用户名: 密码: 验证码:
Cu-Ti_3SiC_2复合材料的电弧侵蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元化合物Ti3SiC2,是MAX家族中获得最多关注的一种陶瓷材料。由于它具有多种优异性能,近年来吸引着大量的科研人员对其进行研究。Ti3SiC2具有比金属Ti更高的导电率和导热率,具有抗高温氧化性能,此外还具备较高的高温强度、热稳定性、抗热震性能以及较好的可加工性等特性。Ti3SiC2陶瓷具备的这些特点使其满足作为电接触材料的基本要求,目前国外已经有用Ti3SiC2薄膜作为SiC半导体器件间电接触材料的报道。本实验制备了以Ti3SiC2作为增强体的Cu基复合材料,并研究了它的真空电弧侵蚀机理。
     本研究通过X射线衍射(XRD),扫描电子显微镜(SEM),能谱分析(EDX),和微区拉曼光谱等方法,对高纯Ti3SiC2的真空电弧侵蚀机理进行研究。结果发现,由于真空电弧的高能量和高温度,Ti3SiC2在受到真空电弧影响时并不稳定,阴极表面的Ti3SiC2会发生分解生成TiCx,TiCx喷溅到阳极表面而Si则挥发到真空中。同时,微区拉曼光谱测试到少量的C,因此,可以认为C也应该作为该分解过程的副产物出现,在本研究中没有检测出是因为Si以蒸气的形式挥发到真空中。实验还研究了Ti3SiC2阳极的真空电弧侵蚀,微区拉曼光谱检测到作为阳极的Ti3SiC2分解成TiCx、非晶态C和其它副产品。用SEM和3D超景深数码显微镜观察了阳极表面形貌,发现阳极蚀坑尺寸从几微米到几百微米不等。其中较小的蚀坑呈现花瓣形状,有圆形突起物存在于蚀坑的底部。较大的蚀坑的直径大于100μm,但是蚀坑的底部中央不存在突起物,蚀坑的周围被裂纹和塌陷包围。
     Cu-Ti3SiC2复合材料阴极被电弧侵蚀后,部分被侵蚀的Ti3SiC2被证实转变为TiCx,微观组织分析发现Ti3SiC2比Cu更容易被电弧侵蚀。由于真空电弧的极端高温,在Cu-Ti3SiC2阴极剖切面将由于Cu和Ti3SiC2相互反应而出现新相。实验还发现,随着燃弧次数增加,Cu-Ti3SiC2复合材料中的Ti元素和Si元素会逐渐消耗。受高温电弧的影响,Cu和Ti3SiC2相互反应不仅出现在阴极,还会出现在低电流情况下相对不活泼的阳极。一次燃弧过后,Ti3SiC2含量越高的Cu-Ti3SiC2阴极样品,其表面越粗糙,同时还发现,Ti3SiC2含量越高的样品质量损失速率也越大,其中Ti3SiC2质量分数为25wt.%的Cu-Ti3SiC2样品的质量损失速率为纯铜的两倍。
     由于在电弧作用下Ti3SiC2会分解出TiC,而WC陶瓷有应用于电触头材料的实例,为了和Ti3SiC2相比较,本研究也对WC和TiC的真空电弧侵蚀行为进行研究。在一次燃弧的TiC阴极表面发现很多微裂纹,而50次燃弧过后,TiC阴极表面会崩裂成许多小碎片,对其断面进行观察发现脆性穿晶断裂是主要的断裂方式。实验还证明了受电弧侵蚀后阴极的TiC也会发生分解,在TiC对面的阳极上发现沉积着非晶态碳。一次燃弧的WC阴极表面只出现一些微裂纹,经过多次真空电弧侵蚀后(100次),裂纹才变宽。在电弧作用下WC也会分解,生成非晶态碳,但实验证明WC要比TiC稳定得多。在WC和TiC阳极表面分别观察到阳极蚀坑,TiC阳极上的蚀坑被Cu颗粒包围着,在蚀坑的中心检测到单质C的存在,因此可以断定TiC发生了分解。随着燃弧次数的增加,WC阳极上的蚀坑变大变深,经15次燃弧后WC阳极覆盖着一层Cu。WC和TiC阳极表面蚀坑形貌的差异可归因于两种陶瓷材料的不同特性。
     本文研究了Cu-WC和Cu-TiC复合材料的电弧侵蚀机理。相比于Cu,TiC在真空击穿过程中更容易受电弧侵蚀,一次燃弧后,TiC含量高的Cu-TiC阴极样品表面更粗糙。由于具有较高的熔点,WC的熔融过程将吸收大量的能量,未熔融的WC也可以有效降低阴极表面的喷溅并阻止熔池进一步扩大。相比Ti3SiC2和TiC,WC的耐电弧侵蚀性能更好。
The ternary compound Ti3SiC2is the most studied member of the MAX phasefamily. In the recent years, it has triggered intense research efforts due to its uniqueproperties. It has higher electrical and thermal conductivity than those of titaniummetal, and has high-temperature-oxidation resistance. Ti3SiC2also exhibits excellentproperties such as high strength at high temperatures, high thermal stability,high-thermal shock resistance, good machinability, etc. Its overall properties satisfy thebasic requirements of electrical contact materials. It has been declared that Ti3SiC2film has the possibility to be used as an electrical contact for silicon carbide devices. Inthis paper, the vacuum arc erosion characteristics of Ti3SiC2particles reinforcedCu-matrix composites were investigated.
     The arc erosion behavior of high-purity Ti3SiC2in vacuum was investigated byX-ray diffraction (XRD), scanning electron microscope (SEM), Energy DispersiveX-Ray Spectroscopy (EDX), and micro-Raman Spectroscopy. From the resultsobtained, Ti3SiC2is unstable due to the high energy intensity and high temperature ofthe vacuum arc. The dissociation of Ti3SiC2takes place at the sample surface, resultingin the formation of solid TiCxand gaseous Si. TiCxis ejected from cathode to thesurface of anode while Si is evaporated to the vacuum chamber. The micro-Ramanresults reveal that, small amounts of carbon appeared as a by-product of thedissociation. The decomposition of Ti3SiC2into non-stoichiometric TiCx, amorphouscarbon and other by-products was detected on the anode surface. The surfacemorphology was revealed by scanning electron microscope and3D super depth digitalmicroscope. Different kinds of anode craters with diameters varying from a fewmicrons to a few hundred microns were observed on the anode surface. The smallercraters are flower-like shaped with a sphoiroidal protrusion pointing out from thecenter of the crater bottom. The larger craters have a diameters greater than onehundred microns but without the central protrusion and the crater is surrounded bycollapse-fissure.
     The Ti3SiC2particles on the Cu-Ti3SiC2cathode surface are also proved to produce TiCxunder the impact of the vacuum arc. Ti3SiC2is more prone to be erodedthan Cu matrix in the vacuum breakdown process. Different reaction phases will beformed on the the cross section of Cu-Ti3SiC2cathode, due to the extreme temperatureof the vacuum arc. It seems that Ti element and Si element have the tendency to bedepleted after long period of vacuum breakdown test. The reactions between Cu andTi3SiC2could be detected on the surface of a Cu-Ti3SiC2cathode after the vacuumbreakdown. Even on the inert Cu-Ti3SiC2anode, the temperature is so high thatmaking the reaction between Cu and Ti3SiC2possible. It is also found that, after thefirst vacuum breakdown, the Cu-Ti3SiC2sample with a higher content of Ti3SiC2obtained a rougher surface. At the meantime, the cathode erosion rate of Cu-Ti3SiC2composites is found increasing with the increase of Ti3SiC2content. The cathodeerosion rate of sample CuTSC25is twice that of pure Cu.
     The arc erosion behavior of WC and TiC in vacuum were investigated forcomparison. Cracks were found on the surface of a TiC cathode after the firstbreakdown. The TiC cathode is crushed after exposed to50arcings. Inspection of themicrograph reveals that brittle intergranular fracture is the dominant mode of failure.The deposition of amorphous carbon on the Mo anode indicated that the decompositionof TiC on its counterpart TiC cathode. Some microcracks were also found on thesurface of WC cathode after the first breakdown. Bigger cracks appear on the surfaceof WC cathode under100arcings, indicating that it is ceramic in nature. Amorphouscarbon is also proven to be one of the decomposition products of WC. However, WC isproven to be much stable than TiC under the impact of the vacuum arc.
     The arc erosion characteristics of WC and TiC particles reinforced Cu-matrixcomposites were investigated. TiC is more prone to be eroded than Cu matrix duringthe vacuum breakdown process. After the first vacuum breakdown, the Cu-TiC samplewith a higher content of TiC obtained a rougher surface. Due to the addition of brittleTiC, Cu-TiC composite may exhibit good anti-welding capability. The melting of WCin Cu-WC composite can absorb a great deal of energy due to its high melts point. Theunmelted WC particles can alleviate sputtering on the cathode surface, and restrain theerosion pools from further expansion. WC is much stable than Ti3SiC2and TiC under influence of the vacuum arc.
     Anode craters were observed on the surface of TiC and WC anode, respectively.The anode crater on TiC anode is surrounding by Cu particles and the anode crater onWC is covered by Cu depositions. These differences in appearance maybe come fromthe different characters of TiC and WC.
引文
[1]段雄英,李震彪.真空开关开断机理及其影响因素[J].高压电器,1997,(6):36-42.
    [2]王季梅.真空开关理论及其应用[M].西安:西安交通大学出版社,1986.
    [3]王季梅.真空开关技术与应用[M].北京:机械工业出版社,2008.
    [4]张万胜.电触头材料国外基本情况[J].电工合金,1995(1):1-20.
    [5]岩原皓一.真空开关[M].北京:煤炭工业出版社,1981.
    [6]拉弗蒂.真空电弧理论和应用[M].北京:机械工业出版社,1985.
    [7]李辛庚,傅敏.真空电触头材料技术开发现状及展望[J].中国电力,2001,34(8):39-42.
    [8]窦富起.银基电接触材料在继电器中的应用研究[D].天津:天津大学,2009.
    [9]王建永,李增峰,汤慧萍,等.电触头材料发展概况[J].中国有色金属学会第十二届材料科学与合金加工学术年会论文集,2007.
    [10]程礼椿,李震彪,邹积岩,等. CuCr真空触头材料的运行特性与机理[J].高压电器,1993,3:011.
    [11] Okutomi T, Yamamoto A, Ohshima I, et al. Contact material: U.S. Patent6,210,809[P].2001-4-3.
    [12] Braunovic M, Myshkin N K, Konchits V V. Electrical contacts: fundamentals,applications and technology [M]. Boca Raton: CRC press,2006.
    [13] Yokokura K, Matsuda M, Atsumi K, et al. Capacitor switching capability ofvacuum interrupter with CuW contact material [J]. Power Delivery, IEEETransactions on,1995,10(2):804-810.
    [14]夏承东,田保红,刘平,等. CuCr合金触头材料的研究现状[J].铸造技术,2007,28(1):139-141.
    [15]钱宝光,耿浩然,郭忠全,等.电触头材料的研究进展与应用[J].机械工程材料,2001,8(3).
    [16] Naya E, Okumura M. Contact material for vacuum circuit breaker: U.S. Patent4,626,282[P].1986-12-2.
    [17] Emmerich W S. Vacuum switch contact materials: U.S. Patent4,048,117[P].1977-9-13.
    [18]王季梅.真空电弧理论研究及其测试[M].西安:西安交通大学出版社,1993.
    [19]陈文革,黎斌. CuW触头材料的制备及失效分析[J].电工材料,2011(4):9-14.
    [20]陈世俊,段沛林. CuW触头材料的制备[J].电工材料,2011(1):27-30.
    [21] Yang B, German R M. Powder injection molding and infiltration sintering ofsuperfine grain W-Cu [J]. International journal of powder metallurgy,1997,33(4):55-63.
    [22]杨晓红.超高压CuW/CuCr整体电触头材料的研究[D].西安:西安理工大学,2009.
    [23] Chen W, Kang Z, Shen H, et al. Arc erosion behavior of a nanocomposite W-Cuelectrical contact material [J]. Rare Metals,2006,25(1):37-42.
    [24] Yang X, Liang S, Wang X, et al. Effect of WC and CeO2on microstructure andproperties of W-Cu electrical contact material [J]. International Journal of RefractoryMetals and Hard Materials,2010,28(2):305-311.
    [25] Weichan C, Shuhua L, Zhuangfeng G, et al. Effect of Fe on vacuum breakdownproperties of CuW alloys [J]. International Journal of Refractory Metals and HardMaterials,2011,29(6):656-661.
    [26]胡春文,鲁世强,贺跃辉,等.提高CuCr触头材料性能的方法[J].南昌航空工业学院学报,2006,18(1):70-73.
    [27]王季梅,宛舜.大容量真空开关理论及其产品开发[M].西安:西安交通大学出版社,2001.
    [28]修士新,王季梅. Cr含量对CuCr触头材料性能的影响[J].真空电子技术,1998(1):24-27.
    [29] Xiu S X, Yang R, Xue J, et al. Properties of vacuum cast CuCr25and CuCr25Tecontact material [J]. Transactions of Nonferrous Metals Society of China,2009,19:444-447.
    [30] Weichan C, Shuhua L, Xiao Z, et al. Effect of Mo addition on microstructure andvacuum arc characteristics of CuCr50alloy [J]. Vacuum,2011,85(10):943-948.
    [31] Boxman R L, Martin P J, Sanders D M. Handbook of Vacuum Arc Science andTechnology,1995[M]. Noyes, Park Ridge, NJ, USA.
    [32] Anders A. Cathodic arcs: from fractal spots to energetic condensation [M]. NewYork: Springer,2009.
    [33] Chen Z K, Mizukoshi H, Sawa K. Contact erosion patterns of Pd material in DCbreaking arcs [J]. Components, Packaging, and Manufacturing Technology, Part A,IEEE Transactions on,1994,17(1):61-67.
    [34] Chen Z K, Mizukoshi H, Sawa K. Contact resistance characteristics of Agmaterial in breaking low-load DC arcs [J]. Components, Packaging, andManufacturing Technology, Part A, IEEE Transactions on,1994,17(1):113-120.
    [35] Chen Z K, Sawa K. Polarity effect of unsymmetrical material combination on thearc erosion and contact resistance behavior [J]. Components, Packaging, andManufacturing Technology, Part A, IEEE Transactions on,1995,18(2):334-343.
    [36] Chen Z K, Sawa K. Particle sputtering and deposition mechanism for materialtransfer in breaking arcs [J]. Journal of applied physics,1994,76(6):3326-3331.
    [37] Juttner B. Characterization of the cathode spot [J]. Plasma Science, IEEETransactions on,1987,15(5):474-480.
    [38] Lyubimov G A, Rakhovski V I. The cathode spot of a vacuum arc [J]. SovietPhysics Uspekhi,1978,21(8):693.
    [39] Daalder J E. Components of cathode erosion in vacuum arcs [J]. Journal ofPhysics D: Applied Physics,1976,9(16):2379.
    [40] Utsumi T, English J H. Study of electrode products emitted by vacuum arcs inform of molten metal particles [J]. Journal of Applied Physics,2008,46(1):126-131.
    [41] Daalder J E. Erosion and the origin of charged and neutral species in vacuumarcs [J]. Journal of Physics D: Applied Physics,1975,8(14):1647.
    [42] Tuma D T, Chen C L, Davies D K. Erosion products from the cathode spot regionof a copper vacuum arc [J]. Journal of Applied Physics,2008,49(7):3821-3831.
    [43] Lefort A, Abbaoui M. Theory about cathode arc root: a review [C]. IOPConference Series: Materials Science and Engineering. IOP Publishing,2012,29(1):012006.
    [44] Rich J A. A means of raising the threshold current for anode spot formation inmetal-vapor arcs [J]. Proceedings of the IEEE,1971,59(4):539-545.
    [45] Rich J A, Prescott L E, Cobine J D. Anode phenomena in metal‐vapor arcs athigh currents [J]. Journal of Applied Physics,2003,42(2):587-601.
    [46] Kimblin C W. Anode phenomena in vacuum and atmospheric pressure arcs [J].Plasma Science, IEEE Transactions on,1974,2(4):310-319.
    [47] Miller H C. A review of anode phenomena in vacuum arcs [J]. Plasma Science,IEEE Transactions on,1985,13(5):242-252.
    [48] Mitchell G R. High-current vacuum arcs. Part1: An experimental study[C].Proceedings of the Institution of Electrical Engineers. IET Digital Library,1970,117(12):2315-2326.
    [49]王季梅.论大电流真空电弧收缩现象和阳极斑点形成的理论分析[J].华通技术,2002(1):13-18.
    [50] Miller H C. Anode modes in vacuum arcs [J]. Dielectrics and ElectricalInsulation, IEEE Transactions on,1997,4(4):382-388.
    [51] Miller H C. Discharge modes at the anode of a vacuum arc [J]. Plasma Science,IEEE Transactions on,1983,11(3):122-127.
    [52] Boxman R L. Measurement of anode surface temperature during a high-currentvacuum arc [J]. Journal of Applied Physics,1975,46(11):4701-4704.
    [53] Grissom J T, Newton J C. Anode surface radiance from microsecond vacuumarcs [J]. Journal of Applied Physics,1974,45(7):2885-2894.
    [54] Miller H C. A review of anode phenomena in vacuum arcs [J]. Contributions toPlasma Physics,1989,29(3):223-249.
    [55] Miller H C. Anode modes in vacuum arcs [C]. Discharges and ElectricalInsulation in Vacuum,1996Proceedings. ISDEIV., XVIIth International Symposiumon. IEEE,1996,1:1-7.
    [56] Jeitschko W, Nowotny H. Die Kristallstruktur von Ti3SiC2-ein neuerKomplexcarbid-Typ [J]. Monatshefte für Chemie und verwandte Teile andererWissenschaften,1967,98(2):329-337.
    [57] Barsoum M W, El‐Raghy T. Synthesis and characterization of a remarkableceramic: Ti3SiC2[J]. Journal of the American Ceramic Society,1996,79(7):1953-1956.
    [58] El-Raghy T, Barsoum M W. Processing and mechanical properties of Ti3SiC2: I,reaction path and microstructure evolution [J]. Journal of the American CeramicSociety,1999,82(10):2849-2854.
    [59] Li S, Xie J, Zhao J, et al. Mechanical properties and mechanism of damagetolerance for Ti3SiC2[J]. Materials Letters,2002,57(1):119-123.
    [60] Tang K, Wang C, Huang Y, et al. A study on the orientation relationship betweenTi3SiC2and TiC grains [J]. Materials Letters,2002,57(1):106-109.
    [61] Kisi E H, Crossley J A A, Myhra S, et al. Structure and crystal chemistry ofTi3SiC2[J]. Journal of Physics and Chemistry of Solids,1998,59(9):1437-1443.
    [62] Ahuja R, Eriksson O, Wills J M, et al. Electronic Structure of Ti3SiC2[J]. AppliedPhysics Letters,2000,76(16):2226-2228.
    [63] Zhou Y, Sun Z. Electronic structure and bonding properties in layered ternarycarbide Ti3SiC2[J]. Journal of Physics: Condensed Matter,2000,12(28): L457.
    [64] Zhou Y, Sun Z, Wang X, et al. Ab initio geometry optimization and ground stateproperties of layered ternary carbides Ti3MC2(M=Al, Si and Ge)[J]. Journal ofPhysics: Condensed Matter,2001,13(44):10001.
    [65] Bai Y, He X, Sun Y, et al. Chemical bonding and elastic properties of Ti3AC2phases (A=Si, Ge, and Sn): A first-principle study [J]. Solid State Sciences,2010,12(7):1220-1225.
    [66] Barsoum M W. The MN+1AXNphases: A new class of solids: Thermodynamicallystable nanolaminates [J]. Progress in Solid State Chemistry,2000,28(1):201-281.
    [67] El‐Raghy T, Barsoum M W, Zavaliangos A, et al. Processing and mechanicalproperties of Ti3SiC2: II, effect of grain size and deformation temperature [J]. Journalof the American Ceramic Society,1999,82(10):2855-2860.
    [68] Li J F, Pan W, Sato F, et al. Mechanical properties of polycrystalline Ti3SiC2atambient and elevated temperatures [J]. Acta materialia,2001,49(6):937-945.
    [69] Zhou Y, Sun Z. Microstructure and mechanism of damage tolerance for Ti3SiC2bulk ceramics [J]. Material Research Innovations,1999,2(6):360-363.
    [70] Radovic M, Barsoum M W, El-Raghy T, et al. Tensile properties of Ti3SiC2in the25–1300°C temperature range [J]. Acta Materialia,2000,48(2):453-459.
    [71] Maerky C, Guillou M O, Henshall J L, et al. Indentation hardness and fracturetoughness in single crystal TiC0.96[J]. Materials Science and Engineering: A,1996,209(1):329-336.
    [72] El-Raghy T, Zavaliangos A, Barsoum M W, et al. Damage mechanisms aroundhardness indentations in Ti3SiC2[J]. Journal of the American Ceramic Society,1997,80(2):513-516.
    [73] Zhang H B, Zhou Y C, Bao Y W, et al. Abnormal thermal shock behavior ofTi3SiC2and Ti3AlC2[J]. Journal of materials research,2006,21(9):2401-2407.
    [74] Gilbert C J, Bloyer D R, Barsoum M W, et al. Fatigue-crack growth and fractureproperties of coarse and fine-grained Ti3SiC2[J]. Scripta materialia,2000,42(8):761-767.
    [75] Chen D, Shirato K, Barsoum M W, et al. Cyclic fatigue-crack growth andfracture properties in Ti3SiC2ceramics at elevated temperatures [J]. Journal of theAmerican Ceramic Society,2001,84(12):2914-2920.
    [76] Sun Z, Zhou Y, Li M. Oxidation behaviour of Ti3SiC2-based ceramic at900-1300°C in air [J]. Corrosion Science,2001,43(6):1095-1109.
    [77] Li S, Cheng L, Zhang L. Oxidation behavior of Ti3SiC2at high temperature in air[J]. Materials Science and Engineering: A,2003,341(1):112-120.
    [78] Xiaowei L, Jean-Charles R, Suyuan Y. Effect of temperature on graphiteoxidation behavior [J]. Nuclear engineering and design,2004,227(3):273-280.
    [79] Crossley A, Kisi E H, Summers J W B, et al. Ultra-low friction for a layeredcarbide-derived ceramic, investigated by lateral force microscopy (LFM)[J]. Journalof Physics D: Applied Physics,1999,32(6):632.
    [80] Ho-Duc L H, El-Raghy T, Barsoum M W. Synthesis and characterization of0.3TiC-Ti3SiC2and0.3SiC-Ti3SiC2composites [J]. Journal of alloys and compounds,2003,350(1-2):303-312.
    [81] Barsoum M W, Ho-Duc L H, Radovic M, et al. Long time oxidation study ofTi3SiC2, Ti3SiC2/SiC, and Ti3SiC2/TiC composites in air [J]. Journal of theelectrochemical society,2003,150(4): B166-B175.
    [82]朱达炎,朱教群,梅炳初,等. Ti3SiC2基复合材料的研究现状及发展趋势[J].江苏陶瓷,2005,38(4):23-26.
    [83]张灵振,石随林. Ti3SiC2/TiC陶瓷复合材料高温压缩性能[J].稀有金属材料与工程,2007,36(A01):218-220.
    [84] Zhang J, Wang L, Jiang W, et al. Effect of TiC content on the microstructure andproperties of Ti3SiC2–TiC composites in situ fabricated by spark plasma sintering [J].Materials Science and Engineering: A,2008,487(1):137-143.
    [85]尹洪峰,范强,任耘,等. SiC含量对Ti3SiC2/SiC复合材料性能的影响[J].航空材料学报,2008,28(6):78-81.
    [86] Zhang JF. Friction and wear resistance Of Ti3SiC2-SiC composites [J]. Journal OfInorganic Materials,2009,23(6):1147-1150.
    [87]张光磊,秦国强,付华,等.真空无压烧结A12O3/Ti3SiC2复合陶瓷的原位合成工艺,结构与性能[J].石家庄铁道大学学报:自然科学版,2013(1):41-45.
    [88]王红洁,金志浩. A12O3对Ti3SiC2/A12O3复合材料性能及显微结构的影响[J].稀有金属材料与工程,2004,33(1):40-42.
    [89]高闰丰,梅炳初,朱教群,等. Cu/Ti3SiC2新型受电弓滑板材料的研究[J].稀有金属快报,2006,24(11):16-20.
    [90]张毅,周延春. Ti3SiC2弥散强化Cu:一种新的弥散强化铜合金[J].金属学报,2000,36(6):662-666.
    [91] Zhang Y, Sun Z, Zhou Y. Cu/Ti3SiC2composite: a new electrofriction material [J].Material Research Innovations,1999,3(2):80-84.
    [92]贲云飞,徐桂芳,杨娟,等. Cu/Ti3SiC2复合材料的制备及其磨损性能研究[J].热加工工艺,2012,41(14):128-131.
    [93]贾晓伟. Ti3SiC2-Cu复合材料的制备与性能研究[D].北京:北京交通大学,2008.
    [94]王占永. Ti3SiC2-Cu新型真空触头材料的制备与性能研究[D].北京:北京交通大学,2008.
    [95]陈树涛. Cu/Ti3SiC2真空触头材料的制备与电接触性能研究[D].北京:北京交通大学,2009.
    [96] Ngai T L, Kuang Y, Li Y. Impurity control in pressureless reactive synthesis ofpure Ti3SiC2bulk from elemental powders [J]. Ceramics International,2012,38(1):463-469.
    [97]匡迎焕.高纯Ti3SiC2及Ti/(Ti3SiC2-SiC)层状材料的制备[D].广州:华南理工大学,2009.
    [98]郑伟. Cu-Ti3SiC2电接触材料的制备及其热稳定性研究[D].广州:华南理工大学,2013.
    [99]郑军君. Ti3SiC2增强Cu基复合材料及金属/Ti3SiC2-SiC层状材料的制备研究[D].广州:华南理工大学,2011.
    [100]谭文昌.多种工艺制备Cu-Ti3SiC2复合材料及其性能研究[D].广州:华南理工大学,2012.
    [101]张宝霞.纯钛硅化碳-铜导电材料的研制及其性能研究[D].广州:华南理工大学,2013.
    [102] Junbo W, Yan Z, Minge Y, et al. Observation of arc discharging process ofnanocomposite Ag–SnO2and La-doped Ag–SnO2contact with a high-speed camera[J]. Materials Science and Engineering: B,2006,131(1):230-234.
    [103] Wang X, Liang S, Yang P, et al. Effect of Al2O3particle size on vacuumbreakdown behavior of Al2O3/Cu composite [J]. Vacuum,2009,83(12):1475-1480.
    [104] Amer M, Barsoum M W, El-Raghy T, et al. The Raman spectrum of Ti3SiC2[J].Journal of applied physics,1998,84(10):5817-5819.
    [105] Mercier F, Chaix-Pluchery O, Ouisse T, et al. Raman scattering from Ti3SiC2single crystals [J]. Applied Physics Letters,2011,98(8):081912-081912-3.
    [106] Wang J Y, Zhou Y C. Polymorphism of Ti3SiC2ceramic: first-principlesinvestigations [J]. Physical Review B,2004,69(14):144108.
    [107] Lohse B H, Calka A, Wexler D. Raman spectroscopy as a tool to study TiCformation during controlled ball milling [J]. Journal of applied physics,2005,97(11):114912.
    [108] Klein M V, Holy J A, Williams W S. Raman scattering induced by carbonvacancies in TiCx[J]. Physical Review B,1978,17(4):1546.
    [109] Tiwald T E, Woollam J A, Zollner S, et al. Carrier concentration and latticeabsorption in bulk and epitaxial silicon carbide determined using infrared ellipsometry[J]. Physical Review B,1999,60(16):11464.
    [110] Takikawa H, Kusano O, Sakakibara T. Graphite cathode spot produces carbonnanotubes in arc discharge [J]. Journal of Physics D: Applied Physics,1999,32(18):2433.
    [111] Hantzsche E. Mysteries of the arc cathode spot: A retrospective glance [J].Plasma Science, IEEE Transactions on,2003,31(5):799-808.
    [112] Qi Q, Zhang W Z, Shi L Q, et al. Preparation of single-crystal TiC (111) byradio frequency magnetron sputtering at low temperature [J]. Thin Solid Films,2012,520(23):6882-6887.
    [113] Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. The Journal ofChemical Physics,2003,53(3):1126-1130.
    [114] Reich S, Thomsen C. Raman spectroscopy of graphite [J]. PhilosophicalTransactions of the Royal Society of London. Series A: Mathematical, Physical andEngineering Sciences,2004,362(1824):2271-2288.
    [115] Gray E W, Pharney J R. Electrode erosion by particle ejection in low-currentarcs [J]. Journal of Applied Physics,2003,45(2):667-671.
    [116] Jüttner B. Erosion craters and arc cathode spots in vacuum [J]. Beitr ge aus derPlasmaphysik,1979,19(1):25-48.
    [117] Radhakrishnan R, Williams J J, Akinc M. Synthesis and high-temperaturestability of Ti3SiC2[J]. Journal of Alloys and Compounds,1999,285(1):85-88.
    [118] Racault C, Langlais F, Naslain R. Solid-state synthesis and characterization ofthe ternary phase Ti3SiC2[J]. Journal of materials Science,1994,29(13):3384-3392.
    [119] Low I M, Oo Z, Prince K E. Effect of vacuum annealing on the phase stabilityof Ti3SiC2[J]. Journal of the American Ceramic Society,2007,90(8):2610-2614.
    [120] Zeng J, Ren S, Lu J. Phase evolution of Ti3SiC2annealing in vacuum at elevatedtemperatures [J]. International Journal of Applied Ceramic Technology,2013,10(3):527-539.
    [121] Emmerlich J, Music D, Eklund P, et al. Thermal stability of Ti3SiC2thin films[J]. Acta Materialia,2007,55(4):1479-1488.
    [122] Pang W K, Low I M, O'Connor B H, et al. Comparison of thermal stability inMAX211and312phases [C]. Journal of Physics: Conference Series. IOP Publishing,2010,251(1):012025.
    [123]程礼椿.电接触理论及应用[M].北京:机械工业出版社,1988.
    [124] Dezellus O, Voytovych R, Li A P H, et al. Wettability of Ti3SiC2by Ag-Cu andAg-Cu-Ti melts[J]. Journal of materials science,2010,45(8):2080-2084.
    [125] Guo H, Zhang J, Li F, et al. Surface strengthening of Ti3SiC2through magnetronsputtering Cu and subsequent annealing [J]. Journal of the European Ceramic Society,2008,28(10):2099-2107.
    [126] Litvinov E A, Mesyats G A, Proskurovski D I. Field emission and explosiveelectron emission processes in vacuum discharges [J]. Soviet Physics Uspekhi,1983,26(2):138.
    [127] Fowler R H, Nordheim L. Electron emission in intense electric fields [C]. Proc.R. Soc. London, Ser. A.1928,119(781):173-181.
    [128] Buchholt K, Ghandi R, Domeij M, et al. Ohmic contact properties of magnetronsputtered Ti3SiC2on n-and p-type4H-silicon carbide [J]. Applied physics letters,2011,98(4):042108.
    [129] Oshima C, Aono M, Tanaka T, Kawai S. Clean TiC(001) surface and oxygenchemisorption studied by work function measurement, angle-resolved X-rayphotoelectron spectroscopy, ultraviolet photoelectron spectroscopy and ion scatteringspectroscopy [J]. Surface Science1981;102(2-3):312-30.
    [130] Slade P G, Li W, Loud L D, et al. The unusual electrical erosion of high tungstencontent, tungsten copper contacts switching load current in vacuum [J]. Componentsand Packaging Technologies, IEEE Transactions on,2001,24(3):320-330.
    [131] Fink H, Gentsch D, Heimbach M. Multilayer contact material based on copperand chromium material and its interruption ability [J]. Plasma Science, IEEETransactions on,2003,31(5):973-976.
    [132] Gentsch D, Shang W. High-speed observations of arc modes and materialerosion on RMF-and AMF-contact electrodes [J]. Plasma Science, IEEE Transactionson,2005,33(5):1605-1610.
    [133] Wei X, Wang J, Yang Z, et al. Liquid phase separation of Cu-Cr alloys duringthe vacuum breakdown [J]. Journal of Alloys and Compounds,2011,509(25):7116-7120.
    [134] Wakelkamp W, van Loo F J J, Boelen B, et al. The diffusion of carbon innon-stoichiometric carbides [C]. Diffusion and Defect Data. Part A, Defect andDiffusion Forum.1990,66:1485.
    [135]宋贵宏,杜昊,贺春林.硬质与超硬涂层:结构,性能,制备与表征[M].北京:化学工业出版社,2007.
    [136] Benjamin J S, Volin T E. The mechanism of mechanical alloying [J].Metallurgical Transactions,1974,5(8):1929-1934.
    [137] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying [J].Metallurgical transactions,1970,1(10):2943-2951.
    [138] Benjamin J S, Bomford M J. Dispersion strengthened aluminum made bymechanical alloying [J]. Metallurgical Transactions A,1977,8(8):1301-1305.
    [139] Benjamin J S, Volin T E. The mechanism of mechanical alloying [J].Metallurgical Transactions,1974,5(8):1929-1934.
    [140]虞觉奇,易文质,陈邦迪,陈宏鉴.二元合金状态图集[M].上海:上海科学技术出版社,1987.
    [141] Deshpande P K. Wear resistance and electrical property of infrared processedcopper/tungsten carbide composites [M].2006.
    [142] Deshpande P K, Li J H, Lin R Y. Infrared processed Cu composites reinforcedwith WC particles [J]. Materials Science and Engineering: A,2006,429(1):58-65.
    [143] Ding C, Yamada M, Yanabu S. Optical observation on a low current instabilityin vacuum discharge [C]. Discharges and Electrical Insulation in Vacuum,2004.Proceedings. ISDEIV. XXIst International Symposium on. IEEE,2004,1:213-216.
    [144] Temborius S, Lindmayer M, Gentsch D. Properties of WCAg and WCCu forvacuum contactors[J]. Plasma Science, IEEE Transactions on,2003,31(5):945-952.
    [145] Temborius S, Lindmayer M, Gentsch D. Comparison of the properties of WCAgand WCCu as contact materials for vacuum contactors[C] Discharges and ElectricalInsulation in Vacuum,2002.20th International Symposium on. IEEE,2002:247-253.
    [146] Demetriou M D, Ghoniem N M, Lavine A S. Modeling of graphitizationkinetics during peritectic melting of tungsten carbide [J]. Acta materialia,2002,50(20):4995-5004.
    [147] Sasaki J, Brown I G. Ion spectra of vacuum arc plasma with compound andalloy cathodes [J]. Journal of Applied Physics,1989,66(11):5198-5203.
    [148] Savkin K P, Yushkov Y G, Nikolaev A G, et al. Generation of multicomponention beams by a vacuum arc ion source with compound cathode [J]. Review ofScientific Instruments,2010,81(2):02A501.
    [149] Yamamoto A, Kusano T, Seki T, et al. Vaporization of carbon from Cu-WCcontact during arc discharge in vacuum [J]. Plasma Science, IEEE Transactions on,1999,27(4):915-922.
    [150] Cui W, Wu Z, Liu C H, et al. Room temperature solution processed tungstencarbide as an efficient hole extraction layer for organic photovoltaics [J]. Journal ofMaterials Chemistry A,2013.
    [151] Gaines A F, Page F M. Determination of electron affinities. Part6.—The phenyland benzyl radicals [J]. Transactions of the Faraday Society,1963,59:1266-1273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700