用户名: 密码: 验证码:
适应性进化策略强化VC生产两菌相互作用的代谢水平分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
维生素C生产菌株酮古龙酸杆菌与蜡状芽孢杆菌存在较为复杂的两菌关系,为系统优化发酵过程带来困难,本研究以强化两菌相互作用作为切入点,采用混菌适应性进化手段成功的实现了提高2-酮基-L-古龙酸产率的目标,为进一步改造维生素C生产菌株提供了新思路。
     混菌体系在为期150天的适应性进化过程中快速进化达到稳定状态,表现为2-KGA转化率、pH值、酮古龙酸杆菌菌数和蜡状芽孢杆菌菌数在前50天中较大波动后达到相对稳定的状态。通过对分纯后的酮古龙酸杆菌和蜡状芽孢杆菌单菌进行分析可以发现,经历适应性进化的酮古龙酸杆菌和蜡状芽孢杆菌,对培养基环境的适应能力及生长能力有很大提高,且酮古龙酸杆菌产酸能力有了显著提高,进化150天的酮古龙酸杆菌产酸能力比原始菌株提高了106.4%。对进化后菌株经交叉搭配发酵,表现为最佳混菌组合2-KGA转化率达到了93%,远高于原始菌株的77%。
     通过代谢水平分析发现,进化后酮古龙酸杆菌、蜡状芽孢杆菌与原始菌株相比存在明显的代谢差异,进化后两菌相互配合更加协调,对胞内营养物质的利用能力逐渐提高,有助于目标产物2-KGA的生成;蜡状芽孢杆菌的细胞膜通透性随进化时间的增长不断提高,显示出对酮古龙酸杆菌产物2-KGA产生的胁迫逐渐适应,而酮古龙酸杆菌的细胞膜通透性在进化过程中没有变化。两菌的磷脂分子组成随进化也发生显著变化,且其变化规律与两菌生长、产酸的变化存在一致性,表明细胞磷脂组成和代谢模式能够表征菌株性状的变化。在适应性进化过程中,蜡状芽孢杆菌的细胞膜通透性变化与磷脂变化趋势相一致(如LPE、PA的增加、链长和不饱和度的变化等),表明物质交换能力的变化可能是影响酮古龙酸杆菌提高2-KGA产量的关键因素。
     进化后的蜡状芽孢杆菌在酮古龙酸杆菌上的爬动能力有所下降。在氨基酸代谢、嘌呤核苷酸代谢、糖酵解途径和TCA循环等方面的结果分析表明,进化后蜡状芽孢杆菌和酮古龙酸杆菌在代谢水平上互动交流能力明显提高,蜡状芽孢杆菌抵抗酮古龙酸杆菌产生的有害物质的能力进一步提高,表现为受环境胁迫产孢的趋势减弱。这些结果进一步表明两菌关系在进化后发生了明显改变,由不同阶段的互利和偏利关系转化为趋于完全互利共生关系。
Due to the complexity of the relationship between Ketogulonigenium vulgareand Bacillus cereus, Vitamin C productive strains, it brings many difficulties tosystemically optimize the fermentation process. To intensify the interaction as anentry point, this study of adaptive evolution method applied in the mixed cultureprovides a new example to improve the productivity of the target product, and a newway of thinking for further modification of vitamin C productive strains.
     The mixed culture attained steady state in the process of the150-day adaptiveevolution, characterized that2-KGA conversion rate, pH, the population of K. vulgareand B. cereus underwent dramatic fluctuations in the beginning50days and thenreached a relatively stable state. Evolution improved the adaptive capacity of themedium environment, the growth rate of K. vulgare and B. cereus, and the yield of2-KGA by K. vulgare evolved150days enhanced106.4%compared to ancestral K.vulgare. Cross-collocation of the evolved and ancestral species in an industrialfermentation medium dramatically increased the2-KGA conversion rate, and theyield of most efficient mixed culture reached93%compared to77%of ancestralstrains.
     Metabolism analysis found that evolved K. vulgare and B. cereus were differentfrom ancestral strains apparently, evolved strains cooperated more harmoniously andutilized the intracellular nutrients more efficiently, contributing to the synthesis of theobjective product2-KGA. Cell membrane permeability of B. cereus increased alongwith the evolution process, implying that B. cereus gradually adapted to the stress of2-KGA produced by K. vulgare. The cell membrane permeability of K. vulgare didnot change in the process of evolution. Phospholipid molecules of K. vulgare and B.cereus have changed significantly along with the evolution process, and the changerule consisted with the change of the growth of2-KGA production of both species,which manifested that the phospholipid composition and metabolic model cancharacterize changes of strain properties. In the process of adaptive evolution,phospholipid changes of B. cereus consistented with the changes of cell membranepermeability (e.g., the increase of LPE, PA, the change of chain length and degree of saturation, etc.), indicating that changes in exchange capacity of nutrients could be thekey factor in raising the yield of2-KGA.
     The swarm capacity of evolved B. cereus on K. vulgare significantly declined. Onthe amino acid metabolism, purine nucleotide metabolism, glycolysis pathway and theTCA cycle metabolism level, evolved K. vulgare and B. cereus showed higher abilityof cell-cell communication on the metabolic level. Evolved B. cereus displayed highercapacity of resistance to the harmful material produced by K. vulgare andcharacterized the deficiency of sporation. It further showed that relationships of K.vulgare and B. cereus significantly changed, from the relationship of mutualism andamensalism in different stages into the completely mutualism.
引文
[1]尹光琳,维生素C生产技术的现状及发展趋势,生物工程学报,1986,2(4):17-21
    [2]施乃德曼,A.O.,维生素C的制造,第二章:自植物原料制造维生素C,1950,中译本,韦庆昆,吴克文(译),食品工业出版社,北京:1956,20-92
    [3]李国才,2-KLG产生菌混合发酵特性及最佳混生模式的研究:[硕士学位论文],沈阳;中国科学院沈阳应用生态所,1997
    [4]韩彩欣,李萌萌,高爽,国内维生素C企业价格策略有效性研究,商场现代,2008,12(559):35
    [5]孙君伟,郝爱鱼, Vc发酵大菌不同组分对小菌生长及产酸的影响,河北化工,2006,29(12):27-28
    [6]吕树娟,王军,虞龙等,Bacillus Megaterium在Vc二步发酵中伴生活性初步研究,中国科学院研究生院学报,2004,21(1):84-89
    [7] Bremus C,Herrmann U,Bringer-Meyer S, et al.The use of microorganisms inL-ascorbic acid production.Journal of Biotechnology,2006,124(1):196-205
    [8]尹光琳,何建明,任双喜等,新组合菌系SCB329—SCB933利用L-山梨糖发酵产生维生素C前体——2-酮基-L-古龙酸的研究I.新组合菌系SCB329-SCB933的生物学特性,工业微生物,1997,27(001):1-7
    [9]冯树,张舟,张成刚等,混合培养中巨大芽孢杆菌对氧化葡萄糖酸杆菌的作用,应用生态学报,2000,1l(1):119-122
    [10] Saito Y, Ishii Y, Hayashi H, et al.Cloning of genes coding for L-sorbose andL-sorbosone dehydrogenases from Gluconobacter oxydans and microbial productionof2-keto-L-gulonate,a precursor of L-ascorbic acid,in a recombinant G.oxydans strain,Applied and Environmental Microbiology,1997,63(2):454-460
    [11] Rao YM, Sureshkumar GK. Direct biosynthesis of ascorbic acid fromglucose by Xanthomonas campestris through induced free-radicals. BiotechnologyLetter,2000,22(5):407-411
    [12] Sugisawa T, Miyazaki T, Hoshino T. Microbial production of L-ascorbicacid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigeniumvulgare DSM4025. Bioscience, Biotechnology, and Biochemistry,2005,69(3):659-662
    [13]尹光琳,重组DNA技术用于生产维生素C重要前体——2-酮基-L-古龙酸的新进展,微生物学通报,1987,14(2):73-77
    [14]尹光琳,马志方,董文玲等,从D-葡萄糖直接发酵产生维生素C前体——2-酮基-L-古龙酸Ⅰ菌株的诱变选育和代谢产物的鉴定,微生物学报,1991,31(3):198-205
    [15]马志方,董文玲,王毅武等,D-葡萄糖直接发酵生产维生素C前体——2-酮基-L-古龙酸的研究Ⅱ2,5-DKG产酸菌株发酵条件,微生物学通报,1991,18(4):207-11
    [16]张刚,兰先德,范小兵等,D-葡萄糖串联发酵生产2-酮基-L-古龙酸的工艺条件,微生物学通报,1992,19(2):78-81
    [17]魏东芝,袁渭康,尹光琳,维生素C二步发酵过程动力学模型的研究,生物工程学报,1992,8(3):277-279
    [18]朱可丽,张海宏,孙传宝等,维生素C二步发酵混菌接种控制,微生物学杂志,1998,18(2):13-15
    [19] Jian Zhou, Qian Ma, Hong Yi, et al.Metabolome profiling reveals metaboliccooperation between Bacillus megaterium and Ketogulonicigenium vulgare duringinduced swarm motility. Appl. Environ. Microbiol.2011,77(19):7023-7030
    [20] Qian Ma, Jian Zhou, Weiwen Zhang, et al. Integrated Proteomic andMetabolomic Analysis of an Artificial Microbial Community for Two-StepProduction of Vitamin C.2011, PLoS ONE6(10): e26108
    [21]赵世刚,王陶,余曾亮.维生索C二步发酵中离子注入诱变巨大芽孢杆菌的生物学效应.激光生物学报,2007,16(4):455-459
    [22]郭立格,刘其友,杨润蕾等,从空间搭载Vc生产菌株中筛选高产菌株,河北大学学报(自然科学版),2004,24(3):284-288
    [23] Lei Cai, Mei-qing Yuan,Zheng-jun Li, et al. Genetic engineering ofKetogulonigenium vulgare for enhanced production of2-keto-l-gulonic acid. Journalof Biotechnology,2012,157(2):320-325
    [24] Yibo Zhu, Jie Liu, Guocheng Du, et al. Sporulation and spore stability ofBacillus megaterium enhance Ketogulonigenium vulgare propagation and2-keto-L-gulonic acid biosynthesis. Bioresource Technology,2012,107:399–404
    [25] Yan B, Xu A, Zhang W, et al. Accumulation of2-keto-L-gulonate at33℃by a thermotolerant Gluconobacter oxydans mutant obtained by ion beamimplantation.Plasma Science and Technology,2006,8(2):237-241
    [26] Saito Y, Ishii Y, Hayashi H, et al.Cloning of genes coding for L-sorbose andL-sorbosone dehydrogenases from Gluconobacter oxydans and microbial productionof2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G.oxydansstrain. Applied and Environmental Microbiology,1997,63(2):454-460.
    [27] Jing Zhang, Jingwen Zhou, Jie Liu, et al. Development of chemicallydefined media supporting high cell density growth of Ketogulonicigenium vulgare andBacillus megaterium. Bioresource Technology,2011,102(7):4807-4814
    [28] Gao Yun, Yuan Ying Jin. Comprehensive Quality Evaluation of Corn SteepLiquor in2-Keto-L-gulonic Acid Fermentation. Journal of Agricultural and FoodChemistry,2011,59(18):9845-9853
    [29] Qian Ma, Weiwen Zhang, Lu Zhang, et al. Proteomic Analysis ofKetogulonicigenium vulgare under Glutathione Reveals High Demand for ThiaminTransport and Antioxidant Protection, PLoS ONE,2012,7(2): e32156
    [30]纪凯,刘杰,秦苏东等,金属离子促进Gluconobacter oxydans高效合成2-酮基-L-古龙酸.食品与生物技术学报,2010,29(1):139-144
    [31]纪凯,维生素C发酵营养与环境条件优化:[硕士学位论文],无锡;江南大学,2009
    [32]郑巧双,周景文,陈坚等,稀土元素对2-酮基-L-古龙酸发酵过程的影响.过程工程学报,2010,10(4):750-755
    [33]张静,周景文,刘立明等,分阶段pH调控提高2-酮基-L-古龙酸生产[J].生物工程学报,26(9):1263-1268
    [34] Gunter P. Wagner and Lee Altenberg, Perspective: Complex Adaptationsand the Evolution of Evolvability. Evolution.1996,50(3):967-976
    [35] Philip W. Hedrick, Perspective: Highly Variable Loci and TheirInterpretation in Evolution and Conservation, Evolution,1999,53(2):313-318
    [36] Russell Lande, Natural Selection and Random Genetic Drift in PhenotypicEvolution, Evolution,1976,30(2):314-334
    [37] R. C. Lewontin. The units of selection. Annual Review of Ecology andSystematics,1970,1(1):1-18
    [38] Darwin Charles, On The Origin of Species, London: JOHN MURRAY,ALBEMARLE STREET,1859,503
    [39] Kimura M. The neutral theory of molecular evolution: a review of recentevidence. The Japanese Journal of Genetics,1991,66(4):367-386
    [40] National Academy of Science Institute of Medicine. Science, Evolution, andCreationism. National Academy Press,2008,1-23
    [41] Moore, R., Decker, M., Cotner, S, Chronology of the Evolution-CreationismControversy, Greenwood,2009,454
    [42] Meike Hoffmeister, William Martin, Interspecific evolution: microbialsymbiosis, endosymbiosis and gene transfer, Environmental microbiology,2003,5(8):641-649
    [43] Bo Hu, Jin Du, Rui-yang Zou, et al. An Environment-Sensitive SyntheticMicrobial Ecosystem, Plos ONE,2010,5(5):e10619
    [44] Basu S, Gerchman Y, Collins CH, et al. A synthetic multicellular system forprogrammed pattern formation. Nature,2005,434:1130–1134
    [45] You L, Cox RS, Weiss R, et al. Programmed population control by cell–cellcommunication and regulated killing. Nature,2004,428:868–871
    [46] Brenner K, Karig DK, Weiss R, et al. Engineered bidirectionalcommunication mediates a consensus in a microbial biofilm consortium. Proceedingsof the National Academy of Sciences of the United States of America,2007,104(44):17300-17304
    [47] Santiago F. Elena, Richard E. Lenski. Evolution experiments withmicroorganisms: the dynamics and genetic bases of adaptation. Nature ReviewsGenetics4,2003.457-469
    [48] D.K. Belyaev. Destabilizing selection as a factor in domestication. Journal ofHeredity,1979,70(5):301-308
    [49] Kristina L. Hillesland, David A. Stahl. Rapid evolution of stability andproductivity at the origin of a microbial mutualism. Proceedings of the NationalAcademy of Sciences of the United States of America,2010,107(5):2124-2129
    [50] Lenski R E. Evolution in action: a50,000-generation salute to CharlesDarwin. Microbe,2011(6):30-33.
    [51] Lenski R E, Travisano M. Dynamics of adaptation and diversification:a10,000-generation experiment with bacterial populations. Proceedings of the NationalAcademy of Sciences of the United States of America,1994,91(15):6808-6814
    [52] Blount Z D, Borland C Z, R E Lenski. Historical contingency and theevolution of a key innovation in an experimental population of Escherichia coli.Proceedings of the National Academy of Sciences of the United States of America,2008,105(23):7899-7906
    [53] Velicer G J, Kroos L, Lenski R E. Loss of social behaviors by Myxococcusxanthus during evolution in an unstructured habitat. Proceedings of the NationalAcademy of Sciences of the United States of America,1998,95(21):12376-12380
    [54] Oliver May, Peter T. Nguyen, Frances H. Arnold. Invertingenantioselectivity by directed evolution of hydantoinase for improved productionof L-methionine. Nature Biotechnology18,2000,317-320
    [55] Beum Jun Kim, Donna M. Gibson, and Michael L. Shuler. Effect ofSubculture and Elicitation on Instability of Taxol Production in Taxus sp. SuspensionCultures. Biotechnology Progress.2004,20(6):1666-1673
    [56] Kevin Y. Yip, Prianka Patel, Philip M. Kim, et al. Drew McDermottand Mark Gerstein. An integrated system for studying residue coevolution in proteins,Bioinformatics,2008,24(2):290-292
    [57] Joseph H. Connell, Diversity and the Coevolution of Competitors, or theGhost of Competition Past, Oikos,1980,35(2):131-138
    [58] R. M. Anderson and R. M. May, Coevolution of hosts and parasites,Parasitology,1982,85(2):411-426
    [59] Daniel H. Janzen, Coevolution of Mutualism Between Ants and Acacias inCentral America, Evolution,1966,20(3):249-275
    [60] Meng Yuan, Zhaohui Chu, Xianghua Li, et al. Pathogen-InducedExpressional Loss of Function is the Key Factor in Race-Specific Bacterial ResistanceConferred by a Recessive RGene xa13in Rice, Plant and Cell Physiology,2009,50(5):947-955
    [61] Ruth E. Ley, Micah Hamady, Catherine Lozupone, et al. Evolution ofMammals and Their Gut Microbes, Science,2008,320(5883):1647-1651
    [62] Anurag A. Agrawal. Phenotypic Plasticity in the Interactions and Evolutionof Species, Science,2001,294(5541):321-326
    [63] Wintermute E H, Silver P A. Dynamics in the mixed microbial concourse.Genes and Development,2010,24:2603-2614.
    [64] Harcombe W. Novel cooperation experimentally evolved between species.Evolution,2010,64(7):2166-2172
    [65] Francesca Fiegna, Yuen-Tsu N. Yu. Evolution of an obligate social cheaterto a superior cooperator. Nature441,2006,310-314
    [66] Wang QZ, Wu CY, Chen T, et al. Integrating metabolomics into systemsbiology framework to exploit metabolic complexity: strategies and applications inmicroorganisms, Applied Microbiology Biotechnology,2006,70(2):151-161
    [67] Adams, R.F. Determination of amino acid profiles in biological samples bygas chromatography. Journal of Chromatography A,1974,95(2):189-212
    [68] Adams M.A., Chen Z.L., Landman P., et al. Simultaneous determination bycapillary gas chromatography of organic acids, sugars, and sugar alcohols in planttissue extracts as their trimethylsilyl derivatives. Analytical Biochemistry.1999,266(1):77–84
    [69] Beaudry F., Le Blanc J.C.Y., et al. Metabolite profiling study of propranololin rat using LC/MS/MS analysis. Biomedical Chromatography,1999,13(5):363–369
    [70] Blanch G.P., Caja M.M., del Castillo M.L.R., et al. Fractionation of plantextracts by supercritical fluid extraction and direct introduction in capillary gaschromatography using a programmable temperature vaporizer. Journal ofChromatographic Science,1999,37(10):407–410
    [71] Lim, H.K., Stellingwerf, S., Sisenwine, S., et al. Rapid drug metaboliteprofiling using fast liquid chromatography, automated multiple-stage massspectrometry and receptor-binding. Journal Chromatography A,1999,831(2):227–241
    [72] Villas-Boas S.G., Mas S., Akesson M., et al. Mass spectrometry inmetabolome analysis. Mass Spectrometry Reviews,2005,24(5):613-646
    [73] Warwick B. Dunn, David. I. Ellis, Metabolomics: Current analyticalplatforms and methodologies. Trends in Analytical Chemistry,2005,24(4):285-294.
    [74] Wenk, M.R., The emerging field of lipidomics. Nature Reviews DrugDiscovery,2005,4(7):594-610
    [75] German J Bruce, Gillies Laura A, Smilowitz Jennifer T, et al. Lipidomicsand lipid profiling in metabolomics, Current Opinion in Lipidology,2007,18(1):66-71
    [76] William J. Griffiths and Yuqin Wang, Mass spectrometry: from proteomicsto metabolomics and lipidomics, Chemical Society Reviews,2009,38,1882-1896
    [77] Naheed N. Kaderbhai, David I. Broadhurst, David I. Ellis, et al. Functionalgenomics via metabolic footprinting: monitoring metabolite secretion by Escherichiacoli tryptophan metabolism mutants using FT–IR and direct injection electrospraymass spectrometry. Comparative and Functional Genomics,2003,4(4):376-391
    [78] Léonie M. Raamsdonk, Bas Teusink, David Broadhurst, et al. A functionalgenomics strategy that uses metabolome data to reveal the phenotype of silentmutations. Nature Biotechnology,2001,19,45-50
    [79] Smedsgaard J, Nielsen J. Metabolite profiling of fungi and yeast: fromphenotype to metabolome by MS and informatics. Journal of Experimental Botany,2005,56(410):273-286
    [80] Elmroth I, Sundin P, Valeur A, et al. Evaluation of chromatographicmethods for the detection of bacterial contamination in biotechnical processes. Journalof Microbiological Methods,1992,15(3):215-228
    [81] Dalluge JJ, Smith S, Sanchez-Riera F, et al. Potential of fermentationprofiling via rapid measurement of amino acid metabolism by liquidchromatography–tandem mass spectrometry. Journal of Chromatography A,2004,1043(1):3-7
    [82] Oldiges M, Takors R. Applying metabolic profiling techniques forstimulus–response experiments: chances and pitfalls. Advances in BiochemicalEngineering,2005,92:173-196
    [83] Buchholz A, Hurlebaus J, Wandrey C, et al. Metabolomics: quantificationof intracellular metabolite dynamics. Biomolecular Engineering,2002,19(1):5-15
    [84] Zaldivar J, Borges A, Johansson B, et al. Fermentation performance andintracellular metabolite patterns in laboratory and industrial xylose-fermentingSaccharomyces cerevisiae. Applied Microbiology and Biotechnology,2002,59(4-5):436-442
    [85] Smid EJ, Lacroix C. Microbe–microbe interactions in mixed culture foodfermentations. Current Opinion in Biotechnology.http://dx.doi.org/10.1016/j.copbio.2012.11.007
    [86] Elizabeth Anne Shank, Roberto Kolter, New developments in microbialinterspecies signaling, Current Opinion in Microbiology,2009,12(2):205-214
    [87] J. Kreth, J. Merritt, W. Shi, F. Qi, Competition and coexistence betweenStreptococcus mutans and Streptococcus sanguinis in the dental biofilm, Journal ofBacteriology,2005,187(21):7193-7203
    [88] J.E. Berleman, J.R. Kirby, Multicellular development in Myxococcus xanthusis stimulated by predator-prey interactions, Journal of Bacteriology,2007,189(15):5675-5682
    [89] Harald Gross, Strategies to unravel the function of orphan biosynthesispathways: recent examples and future prospects, Applied Microbiology andBiotechnology,2007,75(2):267-277
    [90] Boucher DH, James S, Keeler KH.The ecology of mutualism. AnnualReview of Ecology Systematics,1982,13:315-347
    [91] Yu-Liang Yang, Yuquan Xu, Paul Straight, et al. Translating metabolicexchange with imaging mass spectrometry. Nature Chemical Biology.2009,5(12):885-887
    [92] Ng W-L, Bassler BL.Bacterial quorum-sensing network architectures.Annual Review of Genetics,2009,43:197-222
    [93] Kate S. Howell, Daniel Cozzolino, et al. Metabolic profling as a tool forrevealing Saccharomyces interactions during wine fermentation. FEMS YeastResearch.2006,6(1):91-101
    [94] Naoufel Cheraiti, Stéphane Guezenec and Jean-Michel Salmon. RedoxInteractions between Saccharomyces cerevisiae and Saccharomyces uvarum in MixedCulture under Enological Conditions. Applied Microbiology and Biotechnology,2005,71(1):255-260
    [95] Wenying Shou, Sri Ram, and Jose M. G. Vilar. Synthetic cooperation inengineered yeast populations. Proceedings of the National Academy of Sciences,2007,104(6):1877-1882
    [96] Jin Du, Jian Zhou, Jia Xue, et al. Metabolomic profiling elucidatescommunity dynamics of the Ketogulonicigenium vulgare–Bacillus megateriumconsortium.Metablomics.2012,8(5):960-973
    [97]丁明珠,酵母对纤维素水解液中复合抑制剂耐受的系统分析与解耦:[博士学位论文],天津;天津大学,2011
    [98]夏金梅,纤维素乙醇发酵过程中不同酵母菌株的比较脂组学研究:[博士学位论文],天津;天津大学,2010
    [99]吕淑霞,冯树,张忠泽等,Vc二步发酵中伴生菌的作用机制,微生物学通报,2001,28(5):10-13
    [100] Liu L, Chen K, Zhang J, et al. Gelatin enhances2-keto-L-gulonic acidproduction based on Ketogulonigenium vulgare genome annotation. Journal ofBiotechnology.2011,156(3):182-187
    [101] Takagi Y., Sugisawa T., Hoshino T., Continuous2-keto-L-gulonic acidfermentation from L-sorbose by Ketogulonigenium vulgare DSM4025. AppliedMicrobiology and Biotechnology,2009,82(6):1049-1056.
    [102] Zhang J., Zhou J. W., Liu J., et al. Development of chemically definedmedia supporting high cell density growth of Ketogulonicigenium vulgare andBacillus megaterium. Bioresource Technology,2011,102:4807–4814
    [103] Ambard-Bretteville F., Sorin C., Rebeille F., et al. Repression of formatedehydrogenase in Solanum tuberosum increases steady-state levels of formate andaccelerates the accumulation of proline in response to osmotic stress. Plant MolecularBiology,2003,52(6):1153-1168
    [104] Takagi, H., Proline as a stress protectant in yeast: physiological functions,metabolic regulations, and biotechnological applications. Applied Microbiology andBiotechnology,2008,81(2):211-223
    [105] P. D. Hare, W. A. Cress. Metabolic implications of stress-induced prolineaccumulation in plants. Plant Growth Regulation,1997,21(2):79-102.
    [106] Mohr S., Hallak H., de Boitte A., et al. Nitric oxide inducedS-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase.Journal of Biological Chemistry,1999,274(14):9427-9430.
    [107] Boumann H. A., Chin P. T., Heck A. J., et al. The yeast phospholipidN-methyltransferases catalyzing the synthesis of phosphatidylcholine preferentiallyconvert di-C16:1substrates both in vivo and in vitro, Journal of Biological Chemistry.2004,279,40314-40319
    [108] Boumann H. A., Gubbens J., Koorengevel M. C., et al. Depletion ofphosphatidylcholine in yeast induces shortening and increased saturation of the lipidacyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote,Molecular Biology of the Cell,2006,17(2):1006-17
    [109] Wang X., Devaiah S. P., Zhang W., et al. Signaling functions ofphosphatidic acid, Progress in Lipid Research,2006,45(3):250-278
    [110] Comba S., Menendez-Bravo S., Arabolaza A., et al. Identification andphysiological characterization of phosphatidic acid phosphatase enzymes involved intriacylglycerol biosynthesis in Streptomyces coelicolor, Microbial Cell Factories.2013,12:9, doi:10.1186/1475-2859-12-9
    [111] Schuiki I., Schnabl M., Czabany T., et al. Phosphatidylethanolaminesynthesized by four different pathways is supplied to the plasma membrane of theyeast Saccharomyces cerevisiae, Biochimistry Biophys Acta.2010,1801(1):480-486.
    [112] Mileykovskaya E., Ryan A. C., Mo X., et al. Phosphatidic acid andN-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutantlacking cardiolipin and phosphatidylglycerol, The Journal of Biological Chemistry,2009,284:2990-3000
    [113] Yang S., Lu S. H.&Yuan Y. J. Cerium elicitor-induced phosphatidic acidtriggers apoptotic signaling development in Taxus cuspidata cell suspension cultures,Chemistry and Physics of Lipids,2009,159(1):13-20
    [114] Yang J., Yang S., Gao X., et al. Integrative investigation of lipidome andsignal pathways in human endothelial cells under oxidative stress, MolecularBiosystems,2011,8:2428-2440.
    [115] Connelly M. B., G. A. Young, and A. Sloma. Extracellular proteolyticactivity plays a central role in swarming motility in Bacillus subtilis. Journal ofBacteriology.2004,186(13):4159–4167
    [116] Ordal, G. W., and K. J. Gibson. Chemotaxis toward amino acids by Bacillussubtilis. Journal of Bacteriology,1977,129(1):151–155
    [117] Allison, C., and C. Hughes. Bacterial swarming: an example of prokaryoticdifferentiation and multicellular behaviour. Science Progress.1991,75(298Pt3-4):403–422
    [118] Fraser, G. M., and C. Hughes. Swarming motility. Current Opinion inMicrobiology,1999,2(6):630-635
    [119] Kearns D. B., F. Chu, R. Rudner, et al. Genes governing swarming inBacillus subtilis and evidence for a phase variation mechanism controlling surfacemotility. Molecular Microbiology,2004,52(2):357-369
    [120] Senesi, S., F. Celandroni, S. Salvetti, et al. Swarming motility in Bacilluscereus and characterization of a fliY mutant impaired in swarm cell differentiation.Microbiology,2002,148(6):1785-1794
    [121] Bo Shen, Stefan Hohmann, Richard G. Jensen,Roles of Sugar Alcohols inOsmotic Stress Adaptation. Replacement of Glycerol by Mannitol and Sorbitol inYeast,American Society of Plant Physiologists,1999,121(1):45-52
    [122] M.U. Nollert, S.G. Eskin, L.V. McIntire, Shear stress increases inositoltrisphosphate levels in human endothelial cells, Biochemical and BiophysicalResearch Communications,1990,170(1):281-287
    [123] Leduc S., de Troostembergh J.C., Lebeault J.M., Folate requirements of the2-keto-l-gulonic acid-producing strain Ketogulonigenium vulgare LMP P-20356inl-sorbose/CSL medium. Applied Microbiology and Biotechnology,2004,65(2):163–167.
    [124] Shibata T, Ichikawa M, Matsuura M, et al. Metabolic engineering study onthe direct fermentation of2-keto-L-gulonic acid in Pseudomonas putida IFO3738.Journal of Bioscience and Bioengineering,2000,90(2):223–225
    [125] Urbance JW, Bratina BJ, Stoddard SF, et al. Taxonomic characterization ofKetogulonigenium vulgare gen. nov. and Ketogulonigenium robustum sp. nov., whichoxidize Lsorbose to2-keto-L-gulonic acid. International Journal of SystematicEvolutionary Microbiology,2001,51(3):1059–1070
    [126] Zhang J, Zhou JW, Liu J, et al. Development of chemically defined mediasupporting high cell density growth of Ketogulonicigenium vulgare and Bacillusmegaterium. Bioresource Technology,2011,102(7):4807–4814
    [127] Zhang, J., Liu, J., Shi, Z., et al. Manipulation of B. megaterium growth forefficient2-KLG production by K. vulgare. Process Biochemistry,2010,45(5):602-606
    [128] Hosoya S, Lu ZL, Ozaki Y, et al. Cytological analysis of the mother celldeath process during sporulation in Bacillus subtilis. Journal of Bacteriology,2007,189(6):2561-2565
    [129] Errington J. Bacillus subtilis Sporulation: Regulation of Gene Expressionand Control of Morphogenesis. Microbiological Reviews,1993,57(1):1-33
    [130] Wang LJ, Perpich J, Driks A, et al. One perturbation of the mother cellgene regulatory network suppresses the effects of another during sporulation ofBacillus subtilis. Journal of Bacteriology,2007,189(23):8467–8473

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700