用户名: 密码: 验证码:
松软煤层井下水力压裂致裂机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气开发对于煤矿安全、资源回收、环境保护等方面具有重要意义。我国煤层气资源量大,但煤层渗透率普遍较低。低渗透率是煤层气规模化开发的主要瓶颈,因此煤层有效增透是煤层气开发亟待解决的问题。实践表明,采用水力压裂对中硬及硬煤层进行增透改造具有明显效果,但对于易发生塑性变形的松软煤层,其水力压裂裂纹起裂和扩展规律具有特殊性,尚缺乏理论支撑和实践经验。论文依托国家科技重大专项课题“低透气性煤层煤层气增产技术与装备”,综合采用实验室试验、理论分析、数值模拟、现场试验等手段,针对松软煤层水力压裂致裂机理及应用开展了以下研究:
     (1)基于实验室试验开展了松软煤体在不同含水率条件下的物理力学特性及破裂特征研究,获得了松软煤体的变形破裂机制,为建立松软煤层水力压裂模型奠定基础。
     (2)基于弹塑性力学与断裂力学理论,从变形、发生与扩展的角度将松软煤层水力压裂划分为煤层压密、裂纹起裂与裂纹扩展三个阶段,构建了松软煤层韧性起裂扩展的数学计算模型,初步获得松软煤层水力压裂裂缝起裂及扩展规律。
     (3)基于颗粒流离散元数值模拟方法研究了松软煤层水力压裂裂缝扩展规律,获得了松软煤层煤体物理力学参数对压裂半径、裂纹最大开度、裂纹数量等压裂效果表征参量的量化影响效应。
     (4)开展了松软煤层水力压裂工艺参数影响效应数值模拟研究,获得了流量、压力、时间等压裂工艺参数对松软煤层压裂半径、裂纹最大开度等的量化影响效应,为现场水力压裂工艺技术优化奠定基础。
     (5)在松藻矿区渝阳煤矿开展了现场试验及验证,检验了松软煤层水力压裂增透效果,验证了水力压裂数学模型及数值模拟研究对松软煤层现场压裂的适应性和合理性。
Coalbed methane development is of great significance to security, resources, environment, economy and other benefits. Although quantity of coalbed methane resources is large in our country, coal seam permeability is generally low. Low permeability characteristic is the main bottleneck of the coalbed methane development, and coal seam increasing permeability effectively is a key problem urgently to be solved in coalbed methane development. There are great advantages to increase permeability to medium hard and hard coal seams by hydraulic fracturing, but as to soft coal seams, whose elastic modulus, compressive strength and tensile strength is relatively low, and Poisson's ratio and pore compressibility is relatively high, hydraulic fracturing starting cracking and expanding laws have particularity, and the support of theory and practice is still lacking. Depending on the national science and technology major subject "technology and equipment to increase production for low permeability coal seam coal bed methane", and using methods synthetically of laboratory test, theoretical analysis, numerical experiment and field test, the thesis carried out the following research of hydraulic fracturing mechanism and application aiming at soft and low permeability coal seams.
     (1) Based on the physical and mechanical properties, and fracture characteristics test under the condition of different moisture of soft coal seams, crack propagation damage characteristics was studied, and soft coal seam's deformation and fracture mechanism was put forward, which laid the foundation for building hydraulic fracturing model of soft coal seams.
     (2) Based on the elastic-plastic mechanics and fracture mechanics theory, and from the points of deformation, occurrence and extension, the hydraulic fracturing process of soft and low permeability coal seams was divided into three stages:coal seam compression, crack fracturing and crack extension, and mathematics calculation model of toughness fracturing of soft coal seams was established, and the fracturing law and main controlling factors were obtained.
     (3) Based on the numerical method of particle flow, crack extension law of soft coal seam hydraulic fracturing was studied, and quantized influence effect of coal mechanical parameters to radius, opening degree and number of fractures during the process of soft coal seam hydraulic fracturing was revealed.
     (4) The numerical experimentation study of hydraulic fracturing parameter effect of soft and low permeability coal seams was carried out, by which quantized influence law of pump injection flow rate, injection pressure, injection time and so on to starting fracturing pressure, fracture radius, fracture opening degree, number of fractures was obtained; and which provided a basis for technology optimization of field hydraulic fracturing.
     (5) At Songzao mining area Yuyang coal mine, field test and validation research were carried out, by which increasing permeability effect of soft and low permeability coal seams hydraulic fracturing was inspected; and the adaptation of numerical experimentation for studying soft coal seams hydraulic fracturing was verified; and the adaptation and guidance of hydraulic fracturing mathematical model to the technology of field fracturing was confirmed.
引文
[1]国家发展和改革委员会,国家能源局.煤层气(煤矿瓦斯)开发利用“十二五”规划[R].2012:1-5
    [2]申宝宏,刘见中,赵路正.煤矿区煤层气产业化发展现状与前景[J].煤炭科学技术,2011,39(1):6-10
    [3]胡千庭.我国煤矿区煤层气开发潜力与开发模式探讨[J].中国煤层气,2004,1(1):29-25
    [4]孙守山,宁宇,葛钧.波兰煤矿坚硬顶板定向水力压裂技术[J].煤炭科学技术,1999,27(2):51-52
    [5]闫少宏,宁宇,康立军,等.用水力压裂处理坚硬顶板的机理及实验研究[J].煤炭学报,2000,25(1):32-35
    [6]欧阳振华,齐庆新,张寅,等.水压致裂预防冲击地压的机理与试验[J].煤炭学报,2011,36(增2):321-325
    [7]王桂梁,姜波,余志伟.滑覆剪切作用形成的剑鞘褶皱[J].科学通报,1994,39(11):1015-1018
    [8]Ammosov I I, Eremin I V. Fracturing in coal [M]. Moscow:IZDAT Publishers,1963
    [9]Macrae J C, Lawson W. The incidence of cleat fracture in some yorkshire coal seams [J]. London:Transactions of the Leeds Geological Association,1954(6):224-227
    [10]Van Krevelen D W. Coal [M]. Amsterdam:Elsevier Scientific Publishing Company,1981
    [11]Stach E, Mackowsky M-TH, Teichu mller M, et al. Stach's textbook of coal petrology [M]. Berlin:Gebruder Borrntraege,1981.
    [12]Gash B W, Volz R F, Potler G, et al. The effect of cleat orientation and confining pressure on cleat porosity, permeability and relative permeability in coal[A]. Proceedings of the 1993 International Coalbed Methane Symposium,1993:247-256
    [13]Tyler R, Laubach S E, Ambrose W A, et al. Coal fracturing patterns in the foreland of the Cordilleran thrust belt, west US [A]. In:Proceedings of the 1993 International Coalbed Methane Symposium,1993:695-704
    [14]Close J C. Natural fractures in coal. In:Law B E& Rice D D (eds). Hydrocarbon From Coal[J]. Am. Assoc. Petrol. Geol. Stud. Geol.,1993 (38):119-132
    [15]Law B E. The relationship between coal rank and cleat spacing:Implication for the prediction of permeability in coal [A]. In:Proceedings of the 1993 International Coalbed Methane Symposium, Birmingham, Alabama,1993:435-442
    [16]苏现波,谢洪波,华四良.煤体脆-韧性变形识别标志[J].煤田地质与勘探,2003,31(6):18-21
    [17]Dougill J W, Lau J C, Burt N J. Mechanics in Eng. [J]. AS CE. EMD.,1976:333-355
    [18]Dragon A, Mroz Z A. Continuum model for Plastic-brittle behavior of rock and concrete [J]. Int.J.Engng Sci.,1979(17):121-137
    [19]Krajcinovic D. Continuum damage mechanics [J]. Applied Mechanics Reviews,1984. 37(1):1-6
    [20]Lemaitre J. How to use damage mechanics [M]. Nuclear Eng ineering and Design,1984: 233-245
    [21]Chaboche J L, Continuum Damage Mechanics:Part I-General Concepts [J]. Journal of Applied Mechanics,1988(55):59-64
    [22]Obrt L. Use of Subaudible for Predition of Rockburts [D]. U. S. Bureau of MineReport Investigation,1941
    [23]Hodgson E. A. Experiment analysis of fracture patterns [M].Geological Society of America Bulletin.1942
    [24]K. Mogi. Study of the elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena [J]. Bull. Earthquake Res. Inst,1962(40),125-173
    [25]GAWUGA J..Flow of gas through stressed carboniferous strata [D]. Univ. of Nottingham, U.K.,1979
    [26]MASAHIRO S, HIDEKAZU S, MASARU S, et al. Hypocenter distributions of AE in coal under uniaxial compression[J]. Journal of the Mining and Metallurgical Institute of Japan, 1988,104(1201):163-168
    [27]Thomas Gentzis, Nathan Deisman, Richard J. Chalaturnyk, Geomechanical properties and permeability of coals from the Foothills and Mountain regions of western Canada[J]. International Journal of Coal Geology,2007(69):153-164
    [28]Shkuratnik V L, Filimonov Y L, Kuchurin S V, Experimental investigations into acoustic emission in coal samples under uniaxial loading[J]. Journal of Mining Science,2004, 40(5):458-464
    [29]Shkuratnik V L, Filimonov Y L, Kuchurin S V. Regularities of acoustic emission in coal samples under triaxial compression [J]. Journal of Mining Science,2005,41(1):44-52
    [30]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990.
    [31]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报2002,21(6): 787-791
    [32]曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报1998,17(6):628-633.
    [33]李新平,朱雄申.多裂隙岩体的损伤断裂模型及模型试验[J].岩土力学1991,12(2):5-14
    [34]任建喜,葛修润,杨更社.单轴压缩岩石损伤扩展细观机理CT实时试验[J].岩土力学,2001,22(2);130-133
    [35]葛修润,任建喜,蒲毅彬,等.岩石疲劳损伤扩展规律CT细观分析初探[J].岩土工程学报,2001,23(2):191-195
    [36]何学秋,王恩元,聂百胜,等.煤岩流变电磁动力学[M].北京:科学出版社,2003
    [37]肖红飞,何学秋,王恩元.受压煤岩破裂过程电磁辐射与能量转化规律研究[J].岩土力学,2006,27(7):1097-1110.
    [38]王恩元,何学秋.煤岩变形破裂电磁辐射的试验研究[J].地球物理学报,2000,43(1):131-137
    [39]王恩元,何学秋,刘贞堂.煤岩破裂声发射试验研究及R/S统计分析[J].煤炭学报,1999,24(3):270-273.
    [40]申卫兵,张保平.不同煤阶煤岩力学参数测试[J].岩石力学与工程学报,2000,19(S):860-862
    [41]康卫勇,靳钟铭,魏锦平.中硬煤大煤样的压裂实验研究[J].太原理工大学学报,2001,32(1):5-7
    [42]聂百胜,何学秋,王恩元,等.煤体剪切破坏过程电磁辐射与声发射研究[J].中国矿业大学学报,2002,31(3):609-611
    [43]李振华,王林,李化敏.煤样的微细观裂纹损伤本构模型[J].西安科技学院学报,24(1):79-81
    [44]徐涛,杨天鸿,唐春安,等.孔隙压力作用下煤岩破裂及声发射特性的数值模拟[J].岩土力学,2004,25(10):1560-1564,1574
    [45]肖红飞,何学秋,冯涛,等.单轴压缩煤岩变形破裂电磁辐射与应力耦合规律的研究[J].岩石力学与工程学报,2004,23(23):3948-3953
    [46]苏承东,翟新献,李永明,李仕明,刘中云.煤样三轴压缩下变形和强度分析.岩石力学与工程学报,2006,25(1):2963-2968
    [47]杨永杰,宋杨,陈邵杰.三轴压缩煤岩强度及变形特征的试验研究[J].煤炭学报,2006,32(2):150-153
    [48]曹树刚,刘廷保,张立强.突出煤体变形破坏声发射特征的综合分析[J].岩石力学与工程学报,2007,26(1):2794-2798
    [49]刘保县,赵宝云,姜永东.单轴压缩煤岩变形损伤及声发射特性研究[J].地下空间与工程学报,2007,3(4):647-650
    [50]来兴平,吕兆海,张勇,等.不同加载模式下煤样损伤与变形声发射特征对比分析[J].岩石力学与工程学报,2008,27(2):3521-3527
    [51]宋晓艳,王恩元,刘贞堂,等.冲击倾向煤破坏断口微观特征及其机理研究[J].中国矿业大学学报,2008,37(6):775-779
    [52]肖红飞,彭斌.单轴压缩煤岩变形破裂电磁辐射围压效应研究[J].矿业工程研究,2009,24(1):48-51
    [53]姚精明,闫永业,税国洪,等.煤岩体破裂电磁辐射分形特征研究[J].岩石力学与工程学报,2010,29(2):4102-4106
    [54]孟磊,刘明举,王云刚.构造煤单轴压缩条件下电阻率变化规律的实验研究[J].煤炭学报,2010,35(12):2018-2032.
    [55]Khristianovitch, Yu P. Zheitov. Formation of Vertical Fracture by Means of Highly Viscous Fluid [J]. Proceeding of the 4th World Petroleum Cong,1995 (2):578-580
    [56]C. T. Barenblatt. Mathematical Theory of Equilibrium Cracks Advances in Applied Mechanics[J]. JPT,1962,10(2):127-133
    [57]B. R. Meyer, Meyer. Real-Time 3-D Hydraulic Fracturing Simulation:Theory and Field Case Studies[J]. SPE,1990,12(6):417-431
    [58]T. K. Perkins, L. R. Kern. Widths of Hydraulic Fracture[J]. JPT,1961(9):937
    [59]M. P. Cleary, K. Y. Lam. Development of a Fully Three Dimensional Simulator for Analysis and Design of Hydraulic Fracturing[J]. SPE,1983 (3):271-277
    [60]R. J. Clifton, A. S. Abou-Sayed. On the computation of the Three Dimensional Geometry of Hydraulic Fractures[J]. SPE,1979 (2):307-313
    [61]J. Geertsma, J. Deklerk. A Rapid Method of Predicting Width & Extent of Hydraulically Induced Fracture[J]. JPT,1962 (8):571-579
    [62]杜春志,茅献彪,卜万奎.水力压裂时煤层缝裂的扩展分析[J].采矿与安全工程学报,2008,25(2):231-235
    [63]徐刚,彭苏萍,邓绪彪.煤层气井水力压裂压力曲线分析模型及应用[J].中国矿业大学学报,2011,40(2):173-178
    [64]李同林.煤岩层水力压裂造缝机理分析[J].天然气工业,1997,17(4):53-56
    [65]李杭州,张恩强.煤体裂纹水力致裂的扩展机理[J].西安科技学院学报,2003,23(4):372-274
    [66]李全贵,翟成,林柏泉,等.定向水力压裂技术研究与应用[J].西安科技大学学报,2011,31(6):735-739
    [67]黄炳香,程庆迎,刘长友.裂隙水压力对煤岩体细观结构破坏分析[J].湖南科技大学学报,2009,24(1):1-4
    [68]王国鸿,徐赞.水力压裂技术提高低透气性煤层瓦斯抽放量浅析[J].煤矿安全,2010(8):120-124
    [69]倪冠华,林柏泉,翟成,等.脉动水力压裂的电磁辐射机理及其应用[J].煤矿安全,2011(11):1-4
    [70]邓广哲,王世斌,黄炳香.煤层水压裂缝扩展行为特性研究[J].岩石力学与工程学报,2004,23(20),3489-3493
    [71]李同林.水压致裂煤层裂缝发育特点的研究[J].地球科学-中国地质大学学报,1994,19(4),537-545
    [72]刘洪,张光华,钟水清,等.水力压裂关键技术分析与研究[J].钻采工艺,2007,30(2):49-52
    [73]倪小明,王延斌,接铭训,等.不同构造部位地应力对压裂裂缝形态的控制[J].煤炭学报,2008,33(5):505-508
    [74]倪冠华,林柏泉,李全贵,等.脉动水力压裂的电磁辐射机理及其应用[J].煤矿安全,2011(11):1-4
    [75]林柏泉,孟杰,宁俊,等.含瓦斯煤体水力压裂动态变化特征研究[J].采矿与安全工程学报,2012,29(1):106-110
    [76]冯彦军,康红普.受压脆性岩石Ⅰ-Ⅱ型复合裂纹水力压裂研究[J].煤炭学报,2013,38(2):226-232
    [77]连志龙.水力压裂扩展的流固耦合数值模拟研究[D].合肥:中国科学技术大学,2007
    [78]李林地,张士诚,庚勐.煤层气藏水力裂缝扩展规律[J].天然气工业.2010,30(2):72-74
    [79]张广明.水平井水力压裂数值模拟研究[D].合肥:中国科学技术大学,2010
    [80]杜卫平.薄层多层压裂应力剖面与压裂裂缝形态研究[D].成都:西南石油学院,2005
    [81]袁志刚,王宏图,胡国忠,等.穿层钻孔水力压裂数值模拟及工程应用[J].煤炭学报,2012,37(增1):109-114
    [82]Zhengwen Zeng, Jean-Claude Roegiers. Experimental Observatoon of Injection Rate Influence on the Hydraulic Fracturing Behavior of a Tight Gas Sandstone [J]. SPE78171, 2002
    [83]K. Q. Nolte. Dlscusslon of Examination of a Cored Hydraulic Fracture in a Deep Gas Well [J]. SPE26302,1993
    [84]张小东,张鹏,刘浩,等.高煤级煤储层水力压裂裂缝扩展模型研究[J].中国矿业大学学报,2013,42(4):573-579
    [85]陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000,19(增):868-872
    [86]黄炳香.煤岩体水力压裂弱化的理论与应用研究[J].煤炭学报,2010,35(10):1765-1766
    [87]柳贡慧,庞飞,陈治喜.水力压裂模拟实验中的相似准则[J].石油大学学报,2000,24(5):45-48
    [88]王国庆,谢兴华,速宝玉.岩体水力劈裂试验研究[J].采矿与安全工程学报,2006,23(4):480-484
    [89]谢兴华.岩体水力劈裂机理试验及数值模拟研究[D].南京:河海大学,2004
    [90]程远方,徐太双,吴百烈,等.煤岩水力压裂裂缝形态实验研究[J].天然气地球科学,2013,24(1):134-137
    [91]Zifeng Ma. Experimental studies of rock fracture behavior related to hydraulic fracture [D]. Doctor thesis of philosophy in material engineering of the University of Illinois at Chicago, 2000
    [92]B. Bohloli, C. J. de Pater. Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rhelolgy and confining stress [J]. Journal of Petroleum Science and Engineering,2006 (53):1-12
    [93]李胜利,靳钟铭,魏锦平.软煤大煤样的压裂特性研究[J].太原理工大学学报,1999,30(6):567-570
    [94]李志刚,付胜利,乌效鸣,等.煤岩力学特性测试与煤层气井水力压裂力学机理研究[J].石油钻探技术,2000,28(3):10-12
    [95]Van Eekelen. Hydraulic f racture geometry:fracture containment in layed formation[J]. Soc Pet Eng J,1982,22(6):341-349
    [96]Advani S H. Finite Eelment Model Simulations Associated with Hydraulic Fracturing[C]. SPE/DOC8941,1980
    [97]Settari A, Cleary M P. Three-Dimensional Simulation of Hydraulic Fracturing[J].J PT, 1984(7):1170-119
    [98]Settari A, Cleary M P. Development and Testing of a Pseudo-Three-Dimensional Model of Hydraulic Fracture Geometry (P3DH) [C]. SPE 10505,1982
    [99]Palmer I D, Carrol H B. Numerical Solution for Height and Elonged Hydraulic Fracturing[C].SPE 11627,1983
    [100]Palmer I D, Craig H R. Modeling of Asymmetric Vertical Growth in Elongated Hydraulic Fracture and Application to First MWX Stimulation[C]. SPE 12879,1984
    [101]RJ Clifton, A S Abou-Sayed. A Vibrational Approach to the Prediction of the Three-Dimensional Gometry of Hydraulic Fractures[C].SPE 9879,1984
    [102]A S Abou-Sayed, K P Sinha. Evaluation of the Influence of In-Situ Reservoir Conditions on the Geometry of Hydraulic Fractures Using a 3D Simulator:Part 1-Technical ApproachfC]. SPE 12877,1984
    [103]A S Abou-Sayed, R J Clifton, et al. Evaluation of the Infuence of In-Situ Reservoir Conditions on the Geometry of Hydraulic Fractures Using a 3D Simulator:Part 2-Case Studies[C]. SPE12 878,1984
    [104]M P Cleary, K Y Lam. Development of a Fully Three-Dimensional Simulator for Analysis and Design of Hydraulic Fracturing[C]. SPE/DOE 11631,1983
    [105]M P Cleary, K Y Lam. A Complete Three-Dimensional Simulator for Analysis and Design of Hydraulic Fracturing[C]. SPE 15 266.1986
    [106]Doumary E, Pater C J, de hagoort J. Poroelastic concepts explain some of the hydraulic fracturing mechanism[C]. SPE 1 5262.1986
    [107]Valko P, Economides M J. Propagation of hydraulically induced fractures-A continuum damage mechanics approach[J]. international of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1994.31(3):221-229.
    [108]Bruno M S, Dorfmann A, Lao K. Coupled particle and fluid flow modeling of fracture and slurry injection in weakly consolidated granular media. Rock Mechanics in the National Interest[M]. Elsworth. Tinucci, Heasley(eds). Swets Zeitinger Lisse,2001
    [109]Lei Zhou, Michael Z. Hou. A new numerical 3D-model for simulation of hydraulic fracturing in consideration of hydro-mechanical coupling effects [J]. International Journal of Rock Mechanics and Mining Sciences,2013(60):370-380
    [110]唐书恒,朱宝存,彦志丰.地应力对煤层气井水力压裂裂缝发育的影响[J].煤炭学报,2011,36(1):65-69
    [111]申晋,赵阳升.低渗透煤岩体水力压裂的数值模拟[J].煤炭学报,1997,22(6):580-585
    [112]富向.井下点式水力压裂增透技术研究[J].煤炭学报,2011,36(8):1317-1320
    [113]陈小奎.水力压裂对瓦斯压力的影响效果研究[J].能源技术管理,2010(6):4-5
    [114]陈轶平,窦林名,杜涛涛,等.坚硬顶板定向水力致裂影响因素数值分析[J].煤炭科技,2010(1):17-19
    [115]富向,刘洪磊,杨天鸿,等.穿煤层钻孔定向水压致裂的数值仿真[J].东北大学学报,2011,32(10):1480-1483
    [116]Chun-zhi DU, Xian-biao MAO, Xie-xing MIAO, Peng WANG. Effect of ground stress on hydraulic fracturing of methane well [J]. Journal of China University of Mining and Technology,2008,18(2):204-209
    [117]李根,唐春安,李连崇,等.水压致裂过程的三维数值模拟研究[J].岩体工程学报,2010,32(12):1875-1880
    [118]Br. Rimmer, Cu. MacFarlane. Fracture Geometry Optimization:Designs Utilizing New Polymer-Free Fracturing Fluid and Log-Derived Stress Profile/Rock Properties[J]. SPE, 2000 (2):1-7
    [119]G. S. Penny, M. W. Conway. Laboratory Tests To Determine Parameters for Hydraulic Fracturing of Coalbed Methane [J]. SPE,1981 (4):89-108
    [120]W. S. Lee. A Three-Dimensional Hydraulic Propagation Theory Simulating Fracture Growth Simultaneously From Two Sets of Perforation [J]. SPE,1993 (9):409-418
    [121]Z. X. Chen, M. Chen. Analysis of hydraulic fracture behavior with a three dimensional microcomputer simulator [J]. SPE,1997 (4):351-358
    [122]韩小刚,刘长武,王东.水力压裂技术在地下资源开采中的应用[J].铜业工程,2009(3);4-6,28
    [123]饶孟余,张遂安,商昌盛.提高我国煤层气采收率的主要技术分析[J].中国煤层气,2007,4(2):12-16
    [124]张有狮.煤矿井下水力压裂技术研究进展及展望[J].煤矿安全,2012,43(12):163-165,172
    [125]孙明闯,白新华.煤储层水力压裂技术新进展[J].中国煤层气,2013,10(1):31-34
    [126]陈邵杰.煤岩强度与变形特征实验研究及其在条带煤柱设计中的应用[D].泰安:山东科技大学,2005
    [127]刘冬梅,董太源,龚永胜,等.单轴受压岩石变形断裂机理研究[J].南方冶金学院学报,2001,22(2):77-80
    [128]鲁祖德.裂隙岩石水—岩作用力学特性试验研究与理论分析[D].武汉:中国科学院武汉岩土力学研究所,2010
    [129]乌效鸣.煤层气井水力压裂计算原理及应用[M].武汉:中国地质大学出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700