性能的影响[J].电源技术,1995,6:8-10.
    [57]袁安保,张鉴清,丁万春,等.金属钴对泡沫镍电极及Ni/MH电池性能的影响[J].电化学,1999,3:281-286.
    [58]袁安保,张鉴清,成少安,等.钴及其化合物对镍电极放电容量和循环寿命的影响[J].电源技术,2000,2:74-76.
    [59]袁安保,张鉴清,曹楚南.镍电极研究进展[J]..电源技术,2001,25(1):53-59.
    [60]谢朋,翟玉清,翟秀静,等.蓄电池添加剂Co, CoO, Co(OH)2的研究现状[J].电源技术,1998,5:222-224.
    [61]赵景辉.密封锌镍电池的研究:[D].哈尔滨:哈尔滨工程大学,2000.
    [62]周震,阎杰,王先友,等.粘结剂PTFE对泡沫型氢氧化镍电极电化学性能的影响[J].电化学,1998,5:67-70.
    [63]Adler T C, McLarnon F R, Cairns E J. Low-zinc-solubility electrolyte for use in zinc/nickel oxide cells[J]. Journal of the Electrochemical Society,1993,140(2): 289-293.
    [64]Striebel K A, McLarnon F R, Cairns E J. Laboratory-scale evaluation of secondary alkaline zinc batteries for electric vehicles [J]. Journal of Power Sources,1994,47(1-2):1-11.
    [65]Charkey, Allen. Sealed zinc secondary battery and zinc electrode [P]. U. S. Patent 5 460 899,1995.
    [66]Charkey, Allen, Coates, et al. Calcium-zincate electrode for alkaline batteries and method for making same[P]. U. S. Patent 5 863 676,1999.
    [67]Eisenberg, Morris. Electrolyte for zinc anode batteries and method of making same[P]. U.S. Patent 4 224 391,1980.
    [68]Eisenberg, Morris. Alkaline galvanic cells[P]. U.S. Patent 5 215 836,1993.
    [69]Pyun Y B, Chang H, Jung B H. Extr. Abstr.46th ISE Meet. Xiamen, China,1995, Vol.2,Abstr.No.5.
    [70]Choi K W, Bennion D N, Newman J. Engineering analysis of shape change in zinc secondary electrodes [J]. Journal of the Electrochemical Society,1976, 123(11):1616-1627.
    [71]McBreen J. Zinc electrode shape change in secondary cells[J]. Journal of the Electrochemical Society,1972,119(12):1620-1628.
    [72]Einerhand R E F, Visscher W, Goeij J J M, et al. Zinc electrode shape change. Ⅱ, process and mechanism[J]. Journal of the Electrochemical Society,1991,138(1): 7-17.
    [73]Gunther R G, Bendert R M. Zinc electrode shape change in cells with controlled current distribution[J]. Journal of the Electrochemical Society,1987,134(4): 782-791.
    [74]查全性.电极过程动力学导论(第三版)[M].北京:科学出版社,2002:314-315.
    [75]Despic A R, Diggle J W, Bockris J O'M. Mechanism of the formation of zinc dendrites[J]. Journal of the Electrochemical Society,1968,115(5):507-508.
    [76]Diggle J W, Despic A R, Bockris J O'M. The mechanism of the dendritic electrocrystallization of zinc[J]. Journal of the Electrochemical Society,1969, 116(11):1503-1514.
    [77]王建明,钱亚冬,张莉,等.可充锌电极存在的问题及解决途径[J].电池,1999,29(2):76-80.
    [78]Hampson N A, Shaw P E, Taylor R. Anodic behaviour of zinc in potassium hydroxide solution. PT.2. horizontal anodes in electrolytes containing Zn[J]. Brit Corrosion J,1969,4(4):207-211.
    [79]Szpak S, Gabriel C J. The Zn-KOH system:the solution-precipitation path for anodic ZnO formation[J]. Journal of the Electrochemical Society,1979, 126(11):1914-1923.
    [80]Liu M B, Cook G M, Yao N P. Passivation of zinc anodes in KOH electrolytes[J]. Journal of the Electrochemical Society,1981,128(8):1663-1668.
    [81]Cai M, Park Su-Moon. Spectroelectrochemical studies on dissolution and passivation of zinc electrodes in alkaline solutions[J]. Journal of the Electrochemical Society,1996,143(7):2125-2131.
    [82]Cachet C, Saidani B, Wiart R. The behavior of zinc electrode in alkaline electrolytes Ⅱ. A kinetic analysis of anodic dissolution[J]. Journal of the Electrochemical Society,1992,139(3):644-654.
    [83]Cachet C, Stroder U, Wiart R. The kinetics of zinc electrode in alkaline zincate electrolytes[J]. Electrochimica Acta,1982,27(7):903-908.
    [84]Jain R, Adler T C, McLarnon F R, et al. Development of long-lived high-performance zinc-calcium/nickel oxide cells[J]. Journal of Applied Electrochemistry,1992,32(22):1039-1048.
    [85]Krejci I, Vanysek P. Effect of zinc and iron ions on the electrochemistry of nickel oxide electrode:slow cyclic voltammetry[J]. Journal of Power Sources,1994, 47(1-2):79-88.
    [86]Dmitrenko V E, Zubov M S, Barsukov V Z, et al. The difference in the poisoning with zincate of the positive electrodes of Nickel-zinc and Silver-Zinc cells, Elektrokhimiya,1987,23(9):1240-1241.
    [87]Meibuhr S G, Hill R F. X-ray fluorescence and SEM analysis of cycled NiOOH electrodes[J]. Journal of the Electrochemical Society,1985,132(12):2822-2827.
    [88]Gud V O. Improved cycle life of Zn/Ni hydroxide cells using a stabilized Zn electrode[J]. Journal of Applied Electrochemistry,1992,27(12):182-184.
    [89]Gud V O. Study of processes occurring during cycling of Ni/Zn batteries[J]. Zh. Preke. Khim.,1990,63(12):2650-2653.
    [90]McBreen J, Gannon E. The electrochemistry of metal oxide additives in pasted zinc electrodes[J]. Electrochimica Acta,1981,26(10):1439-1446.
    [91]Salkind A J, Kantner E, Grun C. Diffusion limitation of cycle life of nickel-zinc batteries and effects of vibration and rotation[A]. Salind A J, Mclarnon F R, Bagotzky V S. Rechargeable zinc batteries, PV 95-14[C]. Penningtion NJ:The Electrochem Soc Inc,1996,160-181.
    [92]Klein M, McLarnon F R. Nickel-zinc batteries[A]. Linden D. Handbook of batteries[M]. New York: McGraw-Hill,1995,29.
    [93]Lewis H, Jackson P, Salkind A, et al. Advanced membranes for alkaline primary and rechargeable alkaline cells with zinc anodes[J]. Journal of Power Sources, 2001,96(1):128-132.
    [94]Bass K, Mitchell P J, Wilcox G D, et al. Methods for the reduction of shape change and dendritic growth in zinc-based secondary cells[J]. Journal of Power Sources,1991,35(3):333~351.
    [95]Doddapaneni N, Ingersoll D. Novel electrolyte additives to enhance zinc electrode cycle life; Salind A J, McLarnon F R, Bagotzky V S. Rechargeable zinc batteries, PV 95-14. Pennington NJ: the Electrochemical Society, Inc,1996. 220~228.
    [96]张莉,张建明,张春,等.添加剂对碱性锌电极电化学行为的影响[J].浙江大学学报(理学版),2000,27(5):525-529.
    [97]Mcbreen J, Gannon E. The Effect of Additives on Current Distribution in Pasted Zinc Electrodes[J]. Journal of The Electrochemical Society,1983,130(10): 1980-1982.
    [98]夏保佳,王素珍,尹鹤平,等.碱性溶液中低汞锌电极及缓蚀剂的研究[J].电源技术,1995,5:5-11.
    [99]Yuan Y F, Tu J P, Wu H M, et al. Preparation, Characteristics and electrochemical performance of Sn6O4(OH)4-coated ZnO for Zn-Ni secondary battery [J]. Electrochemistry Communications,2006,8:653-657.
    [100]Zhu M, Yang X, Ai P, et al. Structural and electrochemical characterization of mechanochemically synthesized calcium zincate as rechargeable anodic materials[J]. Journal of Applied Electrochemistry,2003,33(7):607-612.
    [101]Yang H B, Zhang H C, Wang X D, et al. Calcium zincate synthesized by
    ballmilling as a negative material for secondary alkaline batteries [J]. Journal of the Electrochemical Society,2004,151(12):A2126-A2131.
    [102]李升宪,田拴宝,朱韶山.球磨法制备锌酸钙研究[J].电化学,2005,11(1):72-76.
    [103]王小丹,杨化滨,孟宪玲,等.锌酸钙的球磨法合成及其电化学性能[J].应用化学,2003,20(6):528-531.
    [104]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001. 205-206.
    [105]金达莱,岳林海,徐铸德.锌负极材料锌酸钙的晶体形貌和物化性质研究[J].无机化学学报,2005,21(2):265-269.
    [106]杨延红.二次锌负极用锌酸钙的制备及性能研究:[D].郑州:郑州大学,2007.
    [107]张春,王建明,张昭,等.钙添加剂对可充锌负极性能的影响[J].中国有色金属学报,2001,11(5):780-784.
    [108]Yuan Y F, Tu J P, Wu H M, et al. Effect of ZnO nanomaterials associated with Ca(OH)2 as anode material for Ni-Zn batteries [J]. Journal of Power Sources, 2006,159:357-360.
    [109]Hetterley R D, Mackey R, Jones J T A, et al. One-step conversion of acetone to methyl isobutyl ketone over Pd-mixed oxide catalysts prepared from novel layered double hydroxides[J]. Journal of Catalysis,2008,258(1):250-255.
    [110]Oliver S R J. Cationic inorganic materials for anionic pollutant trapping and catalysis[J]. Chemical Society Reviews,2009,38(7):1868-1872.
    [111]Gunawan P, Xu R. Direct Assembly of Anisotropic Layered Double Hydroxide (LDH) Nanocrystals on Spherical Template for Fabrication of Drug-LDH Hollow Nanospheres[J]. Chemistry of Materials,2009,21(5):781-783.
    [112]Du L, Qu B. Structural characterization and thermal oxidation properties of LLDPE/MgAl-LDH nanocomposites[J]. Journal of Materials Chemistry,2006, 16(16):1549-1552.
    [113]Hu Z A, Xie Y L, Wang Y X, et al. Synthesis and electrochemical characterization of mesoporous CoxNi1-x layered double hydroxides as electrode materials for supercapacitors[J]. Electrochimica Acta,2009,54(10): 2737-2741.
    [114]Zhang F, Zhao L, Chen H, et al. Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum[J]. Angewandte Chemie International Edition,2008,47(13):2466-2469.
    [115]Fan X, Yang Z, Wen R, et al. The application of Zn-Al-hydrotalcite as a novel anodic material for Ni-Zn secondary cells[J]. Journal of Power Sources,2013, 224:80-85.
    [116]Ma M, Tu J P, Yuan Y F, et al. Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries[J]. Journal of Power Sources, 2008,179(1):395-400.
    [117]Yuan Y F, Tu J P, Wu H M, et al. Influence of surface modification with Sn6O4(OH)4 on electrochemical performance of ZnO in Zn/Ni secondary cells[J]. Journal of Power Sources,2007,165(2):905-910.
    [118]Yuan Y F, Tu J P, Wu H M, et al. Electrochemical performance and morphology evolution of nanosized ZnO as anode material of Ni-Zn batteries[J]. Electrochimica Acta,2006,51(18):3632-3636.
    [119]Lee S H, Yi C W, Kim K. Characteristics and Electrochemical Performance of the TiO2-Coated ZnO Anode for Ni-Zn Secondary Batteries[J]. The Journal of Physical Chemistry C,2011,115(5):2572-2577.
    [120]Geng M. Development of advanced rechargeable Ni/MH and Ni/Zn batteries[J]. International Journal of Hydrogen Energy,2003,28(6):633-636.
    [121]Shivkumar R, Kalaignan G P, Vasudevan T. Studies with porous zinc electrodes with additives for secondary alkaline batteries[J]. Journal of Power Sources, 1998,75(1):90-100.
    [122]Zhu J, Zhou Y, Gao C. Influence of surfactants on electrochemical behavior of zinc electrodes in alkaline solution[J]. Journal of Power Sources,1998,72(2): 231-235.
    [123]Renuka R, Ramamurthy S, Muralidharan K. Effect of citrate, tartrate and gluconate ions on the behaviour of zinc in 3 M NaOH[J]. Journal of Power Sources,1998,76(2):197-209.
    [124]Yu J, Yang H, Ai X, et al. A study of calcium zincate as negative electrode materials for secondary batteries[J]. Journal of Power Sources,2001,103(1): 93-97.
    [125]Chen C, Gunawan P, Lou X W D, et al. Silver Nanoparticles Deposited Layered Double Hydroxide Nanoporous Coatings with Excellent Antimicrobial Activities[J]. Advanced Functional Materials,2012,22(4):780-787.
    [126]Baughman R H, Zakhidov A A, De Heer W A. Carbon Nanotubes--the Route Toward Applications [J]. Science,2002,297(5582):787-792.
    [127]Kovtyukhova N I, Mallouk T E, Pan L, et al. Individual Single-Walled Nanotubes and Hydrogels Made by Oxidative Exfoliation of Carbon Nanotube Ropes[J]. Journal of the American Chemical Society,2003,125(32): 9761-9769.
    [128]Dai H. Carbon Nanotubes:□ Synthesis, Integration, and Properties[J]. Accounts of Chemical Research,2002,35(12):1035-1044.
    [129]Yang D J, Wang S G, Zhang Q, et al. Thermal and electrical transport in multi-walled carbon nanotubes[J]. Physics Letters A,2004,329(3):207-213.
    [130]Chiu C-W, Lin J-J. Self-assembly behavior of polymer-assisted clays[J]. Progress in Polymer Science,2012,37(3):406-444.
    [131]Du B, Fang Z. The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene [J]. Nanotechnology,2010,21(31):315603-315608.
    [132]Lan Y F, Lin J J. Observation of Carbon Nanotube and Clay Micellelike Microstructures with Dual Dispersion Property[J]. The Journal of Physical Chemistry A,2009,113(30):8654-8659.
    [133]Huang S, Peng H, Tjiu W W, et al. Assembling Exfoliated Layered Double Hydroxide (LDH) Nanosheet/Carbon Nanotube (CNT) Hybrids via Electrostatic Force and Fabricating Nylon Nanocomposites[J]. The Journal of Physical Chemistry B,2010,114(50):16766-16772.
    [134]Wang H, Xiang X, Li F. Facile synthesis and novel electrocatalytic performance of nanostructured Ni-Al layered double hydroxide/carbon nanotube composites[J]. Journal of Materials Chemistry,2010,20(19):3944-3952.
    [135]Yang C C, Chien W C, Wang C L, et al. Study the effect of conductive fillers on a secondary Zn electrode based on ball-milled ZnO and Ca(OH)2 mixture powders[J]. Journal of Power Sources,2007,172(1):435-445.
    [136]Yang B, Yang Z. Structure and improved electrochemical performance of a nanostructured layered double hydroxide-carbon nanotube composite as a novel anode material for Ni-Zn secondary batteries[J]. RSC Advances,2013, 3(31):12589.
    [137]Fan X, Yang Z, Long W, et al. The preparation and electrochemical performance of In(OH)3-coated Zn-Al-hydrotalcite as anode material for Zn-Ni secondary cell[J]. Electrochimica Acta,2013,92:365-370.
    [138]Zeng D, Yang Z, Wang S, et al. Preparation and electrochemical performance of In-doped ZnO as anode material for Ni-Zn secondary cells[J]. Electrochimica Acta,2011,56(11):4075-4080.
    [139]Cho Y D, Fey G TK. Surface treatment of zinc anodes to improve discharge capacity and suppress hydrogen gas evolution[J]. Journal of Power Sources, 2008,184(2):610-616.
    [140]Huang S, Peng H, Tjiu W W, et al. Assembling Exfoliated Layered Double Hydroxide (LDH) Nanosheet/Carbon Nanotube (CNT) Hybrids via Electrostatic Force and Fabricating Nylon Nanocomposites[J]. The Journal of Physical Chemistry B,2010,114(50):16766-16772.
    [141]Chen C, Gunawan P, Lou X W D, et al. Silver Nanoparticles Deposited Layered Double Hydroxide Nanoporous Coatings with Excellent Antimicrobial Activities[J]. Advanced Functional Materials,2012,22(4):780-787.
    [142]Mi C H, Cao Y X, Zhang X Q et al. Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs[J]. Powder Technology,2008,181(3):301-306.
    [143]Zhao M Q, Zhang Q, Jia X L, et al. Hierarchical Composites of Single/Double-Walled Carbon Nanotubes Interlinked Flakes from Direct Carbon Deposition on Layered Double Hydroxides[J]. Advanced Functional Materials,2010,20(4):677-685.
    [144]Guo R, Shi P, Cheng X, et al. Effect of Ag additive on the performance of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery[J]. Journal of Power Sources,2009,189(1):2-8.
    [145]Son J T, Park K S, Kim H G, et al. Surface-modification of LiMn2O4 with a silver-metal coating[J]. Journal of Power Sources,2004,126(1-2):182-185.
    [146]Yu Y, Gu L, Zhu C, et al. Reversible storage of lithium in silver-coated three-dimensional macroporous silicon[J]. Adv Mater,2010,22(20): 2247-2250.
    [147]Kwon E, Lim H S, Sun Y K, et al. Improved rate capability of lithium-ion batteries with Ag nanoparticles deposited onto silicon/carbon composite microspheres as an anode material[J]. Solid State Ionics,2013,237:28-33.
    [148]Son J T, Park K S, Kim H G, et al. Surface-modification of LiMn2O4 with a silver-metal coating[J]. Journal of Power Sources,2004,126(1-2):182-185.
    [149]Liang S, Zhou J, Pan A, et al. Facile synthesis of Ag/AgVO3 hybrid nanorods with enhanced electrochemical performance as cathode material for lithium batteries[J]. Journal of Power Sources,2013,228:178-184.
    [150]Chen C, Gunawan P, Xu R. Self-assembled Fe3O4-layered double hydroxide colloidal nanohybrids with excellent performance for treatment of organic dyes in water[J]. Journal of Materials Chemistry,2011,21(4):1218-1225.
    [151]Oh J M, Choi S J, Lee G E, et al. Inorganic Drug-Delivery Nanovehicle Conjugated with Cancer-Cell-Specific Ligand[J]. Advanced Functional Materials,2009,19(10):1617-1624.
    [152]Han J, Xu X, Rao X, et al. Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors[J]. Journal of Materials Chemistry,2011,21(7):2126-2130.
    [153]Guo X, Zhang F, Evans D G, et al. Layered double hydroxide films:synthesis, properties and applications [J]. Chemical Communications,2010,46(29): 5197-5210.
    [154]Lee J H, Rhee S W, Nam H J, et al. Surface Selective Deposition of PMMA on Layered Double Hydroxide Nanocrystals Immobilized on Solid Substrates[J]. Adv Mater,2009,21(5):546-549.
    [155]Nishimura S, Mott D, Takagaki A, et al. Role of base in the formation of silver nanoparticles synthesized using sodium acrylate as a dual reducing and encapsulating agent[J]. Physical Chemistry Chemical Physics,2011,13(20): 9335-9343.
    [156]Gao Z, Wang J, Li Z, et al. Graphene Nanosheet/Ni2+/Al3+ Layered Double-Hydroxide Composite as a Novel Electrode for a Supercapacitor[J]. Chemistry of Materials,2011,23(15):3509-3516.
    [157]Latorre-Sanchez M, Atienzar P, Abellan G, et al. The synthesis of a hybrid graphene-nickel/manganese mixed oxide and its performance in lithium-ion batteries[J]. Carbon,2012,50(2):518-525.
    [158]Li H, Zhu G, Liu Z-H, et al. Fabrication of a hybrid graphene/layered double hydroxide material[J]. Carbon,2010,48(15):4391-4396.
    [159]Stankovich S, Dikin D A, Dommett G H, et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286.
    [160]Wang L, Wang D, Dong X Y, et al. Layered assembly of graphene oxide and Co-Al layered double hydroxide nanosheets as electrode materials for supercapacitors[J]. Chemistry Communication,2011,47(12):3556-3558.
    [161]Wang Z, Zhang X, Wang J, et al. Preparation and capacitance properties of graphene/NiAl layered double-hydroxide nanocomposite[J]. Journal of Colloid Interface Science,2013,396:251-257.
    [162]Yang J, Yu C, Fan X, et al. Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances[J]. Journal of Materials Chemistry A,2013,1(6):1963.
    [163]Yang S, Feng X, Ivanovici S, et al. Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage [J]. Angew Chem Int Ed Engl,2010,49(45):8408-8411.
    [164]Yang X, Fan K, Zhu Y, et al. Tailored graphene-encapsulated mesoporous CO3O4 composite microspheres for high-performance lithium ion batteries [J]. Journal of Materials Chemistry,2012,22(33):17278.
    [165]Zhang L, Zhang X, Shen L, et al. Enhanced high-current capacitive behavior of graphene/CoAl-layered double hydroxide composites as electrode material for supercapacitors[J]. Journal of Power Sources,2012,199:395-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700