用户名: 密码: 验证码:
罐底腐蚀声发射机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家石油化工行业发展,中国已经成为世界第二大石油消费国。在不久的将来有可能超过美国,成为世界第一石油消费国。为应对国际油价的波动及地区局势对我国原油安全的影响,中国从1993年开始着手原油储备计划。随着原油储备计划三期工程的完工,届时我国原油储备将达8000万立方米以上。再加上与国家储备规模相当甚至超过国家原油储备的商业用油储备,我国将拥有庞大的石油储备系统。在石油储备系统中储罐是核心设备,而腐蚀给储罐安全带来了严重威胁。因此原油储罐腐蚀的有效检测,尤其是原油储罐腐蚀在线检测具有重要意义。
     声发射检测技术是一种在线无损检测技术,只需在储罐外壁或在被检测对象表面放置若干传感器,就可以检测罐底或被检测对象的腐蚀状况。但目前腐蚀声发射检测技术还存在以下问题:过度地依靠经验和专家系统,对腐蚀声发射的产生机理及腐蚀声发射信号本身的认识不够充分;声发射信号的特征提取、识别及检测过程中关键参数的选择缺乏理论依据,检测结果的可靠性及实际可用性都有待提高;没有建立起声发射信号与腐蚀过程的具体对应关系,难以给检测到的信号赋予实际的物理意义,对检测结果难以给出准确的评价。本文针对腐蚀声发射机理、有效性、声发射信号与腐蚀过程之间的关系、声发射信号特征提取与识别、声发射源的鉴别等关键问题展开理论与实验研究。本文的主要研究内容有:
     (1)从腐蚀过程基本原理出发,通过对钢板腐蚀过程中阴极和阳极发生的化学反应、腐蚀反应及反应产物与声发射之间的可能关系、腐蚀过程中可能产生的应力变化的研究。提出了腐蚀过程中,氢气泡成长的原因。得出大气压、液体液位和气泡表面张力为气泡破裂声发射应力脉冲来源;大气压、液体液位和残余应力为腐蚀裂纹声发射可能的应力脉冲来源。根据Knopoff点应力脉冲理论,考虑到大气压、液位高度、气泡表面张力等参数对应力脉冲位移的影响及声发射传感器对薄板振动位移的响应,建立了腐蚀过程与声发射信号之间的理论关系,经过数值计算直接从理论上证明了腐蚀声发射检测技术的有效性,一定程度上揭示了腐蚀声发射的检测机理。
     (2)针对腐蚀过程中产生的气泡、金属开裂及金属腐蚀产物开裂、腐蚀电位波动现象,分别从理论上研究了气泡尺度、腐蚀开裂尺寸与开裂速度及腐蚀电位与声发射信号时频特征之间的关系。从理论上推导出腐蚀声发射信号特性,即声发射信号的幅值与气泡半径的平方、液位的高度成正相关;声发射信号的频率与气泡的半径成反比。腐蚀开裂产生的声发射信号强度与开裂面积、液位高度及局部应力强度成正比;声发射信号的频率与裂纹扩展的长度成正比,与裂纹扩展的速度成反比;揭示了腐蚀声发射信号特征,为腐蚀声发射检测过程中,液位加载高度、传感器带宽的选择、声发射信号特征提取、检测结果的评价提供一定的参考。
     (3)设计密封条件下钢板在不同腐蚀液中的等面积腐蚀实验,并通过高频、低频全带宽声发射系统在距腐蚀位置相同的条件下对腐蚀过程进行长时间全程监测。分析声发射信号各种参数特征及声发射信号与腐蚀过程、腐蚀类别之间的区别与联系,通过理论推导和实验证明气泡破裂和腐蚀开裂所产生的声发射信号频谱特征不同。气泡破裂产生的声发射信号频率主要集中在10~80KHz之间,金属开裂的声发射信号分布在80~1000KHz之间,可以通过声发射信号的频谱分布区分与识别气泡破裂与裂纹开裂产生的声发射信号。
     (4)研究声发射信号降噪与声发射信号特征提取方法,给出小波处理声发射信号过程中小波基函数及噪声处理过程中门槛值的选择依据;并且应用谱分析法、小波变换、S变换法研究声发射信号噪声处理及时频分布特征。指出db8小波是常见小波中最佳的声发射信号噪声处理及特征提取的小波之一,S变换能有效地提取声发射信号的时频局部特征。
With the developments of the National Petroleum and chemical industry, China hasbecome the second largest oil consumer in the world at present. It will be exceeding Americaand becoming the first oil consuming country in the future. The crude oil reserve plan hadbeen started from1993in order to cope with the international oil price fluctuation and the statesafety. With the third stage of the project complete, China oil reserves will reach eightymillion cubic meters. Taking into account the business reserves, the reserve scale is evenmore than the National Petroleum reserve. China has a huge oil reserve system. The storagetank is the key equipment in the petroleum reserve system. Corrosion is a serious threat to thestorage tank. Therefore, an effective storage tank corrosion detection technology is essential,especially on-line detection technology.
     Acoustic emission detection technology is an online testing technology. It detects the tankbottom corrosion with several sensors that are placed on the tank wall. It is quite differentfrom other tank bottom corrosion detection technology which needs open the tank to detect thetank bottom corrosion. But acoustic emission corrosion testing technology has the followingproblem: First, the engineer’s experience and the experiment system is essential and muchmore needed; second, the mechanism of corrosion acoustic emission and the characteristic ofacoustic emission signal is not understood to people; third, the theory is lack when theengineers extract the characteristic of acoustic emission signal and select the key parameters ofacoustic emission signal, so the reliability and availability of acoustic emission detectionshould be improved; forth, the relationship between acoustic emission and corrosion processhas been not found, so the physical meaning of corrosion acoustic emission signal can’t beunderstood and the accurate test results are hard to be made by engineers. To resolve theseproblems, the mechanism of corrosion acoustic emission, the validity of corrosion acousticemission detection technology, the relationship between acoustic emission signal and thecorrosion process, the extraction of acoustic emission signal characters and the identificationof acoustic emission sources were studied in theory and experiment. The following contentshave been studied:
     (1) Based on the foundation of corrosion, the reaction of cathode and anode in steelcorrosion process, the possible relationship between the reaction of steel corrosion and acoustic emission signal, the possible relationship between the reaction products of steelcorrosion and acoustic emission signal and the change of stress in corrosion process werestudied. The cause of hydrogen gas bubble growth is presented. The atmospheric pressure,liquid level, and bubble surface tension are the sources of bubble burst acoustic emission stresspulse. And atmospheric pressure, liquid level, and residual stress may be the potential sourcesof steel crack acoustic emission stress pulse. Based on the theory of knopoff point stress pulse,the parameters of atmospheric pressure, liquid level and bubble surface tension weresubstituted the relationship between the response of elastic sheet displacement and the pointforce pulse, and then the displacement was substituted the relationship between the responseof acoustic emission sensor and the elastic sheet displacement. The relation between acousticemission signal and corrosion process is constructed in theory. Based on the numberconclusion and the steel corrosion acoustic emission detection experiment, the effectiveness ofcorrosion acoustic emission detection techniques is directly provided by theory andexperiment. To some extent, the mechanism of corrosion acoustic emission detection wasrevealed.
     (2) Considering the phenomenon of bubble burst, the crack of steel, the crack of steelcorrosion product and the fluctuation of corrosion potential in corrosion process, therelationship between the gas bubble scales, corrosion cracking scale, cracking speed andcorrosion potential fluctuation with AE signal time-frequency characteristics were studied intheory. The characteristics of acoustic emission of corrosion and the relationship betweencorrosion acoustic emission and the bubble diameter and the liquid level were directly derivedin theory. It is that the amplitude of AE signal is proportional to the bubble radius square andthe liquid level,and its frequency is inversely proportional to the bubble diameter. The AEsignal strength of steel corrosion cracking is proportional to the local stress strength and theAE signal frequency is proportional to the crack propagation distance and inverselyproportional to the crack propagation velocity. The characteristics of corrosion acousticemission were revealed. That is helpful to the engineers who detect the corrosion with acousticemission technology to determine the height of liquid level, select the sensor bandwidth,extract the feature of the acoustic emission signal and evaluate the detection conclusion.
     (3) The steel corrosion experiment with the same area immersed in the etchant solutionwas designed under sealed condition. The AE systems with high frequency and low frequency were used to detect AE signal during the whole corrosion process at the same distance. TheAE signal parameters were studied. The difference and relationship between AE signal andcorrosion process, corrosion types were studied. The spectrum of bubble breaking out acousticemission signal and corrosion cracking acoustic emission signal that is different was proofedin theoretical and experimental. The frequency range of bubble burst acoustic emission is from10~80kHz. The frequency range of steel cracking acoustic emission is between the80~1000KHz. These two styles acoustic emission signals could be distinguished by thedistribution of power spectrum.
     (4) The acoustic emission signal characteristics extraction and noise reduction methodswere studied and the rule of choosing the best wavelet function for acoustic emission signalprocessing and noise threshold were proposed The AE signal in time and frequency domaincharacteristics was studied by power spectrum and the S transform spectrum. Thecharacteristic of corrosion acoustic emission signal and the noise was analyzed db8wavelet isone of the best wavelet for the acoustic emission signals noise processing and featureextraction. S transform method can effectively extract the local features of acoustic emissionsignals.
引文
[1]周凌云.万吨石油入海三年五次爆炸[J].绿色视野,2013(11):47-49.
    [2]国务院安委会办公室关于中石油大连石化分公司“6·2”火灾爆炸事故和中储粮黑龙江分公司林甸直属库“5·31”火灾事故情况的通报[EB].国务院安委会办公室,2013(17).
    [3]孔庆影,张烁.中国石油战略储备及商业库存分析[R].中国国际金融有限公司[2010-12-8],http://www.docin.com/p-106369928.html.
    [4]曾琼,肖江文,袁建辉.浅谈无损检测技术的发展与展望[J].计量与测试技术,2006,33(12):9-10.
    [5]王永辉.谈压力容器的渗透检测[J].黑龙江科技信息,2012(26):6.
    [6]邵泽波.无损检测技术[M].北京:化学工业出版社,2003.
    [7]王宗伟.磁粉检测技术[J].黑龙江科技信息,2013(36):16.
    [8]王晓雷.承压类特种设备无损检测相关知识[M].北京:中国劳动社会保障出版社,2007.
    [9]焦敬品,孙俊俊,吴斌等.结构微裂纹混频非线性超声检测方法研究[J].声学学报,2013,38(6):648-656.
    [10]马佼佼,王作碧,谢庆利等.储罐罐底漏磁检测技术研究[J].辽宁化工,2012,41(9):903-905.
    [11]杨理践,余文来,高松巍等.管道漏磁检测缺陷识别技术[J].沈阳工业大学学报,2010,32(1):65-69.
    [12]陈振华,胡怀辉,卢超.基于超声TOFD法直通波幅度分布的近表面缺陷检测[J].无损检测,2013,35(11):47-50.
    [13]杨理践,刘斌,高松巍等.金属磁记忆效应的第一性原理计算与实验研究[J].物理学报,2013,62(8):1-7.
    [14]许凯亮,淡钊,谭得安等.超声导波的频散补偿与模式分离算法研究[J].声学学报,2014,39(1):99-103.
    [15] Kristián M, Gergely F, Milo J, et al. Acoustic emission study of Mg–Al–Sr alloy reinforced withshort saffil fibers deformed in compression[J]. Materials Science&Engineering,2013(575):1–5.
    [16] Masoud R, Mohammad M.Quantitative methods for structural health management using in situacoustic emission monitoring[J]. International Journal of Fatigue,2013(49):81-89.
    [17] Salah E M, Abdelouahed L, Salim B. Reliability of damage mechanism localisation by acousticemission on glass/epoxy composite material plate[J]. Composite Structures,2012(94):1483-1494.
    [18]林远龙,陈虎,祝金丹.储罐底板腐蚀状况检测与安全评估[J].石油与化工设备,2011,13(7):54-55.
    [19]康叶伟,林明春,王维斌等.罐底板声发射在线检测影响因素与评价可靠性[J].油气储运,2011,30(5):343-346.
    [20] Filippos V, George M, Phil B, etal.Natural time analysis of critical phenomena: The case of acousticemissions in triaxially deformed Etna basalt[J].Physica A,2013(392):5172-5178.
    [21]宫宇新,何满潮,汪政红等.岩石破坏声发射时频分析算法与瞬时频率前兆研究[J].岩石力学与工程学报,2013,32(4):787-798.
    [22] Aggelis D G, Mpalaskas A C, Matikas T E.Acoustic signature of different fracture modes in marbleand cementitious materials under flexural load[J].Mechanics Research Communications,2013(47):39-43.
    [23] Shahiron S, Rhys P, Norazura M, et al. Damage classification in reinforced concrete beam byacoustic emission signal analysis[J]. Construction and Building Materials,2013(45):78-86.
    [24] Aggelis D G, Verbruggen S, Tsangouri E, et al. Characterization of mechanical performance ofconcrete beams with external reinforcement by acoustic emission and digital image correlation[J].Construction and Building Materials,2013(47):1037-1045.
    [25] Benedetti M D, Loreto G, Matta F. Acoustic emission monitoring of reinforced concrete underaccelerated corrosion[J].Journal of Materials in Civil Engineering,2013(25):1022-1029.
    [26] Hisham A E, Rhys P, Karen M H. Damage assessment of corrosion in prestressed concrete byacoustic emission[J].Construction and Building Materials,2013(40):925-933.
    [27] Takao K, Donald A S. Identifying acoustic emission sources in aging bridge steel[J]. Journal ofAcoustic Emission,2003(21):1-13.
    [28]李旭,霍林生,李宏男.基于声发射的钢筋混凝土承载能力评估[J].振动与冲击,2013,32(5):6-10.
    [29]周伟,孙诗茹,冯艳娜等.风电叶片复合材料拉伸损伤破坏声发射行为[J].复合材料学报,2013,30(2):240-246.
    [30]宋亚南,徐滨士,王海斗.Al2O3陶瓷涂层尖端受载下的声发射信号参量分析[J].声学学报,2013,38(4):413-418.
    [31]钱骥,孙利民,蒋永.高强钢丝断裂声发射试验研究[J].振动与冲击,2014,33(4):54-59.
    [32] Runar U, Thomasp R, Magnus T J. AE entropy for the condition monitoring of CFRP subjected tocyclic fatigue[J]. Journal of Acoustic Emission,2008(26):262-269.
    [33] Peter N, Andreas J B, Olivier W. Investigation of the mechanism of failure behavior of wood basedmaterials using acoustic emission analysis and image processing[J]. Wood Research,2009,54(2):49-62.
    [34] Mei H, Sun Y Y, Zhang L D. Acoustic emission characterization of fracture toughness for fiberreinforced ceramic matrix composites[J].Materials Science&Engineering A,2013(560):372-376.
    [35] Aggelis D G, Barkoula N M, Matikas T E, et al. Acoustic emission as a tool for damageidentification and characterization in glass reinforced cross ply laminates[J], Appl Compos Mater,2013(20):489-503.
    [36]路俏俏,黎敏,王晓景.基于信息熵的轧辊裂纹声发射三维定位方法[J].机械工程学报,2013,49(18):78-84.
    [37] Satyanarayana K, Venu G A, Bangaru B P.Online tool condition monitoring in turning titanium(grade5) using acoustic emission modeling[J]. The International Journal of ManufacturingTechnology,2013(67):1947-1954.
    [38] Chia L Y, Ming C L, Jau L C. Applying the self-organization feature map(SOM) algorithm toAE-Based tool wear monitoring in micro-cutting[J]. Mechanical Systems and Signal Processing,2013(34):353-366.
    [39]张锴锋,袁惠群,聂鹏.基于广义分形维数的刀具磨损状态监测[J].振动与冲击,2014,33(1):162-169.
    [40] Cristián M V. Effects of operating conditions on the acoustic emission from planetary gearboxes[J].Applied Acoustic,2014(77):150-158.
    [41] Xu W W, Lai Z N, Wu D Z, et al. Acoustic emission characteristics of underwater gas jet from ahorizontal exhaust nozzle[J]. Applied Acoustics,2013(74):845-849.
    [42]张涛,曾周末,李一博等.基于声发射的真空泄漏在线检测技术研究[J].振动与冲击,2013,32(24):164-168.
    [43]李振林,张海峰,夏广辉.基于声发射理论的阀门气体内漏量化检测研究[J].振动与冲击,2013,32(15):77-81.
    [44] Juliano T M, Meegoda J N, Asce F, et al.Acoustic emission leak detection on a metal pipeline buriedin sandy soil[J].Journal of Pipeline Systems Engineering and Practice,2013(4):149-155.
    [45]黄春燕,蔡小舒,苏明旭.基于Hertz-Zener理论的声发射颗粒粒径测量.化工学报,2013,64(4):1191-1197.
    [46] Hii N C, Tan C K, Wilcox S J, et al.An investigation of the generation of acoustic emission from theflow of particulate solid in pipelines[J].Powder Technology,2013(243):120-129.
    [47] Neill I T, Oppenheim I J, Greve D W. A wire-guided transducer for acoustic emissionsensing[J].Proc. Of SPIE,2007,6529(13):1-8.
    [48]李红玲,文习山.绝缘子污秽放电声发射的统计指纹分析[J].高电压技术,2010,36(11):2705-2710.
    [49] Mazille H, Rothea R, Tronel C. An acoustic emission technique for monitoring pitting corrosion ofaustenitic stainless steels[J]. Corrosion Science,1995;37(9):1365-1375.
    [50]耿荣生,傅刚强.金属点蚀过程声发射源机制研究[J].声学学报,2002;27(4):369-372.
    [51] Fregonese M, Idrissi H, Mazille H, et al.Initiation and propagation steps in pitting corrosion ofaustenitic stainless steels monitoring by acoustic emission[J].Corrosion Science,2001(43):627-641.
    [52] Ferrer F, Idrisi H, Mazille H, et al.A study of abrasion–corrosion of AISI304L austenitic stainlesssteel in saline solution using acoustic emission technique[J]. NDT&E International,2000(33):363-371.
    [53] Shaikh H, Amirthalingam R, Anita T, et al. Evaluation of stress corrosion cracking phenomenon inan AISI type316LN stainless steel using acoustic emission technique[J]. Corrosion Science,2007(49):740-765.
    [54] Minh T T, Mickael B, Alain G, et al. Detection of breakaway oxidation with acoustic emissionduring titanium oxide scale growth[J]. Corrosion Science,2010(52):2365-2371.
    [55] Miguel A, Gonzalez N. Correlation of acoustic emission with corrosion aluminium6063alloy in5%Nacl,5th Pan Amecrican Conference for NDT[C], Cancun, Mexico, Oct2-6,2011,http://www.ndt.net/article/panndt2011/presentations.
    [56] Idrissi H, Ramadan S, JMaghnouj J, et al. Modern concept of acoustic emission coupled withelectrochemical measurements for monitoring the elastomer-coated carbon steel damage inphosphoric acid medium[J].Progress in Organic Coatings,2008(63):382-388.
    [57] Stefan K, Kazimierz D. Electrochemical and acoustic emission studies of aluminum pittingcorrosion[J].Journal of Solid State Electrochem,2009(13):1653-1657.
    [58] Sakiev S N, Azimov S H, Lakaev A, et al.Acoustic emission in solid-liquid decompositionreactions[J]. Russian Journal of Physical Chemistry A,2007,81(8):1230-1233.
    [59] Kovac J, Leban M, Legat A. Detection of SCC on prestressing steel wire by the simultaneous use ofelectrochemical noise and acoustic emission measurements[J]. Electrochimica Acta,2007(52):7607-7616.
    [60] Ramadan S, Idrissi H. In situ monitoring of deposition and dissolution of calcium carbonate byacoustic emission techniques associated to electrochemical measturements[J]. Desalination,2008(219):358-366.
    [61] Mistuharu S, Hiroyuki M, Hisasi Y, et al. Acoustic emission monitoring of micro cell corrosiontesting in type304stainless steels[J].Strength, Fracture and complexity,2011,17(1):71-78.
    [62] Mistuharu S, Hiroyuki M, Hisasi Y, et al. Acoustic emission analysis for corrosion pitting of MgCl2droplet[C]. Emerging Technologies in Non-Destructive Testing V-Proceedings of the5thConference on Emerging Technologies in NDT. Ioannina, Greece,2011:327-331.
    [63] Lapitz P, Ruzzante J, Alvarez M G. AE response of-brass during stress corrosion crackpropagation[J]. Corrosion Science,2007(49):3812-3825.
    [64] Jirarungsatian C, Prateepasen A. Pitting and uniform corrosion source recognition using acousticemission parameters.Corrosion Science,2010(52):187-197.
    [65] Naoya K, Kentaro U, Sosoon P, et al. Correlation between corrosion rate and AE signal in an acidicenvironment for mild steel[J]. Corrosion science,2009(51):1679-1684.
    [66] Darowicki K, Mirakowski A, Krajiwiak S.Investigation of pitting corrosion of stainless steel bymeans of acoustic emission and potentiodynamic methods[J]. Corrosion Science,2003(45):1747-1756.
    [67] Marion F, Lionel J, Yves C. Contribution of acoustic emission technique for monitoring damage ofrubber coating on metallic surfaces comparison with electrochemical measurements[J]. Progress inOrganic Coatings,2007(59):239-243.
    [68] Frederic F, Thierry F, Jean G, et al. Acoustic emission study of active–passive transitions duringcarbon steel erosion–corrosion in concentrated sulfuric acid[J].Corrosion Science,2002(44):1529-1540.
    [69] Kim Y.P, Fregonese M, Mazille H, et al. Ability of acoustic emission technique for detection andmonitoring of crevice corrosion on304L austenitic stainless steel[J]. NDT&E International,2003(36):553-562.
    [70] Prateepasen A, Chalermkiat J, Pongsak T. Identification of AE source in corrosion process[J]. KeyEngineering Materials,2006(321-323):545-548.
    [71] Lee C K, Scholey J J, Worthington S E, et al. Acoustic emission from pitting corrosion in stressedstainless steel plate[J]. Corrosion Engineering, Science and Technology,2008,43(1):54-63.
    [72] Prateepasen A, Jirarungsatian C. Implementation of acoustic emission source recognition forcorrosion severity prediction[J]. Corrosion,2011,67(5):1-11.
    [73] Chang H, Han E H, Wang J Q, et al. Analysis of modal acoustic emission signals of LY12CZaluminum alloy at anodic and cathodic polarization[J]. NDT&E International,2006(39):8-12.
    [74] Zhang W, Dunbar L, Tice D. Monitoring of stress corrosion cracking of sensitised304H stainlesssteel in nuclear applications by electrochemical methods and acoustic emission[J].Energy Materials,2008,3(2):59-70.
    [75] Darowicki K, Mirakowski A, Krakowiak S. Investigation of pitting corrosion of stainless steel bymeans of acoustic emission and potentiodynamic methods[J]. Corrosion Science,2003(45):1747–1756.
    [76] Jaka K, Carole A, James M T, et al. Correlation of electrochemical noise, acoustic emission andcomplementary monitoring techniques during intergranular stress-corrosion cracking of austeniticstainless steel[J]. Corrosion Science,2010(52):2015-2025.
    [77] Bellenger F, Mazille H, Idrissi H. Use of acoustic emission technique for the early detection ofaluminum alloys exfoliation corrosion[J]. NDT&E International,2002(35):385-392.
    [78] Cole P, Watson J. Acoustic emission for corrosion detection[J]. Advanced Materials Research,2006(13-14):231-236.
    [79] Ichiro M, Takahiro A, Hiroaki H, et al. Fundamental Examination of AE Corrosion Detection in OilStorage Tank Floors[J]. JHPI,2002,40(4):31-40.
    [80] Hideo C, Mikio T, Akio Y, et al. Location of Corrosion Damage on the Floor Plate of a CylindricalStorage Tank by Lamb Wave Acoustic Emission (Japanese)[J]. Hihakai Kensa,2005,54(5):259-264.
    [81] Hartmut V, Jochen V, Jens F. A SIimple Method to Compare the Sensitivity of Different AE Sensorsfor Tank Floor Testing[J]. J. Acoustic Emission,2007(25):132-139.
    [82]丛蕊,戴光,张颖等.立式油罐底板腐蚀的声发射在线检测技术及应用[J].化工机械,2008(33):43-45.
    [83] Minoru Y, Shigeo K, Shigenori Y, et al. Evaluation of Corrosion Damage on Bottom Plate of OilStorage Tank by Acoustic Emission[J]. JHPI,2002,40(4):222-227.
    [84] Atsushi K, Koichi M, Kazushi E, et al. Quantitative Studies of Acoustic Emission due to Leaks fromWater Tank[J]. JHPI,2002,40(4):228-236.
    [85] Gary M, John D, John Cacic. Acoustic Emission for Tank Bottom Monitoring[J]. AdvancedMaterials Research,2008(41-42):499-509.
    [86]钟建强,柳颖,杨娟等.利用声发射技术检测储罐的腐蚀损伤状态[J].无损检测,2011,33(11):24-28.
    [87]魏列民.声发射检测技术在油罐检测方面的应用[J].石油化工应用,2011,30(6):87-90.
    [88]陈健飞,盛华,仇东泉等.声发射在油田常压储罐检测中的应用[J],内蒙古石油化工,2011(19):28-31.
    [89]韩伟,王春茂,申孝民等.在役球罐超标缺陷信号活度的综合评价[J].石油化工设备,2012,41(1):66-69.
    [90]张平,施克仁,耿荣生等.小波变换在声发射检测中的应用[J].无损检测,2002,24(10):436-439.
    [91]易若翔,刘时风,耿荣生等.人工神经网络在声发射检测中的应用[J].无损检测,2002,24(11):482-492.
    [92]关卫和,沈纯厚,陶元宏等.大型立式储罐在线声发射检测与安全性评估[J].压力容器,2005,22(1):40-44.
    [93]李伟,戴光,张颖等.地上立式金属储罐腐蚀损伤的实验[J].大庆石油学院学报,2003,27(1):99-102.
    [94]刘富君,郑津洋,戴光.立式储罐罐底腐蚀状态声发射检测的实验研究[J].压力容器,2003,20(1):12-15.
    [95]戴光,李善春,李伟.储罐的声发射在线检测技术与研究进展[J].压力容器,2005,22(3):33-35.
    [96]戴光,李伟,王娅丽等.常压立式储罐腐蚀状态检测与评价技术的研究与应用[J].无损检测,2011,33(12):58-61.
    [97]林明春,辛爱华,高金杰等.罐底声发射在线检测及其可靠性验证[J].油气储运,2010,29(8):776-779.
    [98]王晓巍,王祥岗,徐彦庭等.常压立式储罐底板在线检测结果的验证及分析[J].石油和化工设备,2011,14(7):48-50.
    [99]徐彦廷,刘富君,王亚东等.大型立式储罐综合检测技术[J].无损检测,2007,29(8):482-485.
    [100]徐彦廷,王亚东,刘富君等.声发射技术在探测储罐底板泄露位置中的应用[J].无损检测,2007,29(9):506-508.
    [101] Shigeo K, Minoru Y, Shigenori Y, et al. In-operation Evaluation for Corrosion in Bottom Floor ofOil Storage Tanks by Acoustic Emission Method[J]. JHPI,2002,40(4):41-49.
    [102] Hideyuki N, Takahiro A, Kazuyoshi S, et al. Examination of Identification and Removal Method forDrop Noise at AE Measurement of a Tank[J]. JHPI,2008,46(1):26-31.
    [103] Hideo C, Akio Y, Hiroaki S, et al. Classification of Corrosion-AEs Form Noises for CorrosionInspection of Oil Storage Tank Floor Plate[J]. Journal of the Society of Materials Science,2008,57(11):1101-1107.
    [104]张涛,李一博,王伟魁等.声发射技术在罐底腐蚀检测中的应用与研究[J].传感技术学报,2010,23(7):1049-1052.
    [105]常向东,赵丽新.应用神经网络研究地面储罐罐底声发射检测中泄漏信号与腐蚀信号的差异[J].国外油田工程,2010,26(7):48-51.
    [106] Mikio T, Hideo C, Hiroaki S. Lamb-wave Acoustic Emission for Condition Monitoring of TankBottom Plates[J]. Journal of Acoustic Emission,2006(24):12-21.
    [107] Nedzvetskaya O V, Budenkov G A, Sokolkin A V, et al. Calculation of acoustic channel atacoustic-emission testing of steel vertical vessels bottoms[J]. Defektoskopiya,2003,39(10):55-66.
    [108] Sayuri M, Kyoji H, Takuji KOIKE, et al. AE Source Location Using Nerual Network on AEEvaluation of Floor Conditions in Above-Ground Tank[J]. Journal of Solid Mechanics andMaterials Engineering,2007,1(7):919-930.
    [109] Prosser W H, Hamstad M A, Gary J, et al. Finite element and plate theory modeling of acousticemission waveforms[J].Journal of Nondestructive Evaluation,1999,18(3):83-90.
    [110] Prosser W H, Hamstad M A, Gary J, etal.Reflections of AE waves in finite plates: finite elementmodeling and experimental measurements[J].Journal of Acoustic Emission,1999(17):37-47.
    [111] Amstad M A. Acoustic emission signals generated by monopole (pencil-lead break) versus dipolesources: finite element modeling and experiments[J]. Journal of Acoustic emission,2007(25):92-105.
    [112] Johnson J A. Numerical calculations of acoustic emission[J]. Journal of Nondestructive Evaluation,1987,6(3):159-166.
    [113] Landa M, Cerv J, Machova A, et al. Acoustic emission sources by atomistic simulations[J]. Journalof Acoustic Emission,2002(20):25-38.
    [114] Gelat P N, Theobald P D, Schubert F. Development of a hybrid finite element/finite integrationmodel for the UK’s national physical laboratory acoustic emission reference facility[C]. EuropeanConference on Acoustic Emission Testing, Berlin, German,2004:699-707.
    [115] Syed A A, Brian G S, Chengke Z, et al. Numerical simulation of partial discharge acousticsignals[C].2008International conference on high voltage engineering and application,Chongqing,China,2008:577-579.
    [116] Kamarthi S V, Kumara S R T, Cohen P H. Wavelet representation of acoustic emission in turningprocess[C].Proceeding of Intellingent Engineering Systems Through Artificial Neural Networks,United States:ASME,1995:861-866.
    [117]催岩,李小俚,彭华新等.基于声发射小波分析的非连续增强金属复合材料表面表征[J].科学通报,1998,43(6):656-657.
    [118]金亮,杨庆新,刘素贞等.基于小波和凯瑟效应的电磁声发射信号特性分析[J].电工技术学报,1998,28(8):656-657.
    [119]李录平,邹新元,唐月清.小波变换在声发射信号特征参数检测中的应用[J].振动与冲击,2001,20(2):67-69.
    [120]田增国,陈翠梅.基于小波分析的声发射信号处理[J].工业安全与环保,2002,28(8):26-27.
    [121]姜长泓,王龙山,尤文等.基于平移不变小波的声发射信号去噪研究[J].仪器仪表学报,2006,27(6):607-610.
    [122]郭艳平,解武波,郑小平.基于小波的声发射信号特征分析[J].兰州交通大学学报,2008,27(3):123-125.
    [123]金鑫,施展.基于小波的声发射信号参数提取方法.仪器仪表学报,2006,27(6):347-348.
    [124]周静,毛汉领,黄振峰.基于DSP的小波分析及声发射信号的特征提取[J].水利发电,2008,34(3):73-75.
    [125]张运强,牛卫飞,谭蔚.基于小波变换的声发射模拟信号特性分析[J].无损检测,2008,30(1):9-11.
    [126] Subba R S V, Subramanyam B. Analysis of acoustic emission signals using wavelet transformationtechnique[J].Defence science Journal,2008,58(4):559-564.
    [127]刘丛兵.基于小波分析的声发射信号降噪处理方法[J].机电工程技术,2010,39(7):82-84.
    [128]龚仁荣,顾建祖,骆英等.Gabor小波时频分析在声发射信号处理中的应用[J].中国测试技术,2006,32(1):76-79.
    [129]王成江,舒乃秋.放电声发射波的小波提存与消噪[J].高压电器,2003,39(6):8-10.
    [130]王成江,聂德鑫.放电声发射波检测中小波基的选择[J].高电压技术,2003,29(10):39-42.
    [131] Aloys O A, Hajime M, Futoshi A,et al. Wavelet analysis of partial discharge acoustic signals in amodel transformer[J]. The Japan Society of Applied Physics,2003(42):5347-5352.
    [132] Marvin A H. Electronic noise effects on fundamental lamb-mode acoustic emission signal arrivaltimes determined using wavelet transform results[C].26th European Conference on AcousticEmission Testing, Berlin, German,2004:613-621.
    [133]王更峰.基于小波分析的岩石声发射信号处理技术[J].矿业工程,2006,4(5):11-13.
    [134]吴小俊,王怀建.小波去噪在焊缝裂纹声发射信号处理中的应用[J].金属锻造焊技术,2011(6):176-179.
    [135]黄振峰,郝宇宁,毛汉领等.小波分析和相平面在声发射信号处理中的应用[J].声学技术,2007,26(3):506-509.
    [136]焦敬品,吴斌,何存富等.基于小波模态声发射和小波变换的薄板导波传播特性的实验研究[J].中国机械工程,2004,15(13):1179-1182.
    [137]李江全,焦敬品,何存富等.小波变换和模态声发射的管道中导波传播特性的实验研究[J].管道技术与设备,2005(4):14-16.
    [138] Antolino G, Jose F G, Juan M V, et al. Coating adherence in galvanized steel assessed by acousticemission wavelet analysis[J]. Scripta materialia,2005(52):1069-1074.
    [139] Antolino G, Jose F G, Enrique C, et al. Identification of coating damage processes in corrodedgalvanized steel by acoustic emission wavelet analysis[J]. Surface&Coatings Technology,2007(201):4743-4756.
    [140] Hamstad M A, Gallagher A O, Gary J. A wavelet transform applied to acoustic emission signals:part2: source location[J]. Journal of Acoustic Emission,2002(20):39-61.
    [141]肖思文,廖传军,李学军.小波尺度谱在AE信号特征提取中的应用[J].中国工程科学,2008,10(11):69-75.
    [142] He Y Y, Yin X Y, Chu F L. Modal analysis of rubbing acoustic emission for rotor-bearing systembased on reassigned wavelet scalogram[J]. Journal of vibration and acoustic,2008(130):1-8.
    [143]廖传军,李学军,刘德顺.小波再分配尺度谱在声发射信号特征提取中的应用[J].机械工程学报,2009,45(2):273-279.
    [144]陈长征,赵新光,周勃等.风电机组叶片裂纹故障特征提取方法[J].中国电机工程学报,2013,33(2):112-117.
    [145]吴占稳,王少梅,沈功田.基于小波能谱系数的声发射源特征提取方法研究[J].武汉理工大学学报,2008,32(1):85-87.
    [146]康玉梅,朱万成,陈耕野等.基于小波变换的岩石声发射信号相关分析及时延估计[J].岩土力学,2011,32(7):2079-2084.
    [147]李伟,方江涛,戴光.基于独立分量分析和小波变换的低碳钢点蚀声发射信号特征提取[J].化工机械,2007,34(2):74-77.
    [148]戴光,余永增,张颖等.基于小波和EMD的滚动轴承非接触声发射诊断方法[J].化工机械,2009,36(4):326-330.
    [149]于金涛,赵树延,王祁.基于经验模态分解和小波变换声发射信号去噪声[J].哈尔滨工业大学学报,2011,43(10):88-92.
    [150]邓艾东,赵力,包永强等.噪声环境下基于小波熵的声发射识别[J].东南大学学报,2009,39(6):1151-1155.
    [151] Rosa P, Enrique C, Antolino G. Wavelet power, entropy and bispectrum applied to AE signals fordamage identification and evaluation of corroded galvanized steel[J]. Mechanical systems andsignal processing,2009(23):432-445.
    [152] Maradei C, Piotrkowski R, Serrano E, et al. Acoustic emission signal analysis in machiningprocesses using wavelet packets[EB/OL].http://www.scielo.org.ar/scielo.php?pid=S0327-07932003000400012&script=sci
    [153]理华,徐春广,肖定国等.小波包原理在滚动轴承声发射检测技术中的应用[J].机械,2002,29(4):11-13.
    [154]褚福磊,王庆禹,卢文秀.用声发射技术与小波包分解确定转子系统的碰摩位置[J].机械工程学报,2002,38(3):139-143.
    [155]王潜龙,冯全科,屈展等.基于声发射与小波包理论的压力管道泄漏检测[J].西安交通大学学报,2003,37(5):515-518.
    [156]喻俊馨,王计生,黄惟公等.小波包分析在刀具声发射信号特征提取中的应用[J].数据采集与处理,2005,20(3):346-350.
    [157]谢秀娴,付攀,曹伟青.声发射和小波包分解技术在刀具磨损状态中的应用[J].中国测试技术,2006,32(2):40-42.
    [158]王建新,耿荣生,胡晓光等.小波包-AR谱在钛合金材料声发射检测技术中的应用[J].无损检测,2007,29(9):512-518.
    [159]毛汉领,王向红,黄振峰.基于小波包分析的声发射信号界面的衰减研究[J].振动与冲击,2008,27(9):139-141.
    [160]廖传军,罗晓莉,李学军.小波包在声发射信号特征特征提取中的应用[J].电子测量与仪器学报,2008,22(4):79-85.
    [161]赵东,朱红娟.基于小波包分析木材声发射信号消噪处理[J].微计算机信息,2009,25(1-3):302-303.
    [162]陈春朝.基于小波包分析的滚动轴承声发射信号消噪处理[J].中国现代教育装备,2010(107):114-117.
    [163]赵元喜,胥永刚,高立新等.基于谐波小波包和BP神经网络的滚动轴承声发射故障模式识别技术[J].振动与冲击,2010,29(10):162-165.
    [164] Van D G, Van H M M. Genetic algorithm for informative basis function selection from the waveletpacket decomposition with application to corrosion identification using acoustic emission[J].Chemometrics and Intelligent Laboratory Systems,2011(107):318-332.
    [165] Yu J T, Ding M L, Meng F G, et al. Acoustic emission source identification based on harmonicwavelet packet and support vector machine[J]. Journal of Southeast University,2011,27(3):300-304.
    [166] Zsolt J V. A general ANN model of turning and its application for surface roughness estimationusing acoustic emission signal[C]. Mosycut-model-based Monitoring Systems for Cutting Toolsand Processes. Mosycut, Workshop-Ljubljana,1999, pp65-72.
    [167]李波,郭力.基于BP神经网络的表面粗糙度声发射检测[J].精密制造与自动化,2009(1):10-14.
    [168]胡仲翔,滕家绪,钱耀川等.用声发射信号和改进的BP神经网络预测磨削表面粗糙度[J].装甲兵工程学院学报,2009,23(6):76-79.
    [169]戴光,李伟,张颖等.基于人工神经网络方法识别声发射信号的有效性[J].大庆石油学院学报,2001,25(1):63-66.
    [170]侯素霞,罗积军,徐军.神经网络在声发射信号模式识别中的应用[J].应用声学,2003,24(4):44-47.
    [171]李家林,董云朝,马羽宽.声发射源特性的神经网络模式识别研究[J].无损检测,2001,23(6):231-233.
    [172]刘国光,程青蟾,李燮里.声发射神经网络模式识别[J].仪器仪表学报,2003,24(4):406-408.
    [173]刘国光,程青蟾,李燮里等.声发射模糊神经网络[J].仪器仪表学报,2004,25(4):549-550.
    [174]赵鹏喜.基于概率神经网络在声发射信号处理中的应用[J].三门峡职业技术学院学报,2009,8(2):90-93.
    [175] Seung H S, Jung S K, Seop H, et al. Development of a Diagnostic algorithm with acoustic emissionsensors and neural networks for check valves[J]. Journal of the Korean Nuclear Society,2004,36(6):540-548.
    [176]李怀珍,袁瑞甫.基于神经网络的声发射定位技术及在岩石破裂试验中的应用[J].矿业工程,2005,3(5):3-5.
    [177]孙建平,王逢瑚,胡英成.基于声发射和神经网络的木材受力过程检测[J].仪器仪表学报,Vol.32,2011,32(2):342-347.
    [178] Rajendraboopathy S, Sasikumar T, Usha K M, et al. Artificial neural network a tool for predictingfailure strength of composite tensile coupons using acoustic emission technique[J].Int J Adv ManufTechnol,2009(44):399-404.
    [179] Chukwujekwu O A, Navdeep S, Navrag S. Acoustic emission detection and prediction of fatiguecrack propagation in composite patch repairs using neural networks[J]. Review of QuantitativeNondestructive Evaluation,2007(26):1532-1539.
    [180] Romeu R D S, Rio D J, Brazil S D S. Detection of the propagation of defects in pressurized pipesthrough the acoustic emission technique using artificial neural networks[C]. ECNDT Proceedings,Berlin, Germany.2006, pp1-17.
    [181] Tomasz B, Sebastian B, Andrzej C, et al. Recognizing partial discharge forms measured by theacoustic emission method using the spectrum power density as a parameter of the artificial neuronnetwork[J]. Molecular and Quantum Acoustics,2005(26):35-44.
    [182] Zahari T, Khusnun W. Artificial neural network for bearing defect detection based on acousticemission[J]. International Journal of Advanced Manufacturing Technology,2010(50):289-296.
    [183] Li H, Zhang Y P, Zheng H Q. Gear fault detection and diagnosis under speed-up condition based onorder cepstrum and radial basis function neural network[J]. Journal of Mechanical Science andTechnology.2009(23):2780-2789.
    [184]林峰,焦慧锋,傅建中.基于贝叶斯网络的平面磨削状态只能监测技术研究[J].中国机械工程,2011,22(11):1268-1273.
    [185]喻俊馨,王计生,刘正华.应用声发射和神经网络检测数控机床刀具故障诊断[J].机床与液压,2012,40(1):165-168.
    [186]于江林,余永增,戴光.滚动轴承声发射信号的人工神经网络模式识别技术[J].大庆石油学院学报,2008,32(5):64-66.
    [187]李冬生,黄新民,欧进萍.改进的神经网络技术在声发射定位中的应用[J].无损检测,2006,28(6):288-291.
    [188]黄新民.神经网络技术在声发射定位中的应用[J].邵阳学院学报,2007,4(2):26-29.
    [189]陈玉华,刘时风,耿荣生等.声发射信号的谱分析和相关分析[J].无损检测,2002,24(9):395-399.
    [190]李光海,刘正义.声发射源多传感器数据融合识别技术[J].仪器仪表与传感器,2002,10(5):345-349.
    [191] Ekard G,Kurt F. Sensitive online PD-Measurements of onsite pil/paper-Insulated devices by meansof optimized acoustic emission techniques[J]. Transactions on Power Delivery,2005,20(1):158-162.
    [192] Phil C, Scott M. Use of advanced AE analysis for source discrimination using capturedwaveforms[J]. Advanced Materials Research,2006(13-14):401-406.
    [193]祖烨,郭文武.岩石声发射信号AR模型谱分析[J].人民长江,2006,37(11):115-116.
    [194]赵霞,袁慎芳,周恒保等.基于声发射技术的损伤诊断Agent研究[J].中国机械工程,2008,19(14):1697-1702.
    [195] Prasanta K, Kishore N K, Sinha A K. Frequency domain analysis of acoustic emission signals forclassification of partial discharges[C].2007Annual Report Conference on Electrical Insulation andDielectric Phenomena. Vancouver, BC, Canada, Institute of Electrical and Electronics EengineersInc2007:146-149.
    [196]李崇晟,沈玉娣,李风英.相位信息在声发射信号处理中的应用[J].无损检测,2007,29(1):51-54.
    [197]林丽,赵德有.近似熵在声发射信号处理中的应用[J].振动与冲击,2008,27(2):99-102.
    [198]林丽,赵德有.局域波神经网络海洋平台AE信号识别研究[J].哈尔滨工程大学学报,2008,29(7):663-666.
    [199]王晓伟,刘占生,窦唯.基于AR模型的声发射信号到达时间自动识别[J].振动与冲击,2009,28(11):79-83.
    [200]李秀娟.基于功率谱因子的金属结构裂纹声发射信号分析[J].计量与测试技术,2011,38(3):46-48.
    [201]徐锋,刘云飞,宋军.基于中值滤波SVD和EMD的声发射信号特征提取[J].仪器仪表学报,2011,32(12):2712-2719.
    [202]徐锋,刘云飞.基于中值滤波-奇异值分解的胶合板拉伸声发射信号降噪方法研究[J].振动与冲击,2011,30(12):135-140.
    [203]徐峰,刘云飞.基于EMD的胶合板损伤声发射信号特征提取及神经网络模式识别[J].振动与冲击,2012,31(15):30-35.
    [204] Achmad W,Eric Y K,Son J D, et al. Fault diagnosis of low speed bearing based on relevancevector machine and support vector machine[J]. Expert Systems with Applications.2009(36):7252-7261.
    [205] Chiementin X, Mba D, Charnley B, et al. Effect of the denoising on acoustic emissionsignals[J].Journal of Vibration and Acoustics,2010(132):1-9.
    [206]邓艾东,包永强,赵力.转子碰摩声发射源定位中的广义互相关时延估计研究[J].中国电机工程学报,2009,29(14):86-92.
    [207]邓艾东,高亹,杨建刚等.离散分数余弦变换在碰摩声发射信号降噪中的应用[J].中国电机工程学报.2008,28(20):72-76.
    [208]邓艾东,包永强,赵力.基于高斯混合模型的转子碰摩声发射识别方法[J].机械工程学报,2010,46(15):52-58.
    [209]邓艾东,包永强,赵力.基于能量衰减模型的转子碰摩声发射源次梯度投影定位算法[J].机械工程学报,2010,46(9):67-72.
    [210] Lubomir R, Radislav S. Acceleration of acoustic emission signal processing algorithms usingCUDA standard[J].Computer Standards&Interfaces,2011(33): pp389-400.
    [211] Runar U, Thomas P R, Magnus T J.AE entropy for the condition monitoring of CFRP subjected tocyclic fatigue[J].Journal of Acoustic Emission,2008(26):262-269.
    [212] Tomasz. Application of the short time fourier transform in evaluation of the acoustic emissionsignals generated by partial discharges[J]. Molecular and Quantum acoustics,2004(25):45-66.
    [213]廖传军,李学军,刘德顺.STFT在AE信号特征提取中的应用[J].仪器仪表学报,2008,29(9):1862-1867.
    [214] Gonzalez D L R JJ, Puntonet G G, Lloret I. An application of the independent component analysisto monitor acoustic emission signals generated by termite activity in wood[J]. Measurement,2005(37): pp63-76.
    [215]李伟,戴光,李宝玉.基于独立分量分析的金属腐蚀声发射信号处理[J].化工机械,2005,32(4):207-217.
    [216]李伟,蒋鹏.基于独立分量分析的声发射信号分离方法[J].压力容器,2005,25(5):10-13.
    [217]顾江,张光新,刘国华等.基于独立分量分析的声发射信号去噪方法[J].江南大学学报,2008,7(1):55-59.
    [218]李卿,邵华,陈群涛等.基于独立分量分析的切削声发射源信号分离[J].工具技术,2011,45(6):35-39.
    [219]孟涛,何仁洋.HHT在声发射信号模态分析中的应用[J].无损检测,2008,30(1):17-20.
    [220]孙立瑛,李一博,靳世久等.基于小波包和HHT变换的声发射信号分析方法[J].仪器仪表学报,2008,29(8):1577-1582.
    [221]王艳茹,蒋鹏,岳文彤.基于Hibert-Huang变换的玻璃纤维自增强塑料声发射信号分析[J].化工机械,2009,36(5):498-501.
    [222]阳能军,王新刚,王蒙.HHT在复合材料损伤声发射信号处理中的应用[J].电子测量技术,2011,34(8):45-47.
    [223]谷小红,侯迪波,周泽魁.声发射与EMD结合的埋地管道泄漏定位检测[J].浙江大学学报,2006,40(7):1105-1108.
    [224]姚晓山,张永祥,明延涛.基于经验模态分解的齿轮裂纹声发射检测[J].无损检测,2009,31(6):464-466.
    [225] Iturrospe A, Domfeld D, Atxa V, et al. Bicepstrum based blind identification of the acousticemission[J]. Mechanical Systems and Signal Processing,2006(19):447-466.
    [226]徐洪安,王民,徐小力等.基于声发射的双谱分析在金刚笔状态特征提取中的应用[J].中国机械工程,2005,16(7):578-581.
    [227]郝如江,卢文秀,褚福磊.形态滤波在滚动轴承故障声发射信号处理中的应用[J].清华大学学报,2008,48(5):812-815.
    [228]张志立,李自品,李洪涛等.基于形态滤波的绝缘子污秽放电声发射信号降噪[J].武汉大学学报,2011,44(5):654-658.
    [229] Scruby C B, Stacey K A, Baldwin G R. Defect characterization in three dimensions by acousticemission[J]. Journal of Physics D: Applied Physics,1986(19):1597-1612.
    [230] Ge M C. Analysis of source location algorithms part1: overview and non-inerative mehods[J].Journal of Acoustic Emission,2003(21):14-28.
    [231]岳亚霖,徐秉汉,冷建兴.声发射信号的广义线性定位法[J].船舶力学,2002,6(5):70-79.
    [232]龚斌,包日东,金志浩等.压力管道泄漏点的新型声发射定位研究[J].化工机械,2005,32(5):291-293.
    [233]龚斌,齐辉,马春华等.一种声发射源的新型平面定位方法研究[J].声学技术,2006,25(2):107-109.
    [234] Jonathan J S, Paul D W, Michael R W. A generic technique for acoustic emission source location[J].Journal of Acoustic Emission,2009(27):291-298.
    [235]程慧高.基于三分量P-S波形的岩体声发射源定位算法[J].工业安全与保护,2008,34(7):38-40.
    [236] Getting C, Roecken C, Spetzler H. Improved acoustic emission locations[J]. Journal ofNondestructive Evaluation,1986,5(3-4):133-143.
    [237]姚力,赖德明.声发射源定位不准确度的计算[J].无损检测,2002,24(11):461-463.
    [238]龚斌,金志浩,齐辉等.无需测量声速的声发射源定位方法研究[J].仪器仪表学报,2007,28(1):185-188.
    [239] Milan C. Expert AE signal arrival detection[C]. IVth NDT in Progress.Prague, Czech Republic,Brno University of Technology,2007:81-88.
    [240] Hamstad M A, Gallagher A O, Gary J. A wavelet transform applied to acoustic emission signals:part1: source location[J]. Journal of Acoustic Emission,2002(20):39-61.
    [241] Hamstad M A, Gallagher A O, Gary J. A wavelet transform applied to acoustic emission signals:part2: source location[J]. Journal of Acoustic Emission,2002(20):62-81.
    [242] Hamstad M A, Downs K S, Gallagher A O. Parctical aspects of acoustic emission source locationby a wavelet transform[J]. Journal of Acoustic Emission,2003(21):70-94.
    [243]李光海,刘时风.基于小波分析的声发射源定位技术[J].机械工程学报,2004,40(7):136-140.
    [244] Kurokawa Y, Yoshihiro M, Masami M. Real-time executing source location system applicable toanisotropic thin structures[J]. Journal of Acoustic Emission,2005(23):224-231.
    [245] Kurokawa Y, Yoshihiro M, Masami M. Frequency filtering algorithms of plate wave AE for sourcelocation[J]. Journal of Acoustic Emission,2006(24):145-151.
    [246] Jiao J P, He C F, Wu B, et al. A new acoustic emission source location technique based ontransform mode analysis[J].Frontiers of Mechanical Engineering,2006(3):341-345.
    [247] Hamstad M A. Comparison of wavelet transform and choi-williams distribution to determine groupvelocities for different acoustic emission sensors[J]. Journal of Acoustic Emission,2008(26):40-59.
    [248] Refahi O A, Ahmadi M. Using wavelet transform to locate acoustic emission source in compositeplate with one sensor[C].7th European conference on noise control2008. France, Paris: S.HizelVerlag Gmbh,2008:2211-2215.
    [249]刘国清.基于小波变换的岩体声发射源定位研究[J].矿业研究与开发,2011,31(4):75-77.
    [250] Blaacek M, Chlada M, Prevorovsky. Acoustic emission source location based on signal features[J].Advanced Materials Research,2006(13-14):77-82.
    [251]毛汉颖,毛汉领,周洁.基于BP神经网络的混流式水轮机裂纹声发射源定位方法[J].无损检测,2008,30(7):426-429.
    [252]王向红,朱昌明,毛汉领等.基于小波神经网络的水轮机叶片裂纹源的定位技术[J].上海交通大学学报,2008,42(8):1301-1304.
    [253] Vassilios K, Evangelos D. Neural localization of acoustic emission sources in ship hulls[J]. Journalof Marine Science Technol,2009(14):248-255.
    [254]苏永振,袁慎芳,张炳良.基于声发射和神经网络的复合材料冲击定位[J].传感器与微系统,2009,28(9):56-61.
    [255]王秀彦,郭文鑫,吴斌等.线性神经网络及模态声发射在时差定位中的应用[J].声学技术,2010,29(6):569-572.
    [256]Caprino G, Lopresto V, Leone C, et al. Acoustic emission source location in unidirectionalcarbon-fiber-reinforced plastic plates with virtually trained artificial neural networks[J]. Journal ofApplied Polymer Science,2011(122):3506-3513.
    [257] By A K M, Member A, Satpathi D, et al. Acoustic emission source location using lamb wavemodes[J].Journal of Engineering Mechanics,1997(154):154-161.
    [258] Toyama N, Okabe T. Lamb wave evaluation and localization of transverse cracks in cross-olylaminates[J]. Journal of Materials Science,2003(38):1765-1771.
    [259] Hamstad M A, Gallagher A O. Effects of noise on lamb-mode acoustic emission arrival timesdetermined by wavelet transform[J]. Journal of Acoustic emission,2005(23):1-24.
    [260] Hamstad M A. Acoustic emission source location in a thick steel plate by lamb modes[J]. Journal ofAcoustic Emission,2007(25):194-214.
    [261] Petr S, Yuichiro H, Manabu e, et al. Arrival time detection in thin multilayer plates on the basis ofAkaike information criterion[J]. Journal of Acoustic Emission,2008(26):182-188.
    [262] Phys P, Matthew B, Mark E. Novel acoustic emission source location[J]. Journal of AcousticEmission,2007(25):215-223.
    [263] Matthew Geoffrey Baxter, Rhys Pullin, Karen M, etal.Delta T source location for acousticemission[J].Mechanical systems and signal processing,2007(21):1512-1520.
    [264] Gregory C M, Steven D G, Christian U G. Integrating broad-band high fidelity acoustic emissionsensors and array processing to study drying shrinkage cracking in concrete[C].Sensor and SmartStructures Technologies for Civil Mechanical and Agrospace Systems2007, USA, San Diego, TheInternational Society for Optical Engineering,2007:1-12.
    [265] Li J H, Qi G. A variable velocity approach to locate fatigue induced microcracks occurred instructures with multiple material layers[J]. Journal of Acoustic Emission,2006(24):1-11.
    [266] Li J H, Qi G. Improving source location accuracy of acoustic emission in complicated structures[J].Journal of Nondestruct Evaluation,2009(28):1-8.
    [267] Grosse G U. Acoustic emission localization methods for large structures based on beamformingandarray techniques[EB/OL].[2009-07-3]. http://www.ndt.net/article/ndtce2009/papers/18.pdf.
    [268] Gregory C M, Steven D G, Grosse C U. Beamforming array techniques for acoustic emissionmonitoring of large concrete structures[J]. Journal of Sound Vibration,2010(329):2384-2394.
    [269]何田,刘耀光,陈亚农等.基于声发射波束形成法的转静子碰摩故障定位[J].航空动力学报,2011,26(10):2207-2213.
    [270] Erik H S, Eth Z, Spectraseis, et al, Time reverse characterization of sources in2D and3Dheterogeneous Media[C]. SEG Denver2010Annual meeting, Denver. The Mile High City Socityof Exploration Geophysicists,2010:2049-2053.
    [271] Francesco C, Michele M. Acoustic emission source localization in anisotropic structures withdiffuse field conditions using a time reversal approach[J].Proc. of SPIE,2011(7984): pp1-7.
    [272]赵美云,李力,李秀娟.基于相关分析的金属板声发射源定位方法研究[J].三峡大学学报,2009,31(5):60-63.
    [273]康玉梅,刘建坡,李海滨等.一类基于最小二乘法的声发射源组合定位算法[J].东北大学学报,2010,31(11):1648-1651.
    [274]郝永梅,刑志祥,邵辉等.压力管道泄漏声发射源定位的实验研究[J].中国安全生产科学技术,2011,7(6):140-144.
    [275]庞宝君,张凯,刘武刚等.加筋板中超高速撞击声发射源定位方法[J].航天器环境工程,2011,28(5):409-413.
    [276]高倩霞,李录平,饶洪德.阀门泄漏率的声发射测定技术研究[J].动力工程学报,2012,32(1):42-46.
    [277]匡震邦,顾海澄,李中华.材料的力学行为[M].北京:高等教育出版社,1998.
    [278]杨明纬.声发射检测[M].北京:机械工业出版社,2005.
    [279]王保成.材料腐蚀与防护[M].北京:北京大学出版社,2012.
    [280]黄永昌,张建旗.现代材料腐蚀与保护[M].上海:上海交通大学出版社,2012.
    [281]刘敬福.材料腐蚀及控制工程[M].北京:北京大学出版社,2010.
    [282]谭巍.原油储罐地板腐蚀原因分析及控制措施[J].青海石油,2006,24(2):56-59.
    [283]周晓芬.塔里木盆地北部油田水特征离子及意义[J].石油与天然气,2000,21(4):272-274.
    [284] Knopoff L. Surface Motions of a Thick Plate[J]. Journal of Applied Physics,1958(29):661-670.
    [285]向帮龙,管蓉,杨世芳.微孔发泡机理研究进展[J].高分子通报,2005,6:7-15.
    [286] Xu J, Wu X Q, Han E H. Acoustic emission during the electrochemical corrosion of304stainlesssteel in H2SO4solutions[J]. Corrosion Science,2011(53):448–457.
    [287]陈凤,宋耀祖,陈民.电场作用下气泡受力分析[J].工程热物理学报,2005(26):146-148.
    [288] Tien T M, Lee C H, Huang C J. Study of bubble size distribution for breaking wave propagates overa submerged dike[J]. Piers Online,2007,3(4):pp448-451.
    [289]那顺桑,李杰,艾立群.金属材料力学性能[M].北京:冶金工业出版社,2011.
    [290]陈容,黄宁.一种理论应力集中系数的有效算法研究[J].工程设计学报,2010,17(3):215-218.
    [291]张志呈.岩体破裂裂纹扩展速度实验研究[J].爆破器材,2000,29(3):1-8.
    [292]张振亚,段忠,周凤华.脆性裂纹动态传播中的速度振荡现象和理论分析[J].力学学报,2013,45(5):729-737.
    [293]郑君里,应启珩,杨为理.信号与系统[M].北京:高等教育出版社.
    [294]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.
    [295]赵淑红,朱光明.S变换时频滤波去噪方法[J].石油地球物理勘探,2007,42(4):402-406.
    [296] Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S transform[J].IEEE Transactions on Signal Processing,1996,44(4):998-1001.
    [297] Majeed M A, MURTHY C R L. A model with nonzero rise time for AE signals[J], Sa dhana,2001,26(5):465–474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700