用户名: 密码: 验证码:
反应浸渗制备连续纤维增强SiC基复合材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续纤维增强SiC基复合材料(Cf/SiC和SiCf/SiC)具有高强度、高模量、耐高温、耐腐蚀、抗氧化、抗辐照和低活性等优异性能,已成为航空航天和核聚变等领域中较理想的高温结构及功能材料。目前,关于连续纤维增强SiC基复合材料制备工艺的研究主要集中在先驱体浸渍裂解(Polymer Impregnation andPyrolysis,PIP)、化学气相沉积(Chemical Vapor Infiltration,CVI)和纳米浸渍与瞬时共晶(Nano-Infiltrated Transient Eutectoid,NITE)等工艺,而对反应浸渗工艺(Reaction Infiltration,RI)的研究报道则相对较少。本论文开展了RI工艺制备连续纤维增强SiC基复合材料的研究,主要目的是为获得优异性能的连续纤维增强SiC基复合材料探索新的道路。
     首先对碳基中间体进行设计与制备。通过对碳基中间体的临界密度和孔隙率的建模计算获得:不论是树脂碳(Resin Carbon, RC)还是热解碳(Pyrolytic Carbon,PyC),SiC纤维和C纤维增强的碳基中间体的临界密度分别为1.68g/cm3和1.36g/cm3;不论是SiC纤维还是C纤维,RC基和PyC基中间体的临界孔隙率分别为19%和26%,该临界密度和孔隙率利于反应浸渗工艺制备连续纤维增强SiC基复合材料。
     采用化学气相沉积(Chemical Vapor Deposition, CVD)工艺分别在碳纤维和碳化硅纤维编织体中制备了厚度分别为0.2~0.3μm的PyC/SiC复合涂层,该复合涂层较连续、均匀、致密,同时涂层间分界清晰。PyC的层状结构即改善了纤维的表面状态,又为裂纹在涂层中的扩展提供了途径;SiC涂层的抗氧化性能则起到了保护纤维的作用。
     采用浸渍碳化(Infiltration Carbonization, IC)工艺和CVI工艺制备了RC基和PyC基中间体。研究发现利用间苯二酚和甲醛合成的酚醛树脂溶液具有粘度低(25mPa S)、渗透效果好和浸渍/碳化效率高等优点。同时发现PyC较致密,其结构为典型短程有序、长程无序的乱层结构;而RC较疏松,其结构为明显的无序结构。
     其次,对反应浸渗工艺进行热力学和动力学分析,结果表明:利用该工艺制备连续纤维增强SiC基复合材料是可行的;同时发现影响反应浸渗效果的主要因素包括硅及硅合金的物理性能(硅蒸气浓度及传质系数、硅合金的粘度、密度和表面张力)、硅合金与碳基中间体的润湿性、以及碳基中间体的孔径尺寸。提高硅蒸气浓度及传质系数、降低硅合金粘度和密度、增强其与中间体的润湿性均有利于增加反应速率、提高反应浸渗效果。
     最终利用反应浸渗工艺制备了连续纤维增强SiC基复合材料,研究表明:在碳基中间体的密度和孔隙率接近临界密度和孔隙率的条件下,反应浸渗工艺制备连续纤维增强SiC基复合材料的性能最好。其中在1650℃、保温1h的条件下,SiCf/PyC、SiCf/RC和SiCf/PyC+RC经反应浸渗硅工艺制备的SiCf/SiC复合材料的最高弯曲强度和断裂韧性分别为301.2MPa和17.6MPa m1/2,144MPa和4.53MPa m1/2,342MPa和10.2MPa m1/2;在1550℃、保温0.5h的条件下,经反应浸渗Si-Ti、Si-Zr和Si-Zr-B合金工艺制备SiCf/SiC复合材料的最高弯曲强度和断裂韧性分别为307.1MPa和17.8MPa m1/2,294MPa和18.3MPa m1/2,292.0MPa和18.1MPa m1/2。
     当保温时间延长至60min,反应浸渗Si-Ti、Si-Zr和Si-Zr-B合金制备的SiCf/SiC复合材料的密度增大,孔隙率和残余硅含量均减小,弯曲强度和断裂韧性分别下降至188.9MPa和9.2MPa m1/2,178.9MPa和8.8MPa m1/2,184.1MPa和7.0MPa m1/2,其原因是延长保温时间加剧了SiC纤维的高温分解,降低了其性能,从而使SiCf/SiC复合材料的力学性能下降。
     在浸渗温度为1450℃时,保温0.5h的条件下,反应浸渗Si-Ti合金制备的SiCf/SiC复合材料中生成TiC相;反应浸渗Si-Zr和Si-Zr-B合金,当温度高于1600℃时,SiCf/SiC复合材料中出现ZrC相。随着温度的升高,反应浸渗Si-Ti、Si-Zr和Si-Zr-B合金制备的SiCf/SiC复合材料中SiC、TiC和ZrC含量逐渐升高,力学性能先升高后降低。当浸渗温度为1650℃时,SiCf/SiC复合材料的力学性能最差,其弯曲强度和断裂韧性分别为61.6MPa和2.8MPa m1/2,38.1MPa和1.6MPa m1/2,38.6MPa和1.8MPa m1/2。这主要是由于反应放热造成了对SiC纤维的高温损伤,导致其性能下降。
     石墨化处理使反应浸渗工艺制备Cf/SiC复合材料的性能得到了大幅提高。其中经反应浸渗硅工艺制备Cf/SiC复合材料的孔隙率从1.8%降低到0.7%,弯曲强度从170.7MPa提高到250MPa,断裂韧性从10.8MPa m1/2提高到13.3MPa m1/2;且反应浸渗Si-Ti、Si-Zr和Si-Zr-B合金制备的Cf/SiC复合材料的孔隙率分别从6.8%、7.2%和7.0%降低到1.6%、1.8%和1.4%,弯曲强度分别从195MPa、185MPa和190.1MPa提高到294MPa、252MPa和250.4MPa,而断裂韧性则稍有下降,分别从24.5MPa m1/2、22.6MPa m1/2和18.8MPa m1/2下降到20.1MPa m1/2、19.2MPa m1/2和17.7MPa m1/2。对碳纤维增强碳基中间体石墨化处理后,在1550℃、保温0.5h的条件下,反应浸渗Si-Zr和Si-Zr-B合金制备的Cf/SiC复合材料中反应生成了ZrC相。结果表明石墨化处理不仅提高了碳基中间体的孔隙率,增加了孔比表面积,从而提高了复合材料的致密度;同时提高了碳的结构有序性,增加了Si-C、Ti-C和Zr-C反应的反应活性,生成更多的SiC、TiC和ZrC。
     利用SEM、TEM、HRTEM、EDX和SAED研究了反应浸渗工艺制备连续纤维增强SiC基复合材料的微观形貌、晶体结构和界面区域成分组成。结果表明:在1550℃浸渗温度下,SiC纤维中只有中间部分晶化,且纤维边缘有一层游离碳;PyC涂层则保持完好,呈现出短程有序结构;SiC涂层则与反应生成的基体结合在一起,且结晶程度较高;同时基体中主要由不同尺寸的大晶粒和纳米晶组成,因此经过1550℃反应浸渗硅合金获得的SiCf/SiC复合材料性能较好。在1650℃浸渗温度下,SiC纤维完全分解且晶化为纳米晶,且纤维边缘的游离碳和PyC涂层均被晶化为以SiC相为主的晶相;同时SiC涂层已完全与基体结合在一起,基体中的晶粒尺寸变大,因此1650℃反应浸渗硅合金获得的SiCf/SiC复合材料性能最差。
     反应浸渗工艺的反应过程主要分为四步:首先固态Si及Si合金熔融生成Si蒸气或Si合金熔液,通过扩散渗入碳基中间体的孔隙;然后Si蒸气和Si合金熔液与基体碳接触并反应,生成连续致密的SiC层,直至将Si蒸气或Si合金熔液与基体碳分开;后续SiC、TiC和ZrC的生成主要通过Si、Ti、Zr和C元素在SiC层的扩散实现;最后随着SiC、TiC和ZrC的生长,碳基中间体中的孔隙尺寸不断减小,Si蒸气或Si合金熔液逐渐凝聚并填充碳基中间体中的剩余孔隙。其中Si蒸气或Si合金熔液与碳接触反应生成SiC的时间相对短暂,Si、Ti、Zr和C元素在SiC层的扩散控制着后续SiC、TiC和ZrC的生成。提高反应温度有助于提高这些反应元素的扩散速率,且同时降低Si-Ti、Si-Zr和Si-Zr-B合金中Si-Ti、Si-Zr的结合力,从而提高Si-C、Ti-C和Zr-C的反应程度,获得更多的SiC、TiC和ZrC。
Continuous fiber reinforced silicon carbide matrix composites (Cf/SiC andSiCf/SiC) have been considered as perfect high-temperature structural and functionalmaterials in aerospace and fusion fields due to their high strength, high modulus,excellent thermal stability, good corrosion resistance, oxidation resistance, irradiationresistance and low activity characteristics. Up to date, the studies on the fabricationmethods of continuous fiber reinforced silicon carbide matrix composites are mainlyfocused on the polymer impregnation and pyrolysis (PIP), chemical vapor infiltration(CVI) and nano-infiltrated transient eutectoid (NITE) process, the researches on thereaction infiltration (RI) are rather scarcely reported. In order to seek new fabricationroutes for continuous fiber reinforced silicon carbide matrix composites withoutstanding performance, the investigation for the continuous fiber reinforced siliconcarbide matrix composites fabricated by RI process are developed in this thesis.
     Firstly, carbon matrix intermediate was designed and fabricated. According tothe modeling and calculating for the critical density and porosity of carbon matrixintermediate, it was found that either resin carbon (RC) or pyrolytic carbon (PyC), thecritical density of SiC and C fiber reinforced carbon matrix intermediate are1.68g/cm3and1.36g/cm3respectively; On the other hand, either SiC fiber or C fiber,the critical porosity of RC and PyC matrix intermediate are19%and26%respectively. The critical density and porosity are favorable for fabricating continuousfiber reinforced silicon carbide matrix composites by RI process.
     The PyC/SiC multilayer coating with thickness of0.2~0.3μm were fabricated onthe suiface of C fiber and SiC fiber fabric by chemical vapor deposition (CVD)process. This multilayer coating is very continuous, uniform and compact. Moreover,the interface among the coating is very distinct. The PyC coating not only modifiesthe surface state of fibers, but also provides routes for the spread of micro-crackwithin the coating due to the sandwich of PyC. SiC coating protects the fibers becauseof its high oxidation resistance.
     The carbon matrix intermediate was fabricated by infiltration carbonization (IC)and CVI process. It was found that the solution of phenolic resin synthesized byresorcinol and formaldehyde possess low viscosity (25mPa S), good infiltrationproperty and high efficiency of infiltration/carbonization. Moreover, it also indicatesthat the PyC is very compact with a typical turbostratic structure containing short range order and long range disorder. However, the RC is rather loose, and its structureis distinct disordered.
     Secondly, the RI process was researched by thermodynamics and dynamicsanalysis. It was found that the fabrication of continuous fiber reinforced siliconcarbide matrix composites by RI process is feasible. The main factors affecting RIprocess comprise physical performance of Si and Si alloy (concentration and masstransfer coefficient of Si vapor, viscosity, density and surface tension of Si alloy),wettability of Si alloy with carbon matrix intermediate, and pore size of carbon matrixintermediate. Increasing the concentration and mass transfer coefficient of Si vapor,decreasing the viscosity, density and surface tension of Si alloy, and improving thewettability of Si alloy are all favorable to enhance reaction velocity and improveeffect of RI process.
     Finally, continuous fiber reinforced silicon carbide matrix composites werefabricated by RI process. The results show that the properties of continuous fiberreinforced silicon carbide matrix composites fabricated by RI process are the bestwhen the density and porosity of carbon matrix intermediate are close to the criticaldensity and porosity. The maximal flexure strength and fracture toughness of SiCf/SiCfabricated by reaction infiltration Si process (1650℃,1h) using the intermediate ofSiCf/PyC, SiCf/RC and SiCf/PyC+RC are301.2MPa and17.6MPa m1/2,144MPa and4.53MPa m1/2,342MPa and10.2MPa m1/2, respectively. The maximal flexure strengthand fracture toughness of SiCf/SiC fabricated by reaction infiltration Si-Ti, Si-Zr andSi-Zr-B process (1550℃,0.5h) are307.1MPa and17.8MPa m1/2,294MPa and18.3MPa m1/2,292.0MPa and18.1MPa m1/2, repectively.
     As the RI holding time extended to60min, the density of SiCf/SiC fabricated byreaction infiltration Si-Ti, Si-Zr and Si-Zr-B process increased, the porosity andresidual Si decreased. However, the flexure strength and fracture toughness declinedto188.9MPa and9.2MPa m1/2,178.9MPa and8.8MPa m1/2,184.1MPa and7.0MPa m1/2, respectively. It indicates that the decompositon of SiC fiber wasenhanced due to extending the holding time, therefore the SiC fiber was severelydamaged, the property of SiC fiber decreased sharply, accordingly the mechanicalproperties of SiCf/SiC decreased.
     The TiC phase was formed in the SiCf/SiC fabricated by reaction infiltrationSi-Ti at the temperature of1450℃for0.5h.The ZrC phase was formed in theSiCf/SiC fabricated by reaction infiltration Si-Zr and Si-Zr-B only as the temperatureexceeding1600℃. The content of SiC, TiC and ZrC in the SiCf/SiC fabricated by reaction infiltration Si-Ti, Si-Zr and Si-Zr-B gradually increased as the temperaturerised, but the mechanical properties first increased, then decreased. The mechanicalproperties are the worst as the temperature is1650℃, the flexure strength and fracturetoughness were61.6MPa and2.8MPa m1/2,38.1MPa and1.6MPa m1/2,38.6MPa and1.8MPa m1/2. The reason is that the SiC fiber was damaged by exothermal reaction,which caused the SiC fiber acutely decomposed.
     The properties of Cf/SiC fabricated by reaction infiltration process areremarkably improved after the carbon matrix intermediate being graphitized. Theporosity of Cf/SiC fabricated by reaction infiltration Si decreased from1.8%to0.7%,the flexure strength increased from170.7MPa to250MPa, and the fracture toughnessincreased from10.8MPa m1/2to13.3MPa m1/2. Additionally, the porosity of Cf/SiCfabricated by reaction infiltration Si-Ti, Si-Zr and Si-Zr-B decreased from6.8%,7.2%and7.0%to1.6%,1.8%and1.4%; the flexure strength increased from195MPa,185MPa and190.1MPa to294MPa,252MPa and250.4MPa; the fracture toughnessslightly decreased from24.5MPa m1/2,22.6MPa m1/2and18.8MPa m1/2to20.1MPa m1/2,19.2MPa m1/2and17.7MPa m1/2. It also reveales that after the carbonfiber reinforced carbon matrix intermediate being graphitized, the ZrC phase wasformed in the Cf/SiC fabricated by reaction infiltration Si-Zr and Si-Zr-B at thetemperature of1550℃for0.5h. The results show that the graphitizing not onlyimproved the porosity of the carbon matrix intermediate, increased the pore specificsurface area, thereby increased the density of composites; but also improved thestructural order of carbon, enhanced the reaction activity, sequentially more SiC, TiCand ZrC were formed.
     The morphology, crystal structure and interfacial component of the continuousfiber reinforced silicon carbide matrix composites fabricated by RI process wereexamined by SEM, TEM, HRTEM, EDX and SAED. It was found that the interior ofSiC fiber crystalled at the temperature of1550℃, and free carbon layer existed on thesurface of SiC fiber. Moreover, PyC coating remained undamaged, and exhibitedshort range order. However, SiC coating combined with the SiC matrix, which iscomposed of high degree crystallized large-grains with different size-scale andnano-crystal, therefore, the properties of SiCf/SiC fabricated by reaction infiltration Sialloy at the temperature of1550℃are the best. It was also found that SiC fibercompletely decomposed and became nano-crystal at the temperature of1650℃.Furthermore, the free carbon on the surface of SiC fiber and the PyC coating becamecrystal. Additionally, SiC coating also combined with the reaction formed matrix, the grain size of the matrix increased, as a result, the properties of SiCf/SiC fabricated byreaction infiltration Si alloy at the temperature of1650℃are the worst.
     The RI process could be divided into four steps: Firstly, solid Si and Si alloy aremelted into Si vapor and liquid Si alloy, which diffuse into the pore of carbon matrixintermediate; Secondly, Si vapor and liquid Si alloy contact and react with carbonmatrix, which form continuous and compact SiC layer until Si vapor and liquid Sialloy are detached to carbon matrix. Thirdly, the fomation of SiC, TiC and ZrC carryout by the diffusion of Si, Ti, Zr and C atom through the SiC layer. Finally, pore sizeof carbon matrix intermediate decrease as the forming of SiC, TiC and ZrC, and theresidual pore is filled through condensing of Si vapor and liquid Si alloy. The time ofSi vapor and liquid Si alloy contact and react with carbon matrix is very short, thediffusion of Si, Ti, Zr and C atom through the SiC layer dominate the formation ofSiC, TiC and ZrC. Improving the reaction temperature is helpful to increase thediffusion velocity and reduce the bonding force of Si-Ti, Si-Zr of Si alloy, whichcould enhance the degree of reaction. Accordingly, the content of SiC, TiC and ZrCwould be increased.
引文
[1] Katoh Y, Snead L L, Henager C H. Current Status and Critical Issues forDevelopment of SiC Composites for Fusion Applications [J]. Journal of NuclearMaterials,2007,(367-370):659~671.
    [2] Riccardi B, Giancarli L, Hasegawa A. Issues and Advances in SiCf/SiCComposites Development for Fusion Reactors [J]. Journal of Nuclear Materials,2004,(329-333):56~65.
    [3]邹世钦,张长瑞,周新贵.连续纤维增强陶瓷基复合材料在航空发动机上的应用[J].航空发动机,2005,31(3):55~59.
    [4]张玉娣,周新贵,张长瑞. Cf/SiC陶瓷基复合材料的发展与应用现状[J].材料工程,2005,2005(4):60~66.
    [5]张勇,冯涤,陈希春.连续纤维增强SiC复合材料制备工艺与性能研究进展[J].材料导报,2005,19(3):63~69.
    [6] Jones R H, Giancarli L, Hasegawa A. Promise and Challenges of SiCf/SiCComposites for Fusion Energy Applications [J]. Journal of Nuclear Materials,2002,(307–311):1057~1072.
    [7] Muroga T, Gasparotto M, Zinkle S J. Overview of Materials Research forFusion reactors [J]. Fusion Engineering and Design,2002,(61-62):13~25.
    [8]张立同.纤维增韧碳化硅陶瓷基复合材料-模拟、表征与设计[M].北京:化学工业出版社,2009.
    [9]郝元恺,肖加余.高性能复合材料[M].北京:化学工业出版社,2003.
    [10]西鹏,高晶,李文刚.高技术纤维[M].北京:化学工艺出版社,2004.
    [11]黄启忠.高性能炭/炭复合材料的制备、结构与应用[M].长沙:中南大学出版社,2010.
    [12]穆博春.陶瓷材料的强韧化[M].北京:冶金工艺出版社,2002.
    [13]马彦. PIP法Cf/SiC复合材料组成、结构及性能高温演变研究[D].长沙;国防科学技术大学,2011.
    [14] Krenkel W. Ceramic Matrix Composites: Fiber Reinforced Ceramics andtheir Applications [M]. Weinheim: Willey-VCH,2008.
    [15]陈朝辉,张长瑞,周新贵.先驱体结构陶瓷[M].长沙:国防科技大学出版社,2003.
    [16] Dong S M, Chollon G, Labrugere C. Characterization of NearlyStoichiometric SiC Ceramic Fibers [J]. Journal of Materials Science,2001,(36):2371~2381.
    [17] Galasso F, Basche M, Kuehl K. Preparation, Structure and Properties ofContinuous Silicon Carbide Filaments [J]. Journal of Applied Physics Letter,1966,9(1):37~39.
    [18] Okada K, Kato H. Preparation of SiC Fiber from Activated Carbon Fiberand Gasesous Silicon Monoxide [J]. Journal of the American Ceramic Society,1994,(77):1691~1693.
    [19] Lipowitz J. Polymer-derived Ceramic Fibers [J]. Ceramic Bulletin,1991,70(12):1888~1894.
    [20] Yajima S, Hayashi J, Omori M. Development of a Silicon Carbide Fiberwith High Tensile Strength [J]. Nature,1976,(261):683~685.
    [21] Shimoo T, Morisada Y, Okamura K. Oxidation Behavior of Si-C-OFiber(Nicalon) under Oxygen Partial Pressures from102to105Pa at1773K [J].Journal of Amrican Ceramcs Society,2000,86(12):3049~3056.
    [22] Takeda M, Sakamoto J I, Imai Y. Thermal Stability of theLow-oxygen-content Silicon Carbide Fiber, Hi-NicalonTM [J]. Composites Science andTechnology,1999,(59):813~819.
    [23] Shimoo T, Tsukada I, Seguchi T. Effect of Firing Temperature on theThermal Stability of Low-Oxygen Silicon Carbide Fibers [J]. Journal of the AmericanCeramic Society,1998,81(8):2109~2115.
    [24] Takeda M, Imai Y, Ichikawa H. Thermal Stability of SiC Fiber Preparedby an Irradiation-curing Process [J]. Composites Science and Technology,1999,(59):793~799.
    [25] Sugimoto M, Shimoo T, Okamura K. Reaction Mechanism of SiliconCarbide Fiber Synthesis by Heat Treatment of Polycarbosilane Fibers Cured byRadiation:I-Evolved gas analysis [J]. Journal of the American Ceramic Society,1995,78(4):1013~1017.
    [26]余煜玺,峰曹,李效东.耐高温的SiC(AI)纤维[J].复合材料学报,2004,21(5):79~82.
    [27]余煜玺,李效东,陈国明.含铝碳化硅纤维耐高温性能[J].硅酸盐学报,2004,32(7):812~815.
    [28]郑春满,刘世利,李效东.连续SiC(Al)纤维的耐超高温性能及其机理[J].物理化学学报,2008,24(6):971~976.
    [29] Ishikawa T, Kohtoku Y, Kuagawa K. High-strength Alkali-resistantSintered SiC Fiber Stable to2200℃[J]. Nature,1998,(391):773~775.
    [30]李佑稷,曹峰,田宏观.耐高温碳化硅纤维的制备与性能[J].物理化学学报,2003,19(11):1039~1043.
    [31]楚增勇,冯春祥,宋永才.先驱体法SiC纤维国内外研究与开发现状[J].无机材料学报,2002,17(2):193~206.
    [32]冯春祥,薛金根,宋永才. SiC纤维研究进展[J].高技术纤维与应用,2003,28(1):15~22.
    [33]王亦菲.连续碳化硅纤维高温性能及其改进工艺研究[D].长沙;国防科学技术大学,2004.
    [34] Yang W, Kohyama A, Katoh Y. Effect of Carbon and SiliconCarbide/Carbon Interlayers on the Mechanical Behavior ofTyranno-SA-Fiber-Reinforced Silicon Carbide-Matrix Composites [J]. Journal of theAmerican Ceramic Society,2003,86(5):851~856.
    [35] Miller J H, Iiaw P K, Iandes J D. Influence of Fiber Coating Thickness onFracture Behavior of Continuous Woven Nicalon Fabric-reinforced Silicon-carbideMatrix Ceramic Composites [J]. Materials Science and Engineering A,2001,317(1-2):49~58.
    [36] Sauder C, Brussion A, Lamon J. Influence of Interface Characteristics onthe Mechanical Properties of Hi-Nicalon type-S or Tyranno-SA3Fiber-ReinforcedSiCf/SiC Minicomposites [J]. International Journal of Applied Ceramics Technology,2010,7(3):291~303.
    [37]周新贵,张长瑞,张洪刚. CVD SiC涂层SiC纤维增强SiC复合材料的研究[J].材料科学与工程学报,2006,24(6):815~823.
    [38]于海蛟,周新贵,黄伯云. SiC纤维表面CVD SiC涂层对其单丝强度的影响[J].国防科技大学学报,2008,30(2):33~38.
    [39] Yu H J, Zhou X G, Wang H L. Processing and Properties of2D SiCf/SiCComposites by Precursor Infiltration and Pyrolysis [J]. Journal of Central SouthUniversity Technology,2009,(16):190~194.
    [40] Rebillat F, Guette A, Espitalier L. Oxidation Resistance of SiCf/SiC Microand Minicomposites with a Highly Crystallised BN Interphase [J]. Journal of theEuropean Ceramic Society1998,(18):1809~1819.
    [41] Rebillat F, Guette A, Brosse C R. Chemical and Mechanical alterations ofSiC Nicalon Fiber Properties during The CVD/CVI Process for Boron Nitride [J]. ActaMatererials,1999,47(5):1685~1696.
    [42] Jacques S, Lopez-Marure A, Vincent C. SiCf/SiC Minicomposites withStructure-graded BN Interphases [J]. Journal of the European Ceramic Society,2000,(20):1929~1938.
    [43] Nyutu E K, Suib S L. Experimental Design in the Deposition of BNInterface Coatings on SiC fibers by Chemical Vapor Deposition [J]. Surface andCoatings Technology,2006,(201):2741~2748.
    [44] Udayakumar A, Sriganesh A., Raja S. Effect of Intermediate Heattreatmenton Mechanical Properties of SiCf/SiC Composites with BN Interphase Prepared byICVI [J]. Journal of the European Ceramic Society,2011,31(6):1145~1153.
    [45] Naslain R R, Pailler R, Lamon J L. Single-and Multilayered Interphases inSiCf/SiC Composites Exposed to Severe Environmental Conditions: An Overview [J].International journal of Applied Ceramics technology,2010,7(3):263~275.
    [46] Droillard C, Lamon J. Fracture Toughness of2-D Woven SiCf/SiCCVI-composites with Mulilayered Interphase [J]. Journal of the American CeramicSociety,1996,79(4):849~858.
    [47] Bertrand S, Droilard C, Pailler R. TEM Structure of (PyC/SiC)nMultilayered Interphases in SiCf/SiC Composites [J]. Journal of the European CeramicSociety,2000,(20):1~13.
    [48] Pasquier S, Lamon J, Naslain R. Tensile Static Fatigue of2D SiCf/SiCComposites with Multilayered (PyC-SiC) n Interphases at High Temperatures inOxidizing Atmosphere [J]. Composites Part A,1998,(29):1157~1164.
    [49] Rebillat F, Lamon J, Naslain R. Properties of Multilayered Interphases inSiC/SiC Chemical-Vapor-Infiltrated Composites with ‘‘Weak’’ and ‘‘Strong’’Interfaces [J]. Journal of the American Ceramic Society,1998,81(9):2315~2326.
    [50] Bertrand S, Pailler R, Lamon J. Influence of Strong Fiber/CoatingInterfaces on the Mechanical Behavior and Lifetime of Hi-Nicalon/(PyC/SiC)n/SiCMinicomposites [J]. Journal of the American Ceramic Society,2001,84(4):787~794.
    [51] Bertrand S, Boisron O, Pailler R.(PyC-SiC)n and (BN-SiC)n Nano-ScaleMultilayered Interphases by Pressure Pulsed-CVI [J]. Key Engineering Materials,1999,(164-165):357~360.
    [52] Rapaud O, Jacques S, Di-Muro H. SiCf/SiC Minicomposites with(PyC/TiC)n Interphases Processed by Pressure-Pulsed Reactive CVI [J]. Journal ofMaterials Science,2004,(39):173~180.
    [53]赵爽,周新贵,于海蛟.聚变堆用SiCf/SiC复合材料研究进展[J].材料导报,2008,22(6):33~36.
    [54] Tanaka T, Tamari N, Lwasa L K M. Fabrication of Three-DimensionalTyranno Fibre Reinforced SiC Composite by the Polymer Precursor Method [J].Ceramtcs lnterndonal,1998,(24):365~370.
    [55] Interrante L V, Jacobs J M, Sherwood W. Fabrication and Properties ofFiber-and Particulate-Reinforced SiC Matrix Composites Obtained With (A)HPCS asthe Matrix Source [J]. Key Engineering Materials,1997,(127-131):271~278.
    [56] Whitmarsh C K, Interrante L V. Carbosilane Polymer Precursors to SiliconCarbide Ceramics [P]. U.S.5153295,1992-10-6.
    [57] Berbon M Z, Dietrich D R, Marshall D B. Transverse ThermalConductivity of Thin Cf/SiC Composites Fabricated by Slurry Infiltration and Pyrolysis[J]. Journal of the American Ceramic Society,2001,84(10):2229~2234.
    [58] Sreeja R, Swaminathan B, Painuly A. Allylhydridopolycarbosilane(AHPCS) as Matrix Resin for Cf/SiC Ceramic Matrix Composites [J]. Materials Scienceand Engineering: B,2010,168:204~207.
    [59] Kohyama A, Kotani M, Katoh Y. High-performance SiCf/SiC Compositesby Improved PIP Processing with New Precursor Polymers [J]. Journal of NuclearMaterials,2000,283-287:565~569.
    [60] Kotani M, Inoue T, Kohyama A. Consolidation of Polymer-derived SiCMatrix Composites: Processing and Microstructure [J]. Composites Science andTechnology,2002,62(16):2179~2188.
    [61] Fang Y H, Huang M H, Yu Z J. Synthesis, Characterization, and PyrolyticConversion of a Novel Liquid Polycarbosilane [J]. Journal of the American CeramicSociety,2008,91(10):3298~302.
    [62] Zhu S M, Xi H A, Li Q. In situ Growth of β-SiC Nanowires in Porous SiCCeramics [J]. Journal of the American Ceramic Society,2005,88(9):2619-2621.
    [63] Kotani M, Inoue T, Kohyama A. Effect of SiC Particle Dispersion onMicrostructure and Mechanical Properties of Polymer-derived SiCf/SiC Composite [J].Materials Science and Engineering: A,2003,357:376~385.
    [64] Wang Z, Dong S M,.Ding Y S. Mechanical Properties andMicrostructures of Cf/SiC-ZrC Composites using T700SC Carbon Fibers asReinforcements [J]. Ceramics International,2011,(3):695~700.
    [65] Taguchi T, Hasegawa Y, Shamoto S. Effect of Carbon NanofiberDispersion on the Properties of PIP-SiCf/SiC composites [J]. Journal of NuclearMaterials,2011,(417):348~352.
    [66] Sun K, Yu J S, Zhang C R. In Stiu Growth Carbon Nanotube ReinforedSiCf/SiC Composite [J]. Materials Letters,2012,66(1):92~95.
    [67] Yoshida K, Imai M, Yano T. Improvement of the Mechanical Properties ofHot-pressed Silicon-carbide-fiber-reinforced Silicon Carbide Composites byPolycarbosilane Impregnation [J]. Composites Science and Technology,2001,(61):1323~1329.
    [68] Dong S M, Katoh Y, Kohyama A. Microstructural Evolution andMechanical Performances of SiCf/SiC Composites by PolymerImpregnation/Microwave Pyrolysis (PIMP) Process [J]. Ceramics International2002,(28):899~905.
    [69] Naslain R. CVI-Composties [M]. New York USA: Chapman Hall,1992.
    [70] Fitzer E, Hegen D. Chemical Vapor Deposition of Silicon Carbide andSilicon Nitride-chemistry's Contribution to Modern Silicon Ceramics [J]. AngewandteChemie International,1979,(18):295~304.
    [71] Lamouroux F, Bourrat X, Sevely J. Structure/Oxidation BehaviorRelations in the Carboneous Constituents of2D-C (T300)/PyC/SiC (CVI) Composties[J]. Carbon,1993,31(8):1273~1288.
    [72]徐永东,张立同,成来飞. CVI法制备连续纤维增韧陶瓷基复合材料[J].硅酸盐学报,1995,23(3):319~326.
    [73] Frety N, Molins R, Boussuge M. Oxidizing Ageing Effects on SiCf/SiCComposites [J]. Journal of Materials Science,1992,(27):5084~5090.
    [74] Inghels E, Lamon J. An approach to the Mechanical Behaviour of SiCf/SiCand C/SiC Ceramic Matrix Composites Part2Theoretical approach [J]. Journal ofMaterials Science1991,(26):5411~5419.
    [75] Fourvel P, Sylvestrini P, Rouillon M H. Structural Modifications of aSiCf/SiC Material Exposed to High Temperatures in Air [J]. Journal of MaterialsScience,1990,(25):5163~5165.
    [76] Navarre G, Rouais J C, Rouby D. Observation of Crack Path in a SiCf/SiCFibre Composite by X-ray Radiography and SEM [J]. Journal of Materials Scienceletters,1990,(9):636~638.
    [77] Gomina M, Fourvel P, Rouillon M H. High Temperature MechanicalBehaviour of an Uncoated SiCf/SiC Composite Material [J]. Journal of MaterialsScience,1991,(26):1891~1898.
    [78] Mouchtachi A, Guerjouma R E, Bbboux J C. Optimal Determination of theElastic Constants of Woven2D SiCf/SiC Composite Materials [J]. Journal of Physical D:Applied Physicals,2004,(37):3323~3329.
    [79] Jacques S, Giette A, Langelais F. Preparation and Characterization of2DSiCf/SiC Composites with Composition-Graded C (B) Interphase [J]. Journal of theEuropean Ceramic Society1997,(17):1083~1092.
    [80] Inghels E, Lamo J. An Approach to the Mechanical Behaviour of SiCf/SiCand C/SiC Ceramic Matrix Composites Part1Experimental results [J]. Journal ofMaterials Science,1991,(26):5403~5410.
    [81] Lara-Curzio E. Mechanical Properties and Performance of EngineeringCeramics and Composites [M].Hoboken: Wiley,2008.
    [82] Henager C H, Jones R H, Windisch C F. Time-Dependent,Environmentally Assisted Crack Growth in Nicalon-Fiber-Reinforced SiC Compositesat Elevated Temperatures [J]. Metallurgical and Materials Transactions A,1996,(27):839~849.
    [83] Hinoki T, Lara-Curzio E, Snead L L. Mechanical Properties of High Purityof SiC Fiber-Reinforced CVI-SiC Matrix Composites [J].2003, Fusion ScienceTechnolgy,(44):211~218.
    [84] More K L, Ailey K S, Lowden R A. Evaluating the Effect of OxygenContent in BN Interfacial Coatings on the Stability of SiC/BN/SiC Composites [J].Composites: Part A,1999,(30):463~470.
    [85] Youngblood G E, Senor D J, Jones R H. Optimizing the TransverseThermal Conductivity of2D-SiCf/SiC Composites. I. Modeling [J]. Journal of NuclearMaterials,2002,(307-311):1112~1129.
    [86] Morscher G N. Tensile Stress Rupture of SiCf/SiCm Minicomposites withCarbon and Boron Nitride Interphases at Elevated Temperatures in Air [J]. Journal ofthe American Ceramic Society,1997,80(8):2029~2042.
    [87] Appiah K A, Wang Z L, Lackeyb W J. Characterization of Interfaces in CFiber-reinforced Laminated Cf/SiC Matrix Composites [J]. Carbon,2000,(38):831~838.
    [88] Yamada R, Taguchi T, Igawa N. Mechanical and Thermal Properties of2Dand3D SiCf/SiC Composites [J]. Journal of Nuclear Materials,2000,(283-287):574~578.
    [89] Zhang W, Hinoki T, Katoh Y. Crack Initiation and Growth Characteristicsin SiCf/SiC under Indentation test [J]. Journal of Nuclear Materials,1998,(258-263):1577~1581.
    [90] Araki H, Noda T, Yang W. Homogeneity and Flexural Properties ofSiCf/SiC Composites Prepared by CVI Method [J]. Journal of Nuclear Materials,2002,(307-311):1210~1214.
    [91] Yang W, Kohyama A, Noda T. Interfacial Characterization ofCVI-SiCf/SiC Composites [J]. Journal of Nuclear Materials,2002,(307-311):1088~1092.
    [92] Yamada R, Igawa N, Taguchi T. Highly Thermal Conductive, Sintered SiCFiber-reinforced3D-SiCf/SiC Composites: Experiments and Finite-element Analysis ofthe Thermal Diffusivity/Conductivity [J]. Journal of Nuclear Materials,2002,(307-311):1215~1220.
    [93] Igawa N, Taguchi T, Nozawa T. Fabrication of SiC Fiber Reinforced SiCComposite by Chemical Vapor Infiltration for Excellent Mechanical Properties [J].Journal of Physics and Chemistry of Solids,2005,(66):551~554.
    [94] Taguchi T, Nozawa T, Igawa N. Fabrication of Advanced SiC fiber/F-CVISiC Matrix Composites with SiC/C Multi-layer Interphase [J]. Journal of NuclearMaterials,2004,(329-333):572~576.
    [95] Zhu S J, Mizuno M, Nagano Y. Creep and Fatigue Behavior in anEnhanced SiCf/SiC Composite at High Temperature [J]. Journal of the AmericanCeramic Society,1998,81(9):2269~2277.
    [96] Zhu S J, Mizuno M, Kagawa Y. Creep and Fatigue Behavior inHi-Nicalon-Fiber-Reinforced Silicon Carbide Composites at High Temperatures [J].Journal of the American Ceramic Society,1999,82(1):117~128.
    [97]徐永东,成来飞,张立同.连续纤维增韧碳化硅陶瓷基复合材料研究[J].硅酸盐学报,2002,30(2):184~188.
    [98] Xu Y D, Cheng L F, Zhang L T. High Performance3D Textile Hi-NicalonSiCf/SiC cComposites by Chemical Vapor Infiltration [J]. Ceramics International,2001,(27):565~570.
    [99]于新民,周万城,罗发. SiCf/SiC复合材料的力学性能[J].航空材料学报,2009,29(3):93~100.
    [100] Wu S J, Cheng L F, Zhang L T. Thermal Shock Damage of a3D SiCf/SiCComposite [J]. Advanced Engineering Matrerials,2005,7(11):1046~1049.
    [101] Wu S J, Cheng L F, Zhang Q. Thermophysical and Mechanical Propertiesof a Three-Dimensional Hi–Nicalon/SiC Composite [J]. International Journal ofApplied Ceramic Technology,2006,3(1):75~79.
    [102] Liu Y S, Cheng L F, Zhang L T. Fracture Behavior and Mechanism of2DCf/SiC-BCx Composite at Room Temperature [J]. Materials Science and Engineering A,2011,528(3):1436~1441.
    [103]袁明,黄政仁,董绍明.温度脉冲方法制备碳/碳化硅复合材料界面结构与性能研究[J].无机材料学报,2007,22(2):305~310.
    [104] Tang S F, Deng J Y, Wang S J. Fabrication and Characterization of aUltra-High-Temperature Carbon Fiber-Reinforced ZrB2–SiC Matrix Composite [J].Journal of the American Ceramic Society,2007,90(10):3320~3322.
    [105] Tang S F, Deng J Y, Wang S J. Fabrication and Characterization of Cf/SiCComposites with Large Thickness, High Density and Near-stoichiometric Matrix byHeaterless Chemical Vapor Infiltration [J]. Materials Science and Engineering: A,2007,(465):290~294.
    [106] Yano T, Budiyanto K, Yoshida K. Fabrication of Silicon CarbideFiber-reinforced Silicon Carbide Composite by Hot-pressing [J]. Fusion Engineeringand Design,1998,(41):157~163.
    [107] Yoshida K, Budiyanto, Imai M. Processing and Microstructure of SiliconCarbide Fiber reinforced Silicon Carbide Composite by Hot-pressing [J]. Journal ofNuclear Materials,1998,(258-263):1960~1965.
    [108] Yoshida K, Yano T. Room and High-temperature Mechanical and ThermalProperties of SiC Fiber-reinforced SiC Composite Sintered under Pressure [J]. Journalof Nuclear Materials,2000,(283-287):560~564.
    [109] Dong S M, Katoh Y, Kohyama A. Preparation of SiCf/SiC Composites byHot Pressing Using Tyranno-SA Fiber as Reinforcement [J]. Journal of the AmericanCeramic Society,2003,86(1):26~32.
    [110] Dong S M, Katoh Y, Kohyama A. Processing Optimization andMechanical Evaluation of Hot Pressed2D Tyranno-SA/SiC Composites [J]. Journal ofthe European Ceramic Society,2003,(23):1223~1231.
    [111]董绍明,丁玉生,江东亮.制备工艺对热压烧结SiCf/SiC复合材料结构与性能的影响[J].无机材料学报,2005,20(4):883~888.
    [112] Katoh Y, Kohyama A, Nozawa T. SiCf/SiC Composites through TransientEutectic-phase Route for Fusion Applications [J]. Journal of Nuclear Materials,2004,(329-333):587~591.
    [113] Shimoda K, Kohyama A, Hinoki T. High Mechanical performanceSiC/SiC Composites by NITE Process with Tailoring of Appropriate FabricationTemperature to Fiber Volume Fraction [J]. Composites Science and Technology,2009,(69):1623~1628.
    [114] Shimoda K, Park J S, Hinoki T. Microstructural Optimization ofHigh-temperature SiCf/SiC Composites by NITE Process [J]. Journal of NuclearMaterials,2009,(386-388):634~638.
    [115] Shimoda K, Hinoki T, Kishimoto H. Enchanced High-temperaturePerformances of SiCf/SiC Composites by High Densification and Crystalline Structure[J]. Composites Science and Technology,2011,(71):326~332.
    [116] Park J S, Kohyama A, Hinoki T. Efforts on Large Scale Production ofNITE-SiCf/SiC Composites [J]. Journal of Nuclear Materials,2007,(367-370):719~724.
    [117] Kishimoto H, Ozawa K, Hashitomi O. Microstructural Evolution Analysisof NITE SiCf/SiC Composite using TEM Examination and Dual-ion Irradiation [J].Journal of Nuclear Materials,2007,(367-370):748~752.
    [118] Isobe K, Yamanishi T, Konishi S. Tritium Permeation Behavior inSiCf/SiC Composites [J]. Fusion Engineering and Design,2010,(85):1012~1015.
    [119] Popper P. The Preparation of Dense Self-bonded Silicon Carbide [C].London: Proceedings of the Special Ceramics,1960.
    [120] Suyama S, Kameda T, Itoh Y. Development of High-strengthReaction-sintered Silicon Carbide [J]. Diamond and Related Materials,2003,(12):1201~1204.
    [121] Sayano A, Sutoh C, Suyama S. Development of a Reaction-sinteredSilicon Carbide Matrix Composite [J]. Journal of Nuclear Materials,1999,(271-272):467~471.
    [122] Lee S P, Jin J O, Park J S. High Temperature Characterization of ReactionSintered SiC Based Materials [J]. Journal of Nuclear Materials,2004,(329–333):534~538.
    [123] Lee S P, Katoh Y, Kohyama A. Microstructure Analysis and StrengthEvaluation of Reaction Sintered SiCf/SiC Composties [J]. Scripta materialia,2001,(44):153~157.
    [124] Lee S P, Katoh Y, Park J S. Microstructural and MechanicalCharacteristics of SiCf/SiC Compoties with Modified-RS Process [J]. Journal ofNuclear Materials,2001,(289):30~36.
    [125] Lee S P, Park J S, Katoh Y. Process, Microstructure and FlexuralProperties of Reaction Sintered Tyranno SA/SiC Composites [J]. Journal of NuclearMaterials,2002,(307–311):1191~1195.
    [126] Lee S P, Yooh H K, Park J S. Reaction Sintering Process of TyrannoSA/SiC Composites and Their Characterization [J]. Fusion Engineering and Design,2002,(61-62):717~722.
    [127] Morscher G N, Dicarlo J A, Kiser J D. Effects of Fiber Architecture onMatrix Cracking for Melt-Infiltrated SiCf/SiC Composites [J]. International Journal ofApplied ceramic Technology,2010,7(3):276~290.
    [128] Morscher G N, Hurst J, Brewer D. Intermediate-Temperature StressRupture of a Woven Hi-Nicalon, BN-Interphase, SiC-Matrix Composite in Air [J].Journal of the American Ceramic Society,2000,83(6):1441~1449.
    [129] Gowayed Y, Ojard G, Miller R. Correlation of Elastic Properties of MeltInfiltrated SiCf/SiC Composites to In situ Properties of Constituent Phases [J].Composites Science and Technology,2010,(70):435~441.
    [130] Morscher G N. Tensile Creep of Melt-Infiltrated SiCf/SiC Composites withUnbalanced Sylramic-iBN Fiber Architectures [J]. International Journal of AppliedCeramic Technology,2010,8(2):1~12.
    [131] Bhatt R T. Silicon Effects on Properties of Melt Infiltrated SiCf/SiCComposites [C]. Florida:24th Annual Conference on Composites, Advanced CeramicsMaterials and Structures,2000.
    [132] Morscher G N, John R, Zawada L. Creep in Vacuum of WovenSylramic-iBN Melt-infiltrated Composites [J]. Composites Science and Technology,2011,(71):52~59.
    [133] Morscher G N, Pujar V V. Creep and Stress–Strain Behavior after Creepfor SiC Fiber Reinforced, Melt-Infiltrated SiC Matrix Composites [J]. Journal of theAmerican Ceramic Society,2006,89(5):1652~1658.
    [134] Mall S. Effects of Moisture on Fatigue Behavior of SiCf/SiC Composite atElevated Temperature [J]. Materials Science and Engineering: A,2005,(412):165~170.
    [135] Srivastava V K, Maile K. Measurement of Critical Stress Intensity Factorin Cf/C–SiC Composites under Dynamic and Static Loading Conditions [J]. CompositesScience and Technology,2004,(64):1209~1217.
    [136] Srivastava V K, Maile K, Bothe K. Effect of Damage on Flexural Modulusof Cf/C-SiC Composites [J]. Materials Science and Engineering: A,2003,(354):292~297.
    [137] Weigel N, Kroplin B, Dinkler D. Micromechanical Modeling of Damageand Failure Mechanisms in C/C-SiC [J]. Computational Materials Science,1999,(16):120~132.
    [138]陈俊凌,梁荣庆,何也熙. HT-7U装置第一壁抗热冲击SiC厚膜涂层研究[J].真空与低温,2000,6(4):207~212.
    [139]陈俊凌,李建刚,辜学茂. HT-7U第一壁材料在HT-7装置中的辐照试验研究[J].核聚变与等离子体物理,2002,22(2):105~200.
    [140]付志强,唐春和,梁彤祥.用化学气相反应法在石墨基体上制备SiC涂层[J].原子能科学技术,2005,(39):79~82.
    [141]李翠艳,黄剑锋,卢靖.气相SiO反应渗透制备生物形态SiC多孔陶瓷[J].陕西科技大学学报,2008,26(2):38~43.
    [142] Qian J M, Wang J P, Jin Z H. Preparation and Properties of PorousMicrocellular SiC Ceramics by Reactive Infiltration of Si Vapor into CarbonizedBasswood [J]. Materials Chemistry and Physics,2003,(82):648~653.
    [143] Zhou Q, Dong S M, Zhang X Y. Fabrication of Cf/SiC Composites byVapor Silicon Infiltration [J]. Joural of the Amrican Ceramic Society,2006,89(7):2338~2340.
    [144] Zhou Q, Dong S M, Ding Y S. Three-dimensional Carbon Fiber-reinforcedSilicon Carbide Matrix Composites by Vapor Silicon Infiltration [J]. CeramicsInternational,2009,(35):2161~2169.
    [145] Lee Y J, Joo H J. Ablation Characteristics of Carbon Fiber ReinforcedCarbon (CFRC) Composites in the Presence of Silicon Carbide (SiC) Coating [J].Surface and Coatings Technology,2004,(180-181):286~289.
    [146] Morisada Y, Miyamoto Y. SiC-coated Carbon Nanotubes and TheirApplication as Reinforcements for Cemented Carbides [J]. Materials Science andEngineering: A,2004,(381):57~61.
    [147] Morisada Y, Miyamoto Y. Growth Mechanism of Nanometer-Sized SiCand Oxidation Resistance of SiC-Coated Diamond Particles [J]. Journal of the AmericanSociety,2004,87(5):809~813.
    [148] Morisada Y, Maeda M, Shibayana G T. Oxidation Resistance ofMultiwalled Carbon Nanotubes Coated with Silicon Carbide [J]. Journal of theAmerican Society,2004,87(5):804~808.
    [149] Lee Y J. Formation of Silicon Carbide on Carbon Fibers by CarbothermalReduction of Silica [J]. Diamond and Related Materials,2004,(13):383~388.
    [150] Keller N, Phamhuu C, Ledoux M J. Preparation and Characterization ofSiC Microtubes [J]. Applied Catalysis A:1999,(187):255~268.
    [151] Kowbel W, Bruce C A, Tsou K L. High Thermal Conductivity SiCf/SiCComposites for Fusion Applications [J]. Journal of Nuclear Materials,2000,(283-287):570~573.
    [152] Bamford M, Florian M, Vignoles G L. Global and Local Characterizationof the Thermal Diffusivities of SiCf/SiC Composites with Infrared Thermography andFlash Method [J]. Composites Science and Technology,2009,(69):1131~1141.
    [153] Messner R P, Chiang Y M. Liquid-phase Reaction-bonding of SiliconCarbide using Alloyed Silion-molybdenum Melts [J]. Joural of the American ceramicssocienty,1990,73(5):1193~200.
    [154] Singh M, Behrendt D R. Reactive Melt Infiltration of Silicon-molybdenumAlloys into Microporous Carbon Preforms [J]. Materials Science and Engineering: A,1995,(194):193~200.
    [155] Esfehanian M, Gunster J, Moztarzadeh F. Development of a HighTemperature Cf/XSi2–SiC (X=Mo, Ti) Composite via Reactive Melt Infiltration [J].Journal of the European Ceramic Society,2007,(27):1229~1235.
    [156] Esfehanian M, Guenster J, Heinrich J G. High-temperature MechanicalBehavior of Carbon–silicide–carbide Composites Developed by Alloyed MeltInfiltration [J]. Journal of the European Ceramic Society,2008,(28):1267~1274.
    [157] Meier S, Heinrich J G. Processing–Microstructure–PropertiesRelationships of MoSi2–SiC Composites [J]. Journal of the European Ceramic Society,2002,(22):2357~2363.
    [158]李世波,徐永东,张立同.碳化硅纤维增强陶瓷基复合材料的研究进展[J].材料导报,2001,15(1):45~49.
    [159] Pbansal N. Handbook of Ceramic Composites [M]. Boston: KluwerAcademic Publishers,2005.
    [160]梁春华.纤维增强陶瓷基复合材料在国外航空发动机上的应用[J].航空制造技术,2006,(3):40~45.
    [161]梁春华. IHPTET计划的最新进展[J].国际航空杂志,2004,(2):58~60.
    [162] Verrilli M J, Ojard G, Barnett T R. Evaluation of Post-Exposure Propertiesof SiCf/SiC Combustor Liners Tested in the RQL Setor Rig [R].NASA/TM-2002-211380.
    [163] Murthy P L N, Nemeth N N. Probabilistic Analysis of a SiCf/SiC CeramicMatrix Composite Turbine Vane [R]. NASA/TM-2004-213331.
    [164] Lacombe A, Spriet P, Allaria A. Ceramic Matrix Composites to MakeBreakthroughs in Aircraft Engine Performance [C]. California:50thAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and MaterialsConference,2009.
    [165]闫联生,王淘,邹武.国外复合材料推力室技术研究进展[J].固体火箭技术,2003,(26):64~68.
    [166]马彦,马青松,陈朝辉.连续纤维增强陶瓷基复合材料国外应用研究进展[J].材料导报,2007,(21):401~404.
    [167]张建艺.陶瓷基复合材料在喷管上的应用[J].宇航材料工艺,2000,(4):14~16.
    [168] Steffier W S, Shinavski R J, Rusnak C F. Improved Performance andDurability of Liquid Propulsion Rocket Thrusters Fabricated from Triaxially BraidedC-SiC Intraply Hybrid-fiber/SiC Matrix Composites[R].ADA,405477.
    [169] Mathieu A, Monteuuis B, Gounot V. Ceramic Matrix Composite Materialsfor a Low Thrust Bipropellant Rocket Engine [C]. Orlando: AIAA,1990.
    [170] Imuta M, Gotoh J. Development of High Temperature Materials IncludingCMCs for Space Application [J]. Key Engineering Materials,1999,(164-165):439~44.
    [171] Beyer S, Knabe H, Strobel F. Development and Testing of Cf/SiCComponents for Liquid [C]. Los Angeles: AIAA,1999.
    [172] Anderson B L. X-38Program Status/Overview [C]. Arcachon:2nd InterSymp Atmospheric Reentry Vehicles and Systems,2001.
    [173] Hald H, Weihs H, Benitsch B. Development of a nose cap system for X-38[C]. Arcachon: International Symposium Atmospheric Reentry Vehicles and System,1999.
    [174] Dolgigli M, Weihs H. New High-temperature Ceramic Bearing for SpaceVehicles [C]. Rio de Janeiro:51st International Astronautical Congress,2000.
    [175] Schmidt S, Beyer S, Immich H. Ceramic Matrix Composites: a Challengein Space-propulsion Technology Applications [J]. International Journal of AppliedCeramic Technology,2005,2(2):85~96.
    [176] Wulz H G, Trabandt U. Large Integral Hot CMC Structures Designed forFuture Reusable Launchers [C]. Atlanta: AIAA,1997.
    [177] Muuhlrater A, Handrick K, Pfriffer H.. Development of a NewCost-effective Ceramic Composite for Re-entry Heat Shield Applications [J]. ActaAstronautica,1998,42(9):533~40.
    [178] Imuta M, Gotoh J. Development of High Temperature Materials IncludingCMCs for Space Application [J]. Key Engineering Materials,1999,(164-165):439~444.
    [179]邹世钦,张长瑞,周新贵. SiCf/SiC陶瓷复合材料的研究进展[J].高技术通讯,2003,(8):95~100.
    [180]韩杰才,张宇民,郝晓东.大尺寸轻型SiC光学反射镜研究进展[J].宇航学报,2001,22(6):124~132.
    [181]赵洪波,李英才,马臻.一种新型的轻质反射镜材料[J].光子学报,2002,31(111):394~1398.
    [182]于坤.气相反应C/SiC复合材料工艺、应力控制及其反射镜结构设计和制备研究[D].长沙;国防科学技术大学,2010.
    [183] Papenburg U, Pfrang W. Optical and Optomechanical Ultra-lightweightC/SiC Mirrors [C]. Bellingham: Prceedings of Soceity of Photo-optical InstrumentaionEngieers,1999.
    [184] Deyerler M, Bauereisen S. Design, Manufacturing and Performance ofC/SiC Mirrors and Structures [C]. Bellingham: Prceedings of Soceity of Photo-opticalInstrumentaion Engieers,1997.
    [185] Kowbel W, Withers J C. SiC-SiC Composites Optics for UV Applications[C]. San Diego: Proceedings of the Optical Materials and Structures Technologies III,2007.
    [186] Kaneda H, Nakagawa T, Onaka T. Development of Lightweight SiCMirrors for the Space Infrared Telescope for Cosmology and Astrophysics (SPICA)mission [C]; San Diego: Proceedings of the Optical Materials and StructuresTechnologies III, SPIE,2007.
    [187] Krodel R, Ozaki T. HBCesic Composites for Space Optics and Structures[C]. San Diego: Proceedings of the Optical Materials and Structures Technologies III,SPIE,2007.
    [188] Krenkel W. CMC Materials for High Performance Brakes [C]. Aachen:27th International Symposium on Automotive Technology and Automation Supercars,1994.
    [189] Abuelhija H, Krenkel W, Hugel S. Development of Cf/C-SiC Brake Padsfor High-Performance Elevators [J]. International Journal of Applied CeramicTechnology,2005,2(2):105~113.
    [190] Krenkel W, Heidenreich B, Renz R. Cf/C-SiC Composites for AdvancedFriction Systems [J]. Advanced Engineering Materials,2002,4(7):427~431.
    [191]张光寅.能源危机与对策[J].科学中国人,2003,(8):24~25.
    [192]万元熙.核聚变能源和超导托卡马克-“九五”重大科学工程EAST通过国家验收[J].成果与项目,22(3):243~247.
    [193]万宝年.我国磁约束聚变研究进展和展望[J].中国科学基金,2008,(1):1~7.
    [194]赵君煜.国际热核聚变实验堆(ITER)计划[J].物理,2004,33(4):257~260.
    [195]李建刚,杨愚.受控热核聚变研究及其在我国HT-7超导托卡马克上的最新进展[J].物理,2003,32(12):787~790.
    [196]万元熙.开发聚变能造福全人类-HT-7和HT-7U超导托卡马克核聚变试验装置[J].中国科学院院刊,1999,(6):473~475.
    [197]万元熙.磁约束核聚变研究现状和前景展望[J].现代物理知识,11(5):17~19.
    [198]冯开明.可控核聚变与ITER计划[J].现代电力,2006,23(5):82~88.
    [199]邱励俭.核聚变研究50年[J].核科学与工程,2001,21(1):29~38.
    [200]李文埮.核材料导论[M].北京:化学工业出版社,2007.
    [201]郝嘉琨.聚变堆材料[M].北京:化学工业出版社,2006.
    [202]威尔逊著,华和译.铍-一种更好的面对托卡马克等离子体的材料[J].国外核聚变与等离子体应用,1991,(4):38~51.
    [203]郭全贵,刘朗,宋进仁.核聚变装置用炭基复合材料的研究进展[J].炭素科技,2002,12(2):17~23.
    [204]王凤娥.金属钨可以作为核聚变托卡马克装置的屏蔽材料[J].现代材料动态,2008,(5):21~23.
    [205] SMITH D L著,谌继明译.聚变应用钒合金研究进展[J].国外核聚变与等离子体应用,2000,(3):14~19.
    [206]崔乃俊.核聚变反应堆用低活化钢的开发现状[J].国外低合金钢合金钢,1994,(14):39~43.
    [207] Jones R H, Henager C H. Fusion Reactor Application Issues for LowActivation SiCf/SiC Composites [J]. Journal of Nuclear Materials,1995,219:55~62.
    [208] Jones R H, Snead L L, Kohyama A. Recent Advances in the Developmentof SiCf/SiC as a Fusion Structural Material [J]. Fusion Engineering and Design,1998,(41):15~24.
    [209] Hasegawa A, Kohyama A, Jones R H. Critical Issues and Current Status ofSiCf/SiC Composites for Fusion [J]. Journal of Nuclear Materials,2000,(283-287):128~137.
    [210] Glancarli L, Golfier H, Nishio S. Progress in Blanket Designs usingSiCf/SiC Composites [J]. Fusion Engineering and Design,2002,(61-62):307~318.
    [211] Glancarli L. R&D Issues for SiCf/SiC Composites Structural Material inFusion Power Reactor Blankets [J]. Fusion Engineering and Design,2000,(48):509~520.
    [212] Noda T, Kohyama A, Katoh Y. Recent Progress of SiC Fibers andSiCf/SiC Composites for Fusion Applications [J]. Physical Scripta,2001,(T91):124~127.
    [213] RaffraY A R, El-Guebaly L, Gordeev S. High Performance Blanket forARIES-AT Power Plant [J]. Fusion Engineering and Design,2001,(58-59):549~553.
    [214] Gasparotto M, Anderani R, Boccaccini L V. Survey of In-vessel CandidateMaterials for Fusion Power Plants-the European Materials R&D Programme [J]. FusionEngineering and Design,2003,(66-68):129~137.
    [215] Golfier H, Aiello G, Futterer M A. Performance of the TAURO BlanketSystem Associated with a Liquid-metal Cooled Divertor [J]. Fusion Engineering andDesign,2000,(49-50):559~565.
    [216] Gasparotto M, Boccaccini L V, Giancarli L. Demo Blanket TechnologyR&D Results in EU [J]. Fusion Engineering and Design,2002,(61-62):263~271.
    [217] Nishitani T, Tanigawa H, Nozawa T. Recent Progress in Blanket MaterialsDevelopment in the Broader Approach Activities [J]. Journal of Nuclear Materials,2011,417(1-3):1331~1335.
    [218] Puma A L, Giancarli L, Golfier H. Potential Performances of a DivertorConcept Based on Liquid Metal Cooled SiCf/SiC Structures [J]. Fusion Engineering andDesign,2003,(66-68):401~405.
    [219] Ueda Y, Tobita K, Katoh Y. PSI Issues at Plasma Facing Surfaces ofBlankets in Fusion Reactors [J]. Journal of Nuclear Materials,2003,(313–316):32~41.
    [220] Snead L L, Jones R H, Kohyama A. Status of Silicon Carbide Compositesfor Fusion [J]. Journal of Nuclear Materials,1996,(233-237):26~36.
    [221] Sharafatat S, Jones R H, Kohyama A. Status and Prospects for SiCf/SiCComposite Materials Development for Fusion Applications [J]. Fusion Engineering andDesign,1995,(29):411~420.
    [222] Nozawa T, Hinoki T, Hasegawa A. Recent Advances and Issues inDevelopment of Silicon Carbide Composites for Fusion Applications [J]. Journal ofNuclear Materials,2009,(386):622~627.
    [223] Henage C H, Kurtz R J. Compatibility of Interfaces and Fibers forSiC-composites in Fusion Environments [J]. Journal of Nuclear Materials,2009,(386-388):670~674.
    [224] Barbier F, Deloffre P, Terlain A. Compatibility of Materials for FusionReactors with Pb–17Li [J]. Journal of Nuclear Materials,2002,(307-311):1351~1354.
    [225] Aiello G, Glancarli L, Golfier H. Modeling of Mechanical Behavior andDesign Criteria for SiCf/SiC Composite Structures in Fusion Reactors [J]. FusionEngineering and Design,2003,(65):77~88.
    [226] Huang Q Y, Gao S, Huang Z Q. Progress in Compatibility Experiments onLithium-Lead with Candidate Structural Materials for Fusion in China [J]. FusionEngineering and Design,2009,84(2-6):242~246.
    [227] Zhao S, Zhou X G, Yu H J. Compatibility of PIP SiCf/SiC with Li-Pb at700℃[J]. Fusion Engineering and Design,2010,85(7-9):1624~1626.
    [228] Yu H J, Zhou X G, Wang H L.2D SiCf/SiC Composties for Flow ChannelInsert(FCI) Application [J]. Fusion Engineering and Design,2010,85(7-9):1693-1696.
    [229] Lin X, Huang Q, Gao S. Compatibility of SiC with Static Liquid LiPb at800℃[J]. Fusion Engineering and Design,2011,86(9-11):2655~2657.
    [230] Erik C M, Zrolfgang G. Precise Nondestructive Determination of Densityof Porous Ceramics [J]. Journal of the American Ceramic Society,1989,72(2):1269~1270.
    [231]周浩.气相反应制备SiC基复合材料及其反射镜坯体的研究[D].长沙;国防科学技术大学,2006.
    [232]仇沱,马眷荣.工程陶瓷弯曲强度试验方法[M].北京:中国建筑材料科学研究院,1986.
    [233] GB75-70-03.高温结构陶瓷平面应变断裂韧性试验方法[S].北京:中国建筑材料科学研究院,1988.
    [234]张长瑞,郝元凯.陶瓷基复合材料-原理、工艺、性能与设计[M].长沙:国防科技大学出版社,2000.
    [235]于海蛟.多层界面制备、表征及其对SiCf/SiC复合材料性能的影响[D].长沙;国防科学技术大学,2011.
    [236]魏明坤,张广军,张丽鹏.渗硅碳化硅材料结构与性能关系的研究[J].硅酸盐学报,2002,30(2):254~257.
    [237]武七德,童元丰.提高反应烧结碳化硅陶瓷性能的研究趋势[J].江苏陶瓷,2001,34(4):1~3.
    [238]周新贵. PIP法制备三维编织涂层碳纤维增强碳化硅复合材料的结构与性能[D].长沙;中南大学,2006.
    [239]周清.气相、液相渗硅原位反应制备纤维增强碳化硅基复合材料[D].上海,2008.
    [240]李文翠,陆安慧,朱盛维.溶胶-凝胶法制备甲酚甲醛炭气凝胶[J].燃料化学学报,2000,28(4):332~337.
    [241] Warren B E. X-ray diffraction in random layer lattices [J]. Physics Review,1941,(59):693~698.
    [242]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社.
    [243]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社.
    [244]张平民.工科大学化学(上册)[M].长沙:湖南教育出版社,2002.
    [245]敬仕超.物理学导论(第一版)(上册)[M].北京:科学出版社,2008.
    [246] Pascal J P, Pascal H. Non-linear Effects on Some Unsteady Non-DarcianFlows Through Porous Media [J]. Int J Nonlinear Mechanics,1997,32(2):361~376.
    [247] Gilbron J, Soffer A. Knudsen Diffusion in Microporous CarbonMembranes with Molecular Sieving Character [J]. Journal of Membrane Science,2002,(209):339~352.
    [248] Fitzer E, Gadow R. Fiber-reinforced Silicon Carbide [J]. AmericanCeramic Society Bulletin,1986,65(2):326~335.
    [249] Calderon N R, Martinez-Escandell M, Narciso J. The Combined Effect ofPorosity and Reactivity of the Carbon Preforms on the Properties of SiC Produced byReactive Infiltration with Liquid Si [J]. Carbon,2009,(47):20~21.
    [250] Zhou H, Singh R N. Kinetics Model for the Growth of Silicon Carbide bythe Reaction of Liquid Silion with Carbon [J]. Journal of the American Society,1995,79(9):2456~2462.
    [251]王林山,熊翔,肖鹏.高温热处理和不同基体炭对C/C多孔体熔融渗硅行为的影响[J].矿冶工程,2003,23(2):77~80.
    [252] Jiang S Z, Xiong X, Chen Z K. Influence Factors of Cf/C–SiC Dual MatrixComposites Prepared by Reactive Melt Infiltration [J]. Materials and Design,2009,(30):3738~3742.
    [253] Schiulte-Fischedick J, Zern A. The Morphology of Silicon Carbide inCf/C–SiC Composites [J]. Materials Science and Engineering: A,2002,(332):146~152.
    [254] Ness J N, Page T F. Microstructure Evolution in Reaction Bonded SiliconCarbide [J]. Journal of Materials Science,1986,21(4):1377~1397.
    [255]徐顺建,乔冠军,王红洁.微孔碳陶瓷化反应机理的研究[J].无机材料学报,2009,24(2):291~296.
    [256]魏巍.粉体碳的气-固相反应制备碳化硅陶瓷的研究[D].长沙;国防科学技术大学,2004.
    [257] Ilegbusi O J, Yang J, Mat M D. A Mesoscopic Scale Analysis of theReaction-bonded SiC Process [J]. Composites: Part A1999,(30):339~348.
    [258] Yang J, Ilegbusi O J. Kinetics of Silicon–metal Alloy Infiltration intoPorous Carbon [J]. Composites: Part A,2000,(31):617~625.
    [259] Fitzer E, Gadow. Investigations of the Reactivity of Different Carbonswith Liquid Silicon [C]. Tokyo: Proceedings of the International Symposium onCeramic Components of Engines,1984.
    [260] Riccardi B, Nannetti C A, Petrisor T. Low Activation Brazing Materialsand Techniques for SiCf/SiC Composites [J]. Journal of Nuclear Materials,2002,(307-311):1237~1241.
    [261] Hilllig W B. Melt Infiltration Approach to Ceramic Matrix Comoposites[J]. Joural of the American ceramics socienty,1988,71(2):96~99.
    [262] Hilllig W B. Making Ceramic Composites by Melt Infiltration [J].American Ceramic Society Bulletin,1994,73(4):56~62.
    [263] Sangsuwan P, Tewari S N, Gatica J E. Reactive Infiltration of Silicon Meltthrough Microporous Amorphous Carbon Preform [J]. Metallurgical and MaterialsTransactions B,1999,(30):933~944.
    [264] Washburn E W. The Dynamics of Capillary Flow [J]. Physical Review,1921,17(3):273~283.
    [265] Kumar S, Kumar A, Shukla A. Capillary Infiltration Studies of Liquidsinto3D-stitched C–C Preforms Part A: Internal Pore Characterization by SolventInfiltration, Mercury Porosimetry, and Permeability Studies [J]. Journal of the EuropeanCeramic Society,2009,(29):2643~2650.
    [266] Kumar S, Kumar A, Devi R. Capillary Infiltration Studies of Liquids into3D-stitched C–C Preforms Part B: Kinetics of Silicon Infiltration [J]. Journal of theEuropean Ceramic Society,2009,(29):2651~2657.
    [267] Yang J, Ilegbusi O J. Kinetics of Silicon–metal Alloy Infiltration intoPorous Carbon [J]. Composites: Part A,2000,(31):617~625.
    [268]杨琳.炭纤维整体织物/炭-铜复合材料及其摩擦特性的研究[D].长沙;中南大学,2011.
    [269] Turkdogen E T. Physical Chemistry of High Temperature Technology [M].New york: Academic press,1980.
    [270]李洪桂.冶金原理[M].北京:科学出版社,2005.
    [271] Wang Y G, Zhu X J, Zhang L T. C/C–SiC–ZrC Composites Fabricated byReactive Melt Infiltration with Si0.87Zr0.13Alloy [J]. Ceramics International,2012,(38):4337~4343.
    [272] Tong Y G, Bai S X, Zhang H. C/C–SiC Composite Prepared by Si–10ZrAlloyed Melt Infiltration [J]. Ceramics International,2012,(38):3301~3307.
    [273] Einset E O. Analysis of Reactive Melt Infiltration in the Processing ofCeramics and Ceramic Composites [J]. Chemical Engineering Science,1998,53(5):1027~1039.
    [274]王林山熊翔,肖鹏.高温热处理对C/C-SiC复合材料制备与力学性能的影响[J].新型炭材料,2005,20(3):245~249.
    [275] Krenkel W. Cost Effective Processing of CMC Composties by MeltInfiltration [J]. Ceramic Engineering and Science Proceedings,2001,22(3):443~454.
    [276] Wang Y X, Tan S H, Jiang D L. The Effect of Porous Carbon Preform andthe Infiltration Process on the Properties of Reaction-formed SiC [J]. Carbon,2004,(42):1833~1839.
    [277] Hayun S, Weizmann A, Dariel M P. Microstructural Evolution during theInfiltration of Boron Carbide with Molten Silicon [J]. Journal of the European CeramicSociety,2010,(30):1007~1014.
    [278] Mukasyan A S, White J D E. Electrically Induced Liquid Infiltration forthe Synthesis of Carbon/Carbon–Silicon Carbide Composite [J]. Ceramics International,2009,(35):3291~3299.
    [279] Zhou H. Kinetics Processing and Properties of Silicon/Silicon CarbideComposites Fabricated by Reactive-melt Infiltration [D]. Ohio: University of CincinnatiUSA,2001.
    [280] Whalen T J, Anderson A Y. Wetting of SiC, Si3N4and Carbon by Si andBinary Si Alloys [J]. Journal of the American Ceramic Society,1975,58(9-10):396~399.
    [281]贺福.碳的结构[J].炭素,1984,(3):12~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700