用户名: 密码: 验证码:
丁腈橡胶表面化学改性及其摩擦学和耐油性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺杆泵采油技术作为一种新型的采油方式,同其他采油方式相比具有独特的优点,尤其适合应用于原油粘度比较高、含砂和含气量较大的油井,具有同比采油量能耗低、结构简单、占地面积小、采油效率高等特点,在国内外得到广泛应用且呈明显上升趋势。油田井下工况极端复杂,恶劣的工作环境使得螺杆泵橡胶定子磨损严重,使用寿命相比其他关键部件较短。因此橡胶定子性能的提高是延长螺杆泵使用寿命的关键技术之一。
     目前常用的定子材料为丁腈橡胶(NBR),由丁二烯和丙烯腈经乳液共聚而成,具有优良的耐磨、耐油、耐热和耐腐蚀性,而且价格便宜。目前国内较多油田已进入三次采油阶段,开采原油的难度不断加大,传统的丁腈橡胶材料难以满足生产需要,迫切需要开发新的橡胶定子材料或者对传统丁腈橡胶材料进行改性以提高其性能。很多情况下,橡胶材料是通过其表面来参与工作的,橡胶的磨损和腐蚀也都是先从表面发生,提高橡胶表面性能而不整体改善材质,可显著节约成本,提高经济效益。橡胶表面改性是在不改变橡胶基材性质的基础上通过改变橡胶的表面性质来提高某些特定的性能。
     本文以提高丁腈橡胶耐磨、耐油性能为目的,采用卤化(氟化、溴化、碘化)、磺化、混合氧化法对丁腈橡胶表面进行改性,设计了相关改性配方,研制了橡胶表面氟化改性实验装置。通过大量试验系统地研究了各改性剂成分的种类和用量以及改性时间对丁腈橡胶表面形貌、硬度、力学等性能的影响。通过对改性试样进行各种工况下的摩擦磨损和原油溶胀试验,研究橡胶表面性能与耐磨、耐油性能之间的关系,以及载荷、转速、工作介质、温度等因素对橡胶摩擦性能的影响。借助现代测试技术分析了丁腈橡胶改性前后表面的能谱和红外光谱,探究改性丁腈橡胶减摩、降磨的作用机理,以及发生在表面改性、摩擦磨损过程中的摩擦化学反应及其对橡胶摩擦行为的影响,探索丁腈橡胶材料在各种实际工况中的摩擦磨损机制,为开发性能优良的丁腈橡胶材料提供实验数据和理论基础。
     为了综合评价改性方法的好坏,构建了丁腈橡胶表面改性方法评价体系,利用此评价体系进行了不同改性方法之间横向比较和同一种改性方法不同配比之间纵向比较,客观、科学地反应丁腈橡胶各种表面改性方法的改性效果及其适用范围,使其在生产中针对不同的工况得到具体切实的应用。
Progressing cavity pump (PCP) technology as a new way of oil, compared with otherextraction methods has unique advantages, especially suitable for the oil well of productionhigh viscosity oil, high sand content and high gas content, with low energy consumption,simple structure, high efficiency energy saving, small floor area and so on, widely used athome and abroad and shows the clear upward trend. Conditions of downhole are extremelycomplex, poor working conditions caused the rubber stator badly worn, shorter lifecompared to other key components. Therefore, improving the performance of the rubberstator is one of the key technologies to extend the life of the screw.
     The most common stator material is nitrile rubber (NBR) currently, copolymer formedby butadiene and acrylonitrile emulsion with excellent abrasion resistance, oil resistance,heat and corrosion resistance, and cheap. At present, more oil fields in our country haveentered into the tertiary oil recovery stage and oil exploration is becoming difficult.Traditional nitrile rubber material is difficult to meet production needs. it urgent need todevelop new rubber material of the stator or modify traditional nitrile rubber material toimprove its performance. In many cases, the rubber material through its surface to participatein the work, and wear and corrosion of the rubber are also start occurs from surface. Improvesurface performance without an overall improvement in the rubber material can significantlyreduce costs and improve economic efficiency.Rubber surface modification improve thecertain performance by changing the surface properties of the rubber on the basis of withoutchanging the nature of the rubber base material.
     The current study aims at improving the anti-wearing and oil resistant properties ofNBR. Three different halogenation methods (fluorination, bromination and iodations),sulfonation, mixture oxidation, were applied to modify the NBR surface respectively.Related modified formula is designed, and a rubber surface Fluoride-modified experimentaldevice is developed. Through extensive testing systematically study the influence of thevariety and dosage of modifier composition and modification time on the performance ofnitrile rubber, such as surface morphology, hardness, mechanical, etc.Through the frictionand wear and crude oil swelling test on the modified specimen under various conditions to study the relationship between the surface properties and wear resistance, oil resistance of
     rubber, and the effects of load, speed, working medium, temperature and other factors on thefriction and wear properties of rubber. With modern testing technology analyze the spectraand infrared spectra of the surface of nitrile rubber before and after the modification, explorefriction, wear reduction mechanism of modified nitrile rubber, and friction chemical reactionoccur in surface modification, friction and wear processes and its impact on the behavior ofthe rubber friction, explore the mechanisms of friction and wear in a variety of real-worldconditions, providing experimental data and theoretical basis for the development of thenitrile rubber material with excellent performance.
     In order to comprehensively evaluate the quality of modification methods, weconstructed a nitrile rubber surface modification method evaluation system.With thisevaluation system for horizontal comparison between different modification methods andlongitudinal comparison between different proportions with a modified method, objectivelyand scientifically response modification effect of various Nitrile rubber surface modificationmethods and its Scope, make it get concrete and practical applications for different operatingconditions in the production.
引文
[1]孙喜寿.机械采油方法的正确选择[J].国外油田工程,1994,(3):13~14.
    [2]冯耀忠.油井机械采油方法的选择[J].石油机械,1989,17(12):14~18.
    [3]陈淦.21世纪的油田开发[J].新疆石油地质,1997,18(2):184~189.
    [4]李梅霞.国内外三次采油现状及发展趋势[J].当代石油石化,2008,16(12):19~25.
    [5]孙晓康.三次采油技术现状与其发展方向研究[J].中国石油和化工标准与质量,2012(12):82.
    [6] Clegg J D, Bucaram S M, Hein J N W. Recommendations and comparisons for selecting artificial liftmethods[J]. Journal of Petroleum Technology,1993,45(12):1128~1131.
    [7] Lea J F. PCP Study Focuses On Artificial Life Alications[J]. Petroleum Engineer International,1993,65(9):10~13.
    [8] Mills R A R. Progressing Cavity Oil Well Pumps---Past, Present and Future[J]. Joural of CanadianPetroleum Technology,1994,33(4),5~6.
    [9]魏纪德.螺杆泵工作特性研究及应用[D].大庆:大庆石油学院,2007.
    [10] Ohbayashi T, Sawada T, Hamaguchi M, et al. Study on the performance prediction of screw vacuumpump[J]. Applied Surface Science,2001,169-170:768~771.
    [11] Frei B, Huber H. Characteristics of different pump types operating with ice slurry[J]. InternationalJournal of Refrigeration,2005,28(1):92~97.
    [12] Kanki T, Kanemoto D, Sano N. Evacuation characteristics of a binary gas mixture by amechanical screw-grooved vacuum pump[J]. Shinku/Journal of the Vacuum Society of Japan,2001,44(3):127~130.
    [13] Li R N, Wang H Y, Han W, et al. Study on solid-liquid two-phase unsteady flow characteristics withdifferent flow rates in screw centrifugal pump[J]. Materials Science and Engineering,2013,52(3):127~130.
    [14] Kamran M, Wild Z, Alan G. Key advantages of the progressing cavity pump in multiphase transferapplications[C]. Proceedings–SPE Annual Technical Conference&Exhibition, USA: publ by PE.Richardson, TX,1996:623~630.
    [15] Beauquin J L, Boireau C, Lemay L, et al. Development status of a metal progressing cavity pump forheavy-oil and hot-production wells[J]. Journal of Petroleum Technology,2006,58(5):59~61.
    [16]黄秀明,黄中明.国内外螺杆泵采油技术发展概况[J].国外油田工程,1996,(6):20~22.
    [17] Denney D. Fourteen years of progressing cavity pumps[J]. Journal of Petroleum Technology,2003,55(5):63~65.
    [18]张连山.螺杆泵采油系统技术发展现状与动向研究[J].石油机械,1994,22(1):46~50.
    [19] Klein Steven. Development of composite progressing cavity pumps[C]. Proceedings of the AnnualSouthwestern Petroleum Short Course,2003,4:74~78.
    [20] International Standard IOS15136-1: Petroleum and natural gas industries-progressing cavitypump systems for artificial lift[Z].2009.
    [21]韩修廷,王秀玲,焦振强.螺杆泵采油原理及应用[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [22]陈玉祥,王霞,周松等.提高螺杆泵定子橡胶材料寿命的分析与研究[J].灌溉机械,2005,23(4):6~9.
    [23] Lewis B, Daves D, Skelton G. Case history of a successful progressing cavity pump application in anextremely low pressure environment[J]. Society of Petroleum Engineers,2010,(1):21~25.
    [24] Korotkikh N I, Klochkov V I, Krasovskij V N. The prospect for the use of hydrogenated butadieneacrylonitrile rubbers in production of thermoresistant stators of screw drilling engine and screwpumps[J]. Kauchuki Rezina,2005,(2):48~49.
    [25] Sarakuz V N, Timan'kov G M, Blokhin V I, et al. Modernized single-screw pump[J]. Chemical andPetroleum Engineering,1982,18(9-10):447~448.
    [26]曹刚.螺杆泵的动力学机理和三维数值模拟技术研究[D].合肥:中国科学技术大学,2009.
    [27]韩佳轩.螺杆泵定子橡胶的疲劳寿命研究[D].大庆:东北石油大学,2013.
    [28] Zhu X H, Shi C S, Tong H. Dynamics simulation for stator and rotor meshing of air drilling motor[J].China Mechanical Engineering,2011,22(21):2609~2612.
    [29] Wang S J, Lin H, Lv X R. Influence of liquid paraffins in crude oil on the friction and wear behaviorsof the progressing cavity pump’s stator rubber[J]. Applied Mechanics and Materials,2013,300-301:833~836.
    [30] Lv X R, Huo X R, Qu G Z. Research on friction and wear behavior of rubber in the mixture of crudeoil with water[J]. Applied Mechanics and Materials,2013,300-301:1254~1258.
    [31] Wang Z, Wang S J. Comparative study on the wear behavior of FPM and NBR in the natural crudeoil medium[J]. Applied Mechanics and Materials,2014,456:349~353.
    [32] Han H, Wang S J, Lv X R. Study on the heat-oil resistance capacity of surface chemically modifiednitrile rubber[J]. Advanced Materials Research,2012,418-420:954~958.
    [33]张义贵.一步法注射螺杆钻具橡胶定子胶料的研制[J].橡塑技术与装备,2006,32(6):33~35.
    [34]周毅.单螺杆泵橡胶定子的研制[J].橡胶工业.2003,50(5):312~313.
    [35]江虹.橡胶压缩疲劳温升试验在螺杆泵定子橡胶研究中的应用[J].特种橡胶制品,1995,16(3):51~53.
    [36]刘生辉,魏伯荣.耐油橡胶的研究应用进展[J].特种橡胶制品,2002,23(5).54~56.
    [37]占升忠.高性能螺杆泵定子橡胶材料研究[D].长春:吉林大学,2012.
    [38]廖开贵,李允,,陈次昌.采油螺杆泵研发新进展[J].国外油田工程,2006,22(10):41~43.
    [39]任龙.螺杆泵采油系统新进展[J].国外油田工程,2007,23(1):30~36.
    [40] Lea J F, Winkler H W, Snyde R E. What’s new in artificial lift[J]. World Oil.2007,228(5):59~67.
    [41] Lea J F, Winkler H W. What's new in artificial lift[J]. World Oil.2009,230(5):29~45.
    [42] Lea J F, Winkler H W. What’s new in artificial lift[J]. World Oil.2009,230(5):77~85.
    [43]王世杰,李勤.潜油螺杆泵采油技术及系统设计[M].北京:冶金工业出版社,2006.
    [44]朱景芬,我国NBR的现状及发展趋势[J].橡胶工业,2000,47(9):555-564.
    [45]王霞,陈玉祥,周松,等.采油用螺杆泵定子橡胶及其性能的改进[J].材料导报,2005,19(11):82~84.
    [46]张建伟.井下采油单螺杆泵的现状及发展[J].石油机械,2000,28(8):56.
    [47]郁文正,梁德山.螺杆泵定子橡胶的新发展[J].国外石油机械.1997,8(4):41~47.
    [48]王振华.国内外丁腈橡胶主要牌号质量剖析及加工应用研究[D].兰州:兰州理工大学,2011.
    [49]张连山.国外螺杆泵采油系统的现状与发展[J].国外石油机械,1997,8(1):27~34.
    [50]张世誉.近年国内外丁腈橡胶发展态势分析[J].弹性体,2009,19(1):65~69.
    [51]王世杰,吕彬彬,李勤.潜油螺杆泵采油系统设计与应用技术分析[J].沈阳工业大学学报,2005,27(2):121~125.
    [52]吴静.青岛科技大学成功研发超高耐油性羧基丁腈橡胶[J].润滑与密封,2012,37(7):32.
    [53]钱伯章.耐腐蚀螺杆泵定子橡胶研究项目通过鉴定[J].现代橡胶技术,2012,(5):33.
    [54] Zhang S W. Theory of rubber abrasion by a line contact[M]. Polymer Wear and its Control, LeeLH(ed.), ACS, Washington DC:1985.18(5):12~15.
    [55]张嗣伟.橡胶磨损原理[M].北京:石油工业出版社,1998.
    [56]王贵一.橡胶的摩擦及试验[J].特种橡胶制品,2000,21(3):55~62.
    [57]吕仁国,李同生,刘旭军.橡胶摩擦磨损特性的研究进展[J].高分子材料科学与工程,2002,
    [58] Fujii Y. Method for measuring transient friction coefficients for rubber wiper blades on glasssurface[J]. Tribology International,2008,41(1):17~23.
    [59] Cooper R P, Ellis B. The effects of run-in on rubber friction[J]. Journal of Applied PolymerScience,1982,27(12):4735~4744.
    [60] Ellis B. Run-in effects on rubber friction [J]. Wear,1984,93(1):111~113.
    [61] Moore D F. The friction and lubrication of elastomers[M]. New York: Pergamon Press,1972.
    [62] Rippel M M, Linares E M, Bragan a F C, et al. Electrostatic interactions: an effective mechanism forrubber adhesion and blending[J]. Journal of Adhesion Science and Technology,2012,26(6):767~782.
    [63] Edlund U, Klarbring A. Coupled elastic-plastic damage model for rubber-modified epoxyadhesives[J]. International Journal of Solids and Structures,1993,30(19):2693~2708.
    [64] Raphael E, Gennes P G. Rubber-rubber adhesion with connector molecules[J]. Journal of PhysicalChemistry,1992,96(10):4002~4007.
    [65] Rezaeian I, Zahedi P, Rezaeian A. Rubber adhesion to different substrates and its importance inindustrial applications: a review[J]. Journal of Adhesion Science and Technology,2012,26(6):721~744.
    [66] Maeda K, Bismarck A, Briscoe B. Effect of bulk deformation on rubber adhesion[J]. Wear,2007,263(7-12):1016~1022.
    [67]摩尔D F.黄文治译.摩擦学原理和应用[M].北京:机械工业出版社,1982.
    [68] Kato K. Classification of wear mechanisms/models[J]. Journal of Engineering Tribology,2002,216(6):349~355.
    [69] Fukahori Y, Yamazaki H. Mechanism of rubber abrasion Part3: how is friction linked to fracture inrubber abrasion?[J].Wear,1995,188(1-2):19~26.
    [70] Moore D F. Friction and wear in rubbers and tyres[J]. Wear,1980,61(2):273~282.
    [71] Gerrard D P, Padovan J. The friction and wear of rubber part2: Micro-mechanical description ofintrinsic wear [J]. Rubber Chemistry and Technology,2003,76(1):101~118.
    [72] Schmelzer J, Moeller J, Gutzow I. Ostwald's rule of stages: the effect of elastic strains and externalpressure[J].Zeitschrift fur Physikalische Chemie,1998,204(1-2):171~181.
    [73]赵艳芳,王久模,赵银梅,等.丁腈橡胶共混改性研究概况[J].弹性体,2011,21(1):89~97.
    [74]赵丽,李忠明.丁腈橡胶改性进展[J].四川化工,2005,8(1):18~22.
    [75]齐永新,王福善,陈继明,等.中腈基含量低分子量羧基丁腈橡胶的合成[J].化工新型材料,2012,40(9):21~23.
    [76]刘健,程斌.丁腈橡胶臭氧化制备羧基丁腈橡胶[J].合成橡胶工业,2011,34(1):43~46.
    [77]吴同锴.聚合稳定丁腈橡胶研究的进展[J].特种橡胶制品,1989,(2):26~29.
    [78]徐兆瑜.丁腑橡胶的改性研究进展[J].化工文摘,2006(2):54~56.
    [79]徐加勇,马小鹏,袁玉虎.无机填料对丁腈橡胶性能的影响[J].特种橡胶制品,2012,33(2):39~41.
    [80]陈旭东.舰船用高性能密封橡胶研究[J].弹性体,2004,14(5):20~23.
    [81]王霞,朱臣昌.纳米CaCO3与聚氯乙烯对采油螺杆泵定子橡胶材料(NBR)的改性研究[J].弹性体,2007,17(4):4~8.
    [82]赵洪国,胡海华.改性氧化锌晶须对丁腈橡胶性能的影响[J].特种橡胶制品,2010,31(1):22~25.
    [83] Farhang A, Hamid M, Al-i A K. Modification of polysiloxane polymers for biomedical appl-ications:a review[J]. Polymer International,2001,50(12):1280.
    [84] Mar a D, Romero-S nchez M. Mercedes Pastor-Blas, Josü Miguel Mart n-Mart nez.Adhesionimprovement of SBR rubber by treatment with trichloroisocyanuric acid solutions in differentesters[J]. International Journal of Adhesion&Ad-hesives,2001,21(4):325~337.
    [85] Papiya S M, Anil K B. Friction behaviour of electron beam modified ethylene-propylene dienemonomer rubber surface[J]. Wear,1998,221(1):15~23.
    [86] Papiya S M, Anil K B. Surface-and bulk-properties of EPDM rubber modified by electron beamirradiation[J]. Radiation Physics and Chemistry,1998,53(1):63~78.
    [87] Tashlykov I S, Kasperovich A V, Wolf G K. Elastomer surface modification by means of SIAD ofmetal based layers[J]. Surface and Coatings Technology,2002,158-159:498~502.
    [88] Masaya I. Ion surface treatments on organic materials[J]. Nuclear Instruments and Methods inPhysics Research, Section B: Beam Interactions with Materials and Atoms.2001,175-177:368~374.
    [89] Upadhyay D J, Cui N Y, Anderson C A, et al. Surface oxy-genation of polypropylene using an airdielectric barrier dis-charge:the effect of different electrode-platen combinations[J]. Applied SurfaceScience,2004,229(1-4):352~364.
    [90]王斌,王德贵,陆兆达.丁腈橡胶的XeF2表面氟化改性研究[J].应用化学,1997,14(5):51~54.
    [91]邓继勇,徐前永,王斌,等.橡胶材料表面氟化改性的研究[J].高分子材料科学与工程,1999,15(2):165~166.
    [92]曾斌,党海军.红外光谱法研究XeF2表面氟化丁腈橡胶动力学[J].光谱试验室,2007,24(2):255~260.
    [93]王运平,任长安,孟江燕.氟碳涂层改进丁腈橡胶表面耐油性[J].失效分析与预防,2010,5(1):1~3.
    [94]金山,冯永海,鲁选才.表面化学处理在丁腈橡胶硫化胶中的应用研究[J].特种橡胶制品,2000,21(6):43~46.
    [95]廖斌,安同一,王源身,等.微波等离子体用于表面改性的研究[J].华东师范大学学报(自然科学版),2003(2):40~45.
    [96]徐固.用卤化方法处理丁腈橡胶油封[J].橡胶工业,1986,33(5):1~3.
    [97]王进文.减小橡胶摩擦因数的表面改性方法[J].橡胶工业,2002,49(12):761~762.
    [98]石锐,田明,齐卿,等.橡胶表面改性的方法[J].橡胶工业,1996,53(3):186~191.
    [99]杨万泰,尹梅贞,邓建元,等.表面光接枝原理、方法及应用前景[J].高分子通报,1999(1):
    [100] Li Y P, Fang Y E, Fan R, et al. Study of plasma-polymer-ization deposition of C2H2/CO2/H2ontoethylene-co-propylene rubber membranes[J]. Radiation Physics and Chemistry,2001,60(6):637~642.
    [101] Pulford C T R. Failure of rubber by abrasion[J]. Rubber Chem Technol,1985,58(3):653~661.
    [102] Moore D F, Geyer W. A review of adhesion theories for elastomers[J]. Wear,1972,22(2):113~141.
    [103] Brigadnov I A, Dorfmann A. Mathematical modeling of magneto-sensitive elastomers[J].International Journal of Solids and Structures,2003,40(18):4659~4674.
    [104] DeSimone A, James R D. A constrained theory of magneto elasticity[J]. Journalof the Mechanicsand Physics of Solids,2002,50:283~320.
    [105]江晓红,Yarmolenko M A,Rogachev A V,等.聚合物复合薄膜改性橡胶表面结构及其摩擦性能研究[J].摩擦学学报,2007,27(2):106~111.
    [106]黄新武,王廷梅,田农,等.芳纶纤维增强丁腈橡胶的摩擦性能[J].合成橡胶工业,2006,29(6):451~453.
    [107]陈冠荣.化工百科全书(第08卷)[M].北京:化学工业出版社,1998.
    [108] Reisinger J, Hillmyer M A. Synthesis of fluorinated polymers by chemical modification[J]. Progressin Polymer Science,2002,971~1005.
    [109]余樟清.涂料用含氟聚合物乳液的研究和应用[J].高分子通报,2000,(2):65~68.
    [110] Persico D F, Lagow R J. Synthesis of branched per-fluoro ethers by direct fluorination copolymersbased on hexafluoroacetone[J]. Macromol,1985,18:1383~1387.
    [111] Améduri B, Boutevin B. Synthesis and applications of fluorinated telechelic monodispersedcompounds[J]. Polymer Synthesis Oxidation Processes,1992,102:133~169.
    [112] Moore D F. The Friction and Lubricationof elastomers[M]. Oxford: Pergamon Press,1972.
    [113] Gent A N. A hypothetical mechanism for rubber abrasion[J]. Rubber Chem Technol,1988,62:746~750.
    [114]张铸勇.精细有机合成单元反应(第2版)[M].上海:华东理工大学出版社,2003,79~82.
    [115] Carmen M. Cepeda-Jimünez, M. Mercedes Pastor-Blas,T.P. Ferr ndiz-Gémez,et al.Influence of thestyrene content of thermoplastic styrene-butadiene rubbers in the effectiveness of the treatmentwith sulfuric acid. International Journal of Adhesion&Adhesives,2001,21(2):161~172.
    [116] Wei D P, Han X A, Wang R L. The influence of chemical structure of certain nitrogen-containingorganic compounds on their antiwear effectiveness-the critical role of the hydroxyl group[J].Lubrication Science,1989,2(1):63~87.
    [117]任天辉,薛群基.含氮杂环化合物及其衍生物用作多功能润滑油添加剂的研究发展现状[J].摩擦学学报,1994,14(4):370~381.
    [118] Ren T H, Xue Q J, Wan H Q. The effect of molecular structure of N-containing heterocycliccompounds on their wear properties[J]. Lubrication Science,1993,5(3):205~212.
    [119]任天辉.含氮杂环化合物的合成及其摩擦学特性和抗磨减摩机理的研究[D].兰州:中国科学院兰州化学物理研究所固体润滑开放研究实验室,1993.
    [120] Boyce M C, Arruda E M. Constitutive models of rubber elasticity: A review[J]. Rubber Chemistryand Technology,2000,73(3):504~523.
    [121]朱艳峰,刘锋,黄小清,等.橡胶材料的本构模型[J].橡胶工业,2006,53(2):119~125.
    [122]黄筑平.连续介质力学基础[M].北京:高等教育出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700