用户名: 密码: 验证码:
葡聚糖基纳米抗癌药物载体的设计与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现今,癌症已经成为人类健康的最大威胁之一。在癌症的诸多治疗方法之中,化疗依然是主要的治疗方法之一。然而常用的小分子化疗药物存在着水溶性差,体内半衰期短,没有靶向性,药物利用率低,毒副作用较大和面临癌细胞多药耐药性等严峻挑战。为克服这些问题,我们针对性的设计了一系列的可降解的葡聚糖基纳米载药体系。并分别对它们在增加药物溶解性,增加药物半衰期,降低毒副作用,靶向能力等方面的作用进行了评估。具体如下
     (1)通过高效的点击反应合成了一系列的葡聚糖-聚己内酯两嵌段共聚物。考察了共聚物的胶束行为,通过透射电镜和动态光散射测定了胶束的粒径大小。并以阿霉素作为药物模型制备了载药胶束,考察了载药胶束的体外模拟释放及抑制癌细胞增殖的效果。通过激光共聚焦和流式细胞实验评价了载药胶束的细胞内吞效率和细胞内释放情况。实验结果表明:葡聚糖-聚己内酯共聚物有很好的球形形貌,粒径可调。而载药胶束有很好的增加药物溶解性,增加药物半衰期,降低毒副作用的效果,对癌细胞增殖有一定的抑制作用。
     (2)为克服小分子药物靶向性差,毒副作用大的缺陷,进一步将靶向小分子叶酸和半乳糖键合在葡聚糖-聚己内酯共聚物上。进而考察了靶向葡聚糖-聚己内酯载药胶束的体外释放行为及抑制癌细胞增殖的效果。随后通过激光共聚焦和流式细胞实验评价了载药胶束的细胞内吞效率和细胞内释放情况。结果表明:靶向载药胶束在其对应受体过表达的细胞中,有较好的抑制癌细胞增殖的效果,细胞内吞效率和细胞内释放速率。
     (3)化疗治疗中提高药物的利用率和治疗效果十分重要。环境响应性纳米载体可以根据人体微环境的变化控制载体在指定的部位迅速释放,增加药物局部浓度,提高药物利用率。我们设计了两种基于葡聚糖的细胞微环境pH响应的两嵌段共聚物并以其包载阿霉素。通过透射电镜和动态光散射测定了胶束在不同pH下的粒径变化。结果表明:胶束有很好的pH响应性。pH载药胶束有较快的释放速率和较好的抑制癌细胞增殖的效果,并且细胞内吞效率高,细胞内释放迅速。因此,这两种能在细胞内加速释放的载药胶束有作为抗癌药物载体的应用前景。
     (4)近年来,多功能化纳米抗癌药物载体发展迅速。多功能纳米载体被寄望于能有效增加药物疗效,提高癌症治疗的实际效果。多功能纳米载体主要包括具有增加药物肿瘤部位识别和富集的靶向基团,可以追踪载体的成像因子,智能性的释放行为等等。然而成本和回报的比率可能限制多功能化纳米抗癌药物载体的发展。多功能化意味着更复杂,更高的成本及更难体内的安全评估。为克服这一问题,我们设计了一种基于主客体作用的模块化的多功能纳米载体,苯并咪唑接枝在葡聚糖侧基作为骨架,同时预先合成很多基于环糊精的多功能模块,针对不同的治疗需求,选择对应的模块与骨架组成响应的纳米载体。这种模块化的载体给设计多功能化的纳米载体提供了新的思路。
     通过本文的研究,希望能够对葡聚糖基抗癌药物载体设计与应用的基本科学问题,新型策略等提供基础性的实验依据和新思路,为抗癌药物载体的设计与应用奠定基础。
Cancer has increased to be the most serious thereaten for human health.Chemotherapy plays an important role in cancer therapy. However, commonly usedchemotherapy drugs always suffer from non-specific interaction, short half-life, lowdrug efficiency, severe toxicity and multi-drug resistance. To solve these problems, wedesigned novel biodegradable nanocarriers based on dextran for anticancer drugdelivery, and the effects on reducing toxicity, enhancing drug efficiency, targeteddelivery and multifunctionality were evaluated.
     (1) Dextran-b-poly (ε-caprolactone)(Dex-PCL) diblock copolymers was preparedvia “click” reaction. The obtained Dex-PCL diblock copolymers were furtheremployed to assembly micelles for doxorubicin (DOX) delivery. The DOX-loadedDex-PCL nanoparticles were characterized by transmission electron microscopy(TEM) and dynamic light scattering (DLS). In vitro drug release and cytotoxicity ofthe DOX-loaded Dex-b-PCL micelles were examined. The cellular uptake andintracellular release behaviors of micelles were followed with CLSM and flowcytometry. The micelles provide a promising candidate to overcome the problems ofshort half-life and low drug efficiency for small molecule drugs.
     (2) To overcome the non-specific interaction and severe toxicity for normal tissue ofsmall molecule drugs, dextran-b-poly (ε-caprolactone)(Dex-PCL) diblockcopolymers with folic acid or galactose were designed and prepared. In vitro drugrelease and cytotoxicity of targeted micelles were examined. The cellular uptake andintracellular release behaviors of targeted micelles were observes by CLSM and flowcytometry. All the results exhibited targeted Dex-PCL micelles can effectivelyenhance the cytotoxicity, cellular uptake and intracellular release behaviors forreceptor overexpressed cells.
     (3) Major challenge in chemotherapy is linked to multidrug resistance (MDR)against anticancer drugs. The stimuli responsive carriers are noted for theirsite-specific targeting release of payloads modulated by the specificmicroenvironments of intracellular space, leading to aggressive anticancer activityand maximal chemotherapeutic efficacy. So they are hopeful to overcoming multidrugresistance. Two pH-sensitive copolymers based on dextran were designed and furtheremployed to assembly micelles for doxorubicin (DOX) delivery. The pH-sensitive micelles were characterized by transmission electron microscopy (TEM) and dynamiclight scattering (DLS). Both the two DOX-loaded pH-sensitive micelles shownincreasing release in acid conditions mimicking the endosomal/lysosomalcompartments. The enhanced intracellular DOX release was observed in cells.DOX-loaded intracelluar pH-sensitive micelles showed higher cellular proliferationinhibition towards cancer cells than pH-insensitive micelles. Therefore, with the goodbiocompatibility and accelerated intracellular drug release, the two type of micellesprovide an efficient platform to build intelligent drug delivery systems.(4) The design and development of “multifunctional” nanoparticles intended toimprove delivery, therapeutic efficacy, and ultimately patient outcome.Multifunctional nanoparticles have been devised with targeting moieties to improvespecificity and tumor accumulation, imaging agents to assess delivery and dosing,endosome escape mechanisms, target-dependent assembly or disassembly to controldrug release, and so on. However, the cost/benefit ratio of these modifications inimproving the delivery of many small-molecule drugs is less certain. Each newfunctionality elevates complexity, cost and regulatory barriers arise. To solve thesebarriers, we design a kind of modular multifunctional nano delivery systems usinghost-guest recognition as the driving force for macromolecular self-assembly.Benzimidazole linked on dextran acts as backbone, while pre-synthesizedmultifunctional polymers with cyclodextrin act as changeable modules. For differenttumor therapeutic applications, different modules are chosen and inserted in the maincase to achive a multifunctional delivery system. These modular delivery systemsprovided a promising multifunctional carrier for cancer therapy.
     The above result would be expected to provide basic knowledge on theapplication of biodegradable polymers for anticancer drug delivery, and also providesome new strategies for nanocarrier of cancer therapy.
引文
[1] PARKIN D M, BRAY F, FERLAY J, et al. Estimating the world cancer burden: Globocan2000[J]. International journal of cancer,2001,94(2):153-156.
    [2] World Health Organization, section of cancer information. GLOBOCAN2008.2011-9-28.[J].
    [3] MADDIKA S, MENDOZA F J, HAUFF K, et al. Cancer-selective therapy of the future: apoptinand its mechanism of action [J]. Cancer biology&therapy,2006,5(1):10-19.
    [4] LI G C, KAL H B. Effect of hyperthermia on the radiation response of two mammalian cell lines[J]. European Journal of Cancer (1965),1977,13(1):65-69.
    [5] ROSS R B. Recent advances in chemotherapy of cancer [J]. J Chem Educ,1959,36(8):368.
    [6] WANG R F, ROSENBERG S A. Human tumor antigens for cancer vaccine development [J].Immunological reviews,1999,170(1):85-100.
    [7] NIELSEN L L, MANEVAL D C. P53tumor suppressor gene therapy for cancer [J]. Cancer genetherapy,1997,5(1):52-63.
    [8] MAEDA H. Macromolecular therapeutics in cancer treatment: the EPR effect and beyond [J].Journal of Controlled Release,2012,164(2):138-144.
    [9] PANYAM J, LABHASETWAR V. Biodegradable nanoparticles for drug and gene delivery to cellsand tissue [J]. Advanced drug delivery reviews,2003,55(3):329-347.
    [10] COUVREUR P, KANTE B, ROLAND M, et al. Adsorption of Anti-Neoplastic Drugs toPolyalkylcyanoacrylate Nanoparticles and Their Release in Calf Serum [J]. J Pharm Sci,1979,68(12):1521-1524.
    [11] COUVREUR P, KANTE B, LENAERTS V, et al. Tissue Distribution of Anti-Tumor DrugsAssociated with Polyalkylcyanoacrylate Nanoparticles [J]. J Pharm Sci,1980,69(2):199-202.
    [12] COUVREUR P, KANTE B, GRISLAIN L, et al. Toxicity of PolyalkylcyanoacrylateNanoparticles.2. Doxorubicin-Loaded Nanoparticles [J]. J Pharm Sci,1982,71(7):790-792.
    [13] CAROTHERS W H, DOROUGH G, NATTA F V. Studies of polymerization and ring formation.X. The reversible polymerization of six-membered cyclic esters [J]. Journal of the American ChemicalSociety,1932,54(2):761-772.
    [14] KULKARNI R, PANI K, NEUMAN C, et al. Polylactic acid for surgical implants [J]. Archives ofSurgery,1966,93(5):839.
    [15] OKADA M. Chemical syntheses of biodegradable polymers [J]. Prog Polym Sci,2002,27(1):87-133.
    [16] SINHA V, BANSAL K, KAUSHIK R, et al. Poly--caprolactone microspheres and nanospheres:an overview [J]. Int J Pharm,2004,278(1):1-23.
    [17] ATHANASIOU K A, NIEDERAUER G G, AGRAWAL C. Sterilization, toxicity, biocompatibilityand clinical applications of polylactic acid/polyglycolic acid copolymers [J]. Biomaterials,1996,17(2):93-102.
    [18] LEUCHS H. Glycine-carbonic acid.[J]. Ber Dtsch Chem Ges,1906,39857-861.
    [19] KRICHELDORF H R. Polypeptides and100years of chemistry of alpha-amino acidN-carboxyanhydrides [J]. Angew Chem Int Edit,2006,45(35):5752-5784.
    [20] DEMING T J. Synthetic polypeptides for biomedical applications [J]. Prog Polym Sci,2007,32(8-9):858-875.
    [21] XIAO C, ZHAO C, HE P, et al. Facile Synthesis of Glycopolypeptides by Combination ofRing-Opening Polymerization of an Alkyne-Substituted N-carboxyanhydride and Click“Glycosylation”[J]. Macromolecular Rapid Communications,2010,31(11):991-997.
    [22] NAIR L S, LAURENCIN C T. Biodegradable polymers as biomaterials [J]. Prog Polym Sci,2007,32(8-9):762-798.
    [23] LI C. Poly(L-glutamic acid)-anticancer drug conjugates [J]. Advanced Drug Delivery Reviews,2002,54(5):695-713.
    [24] BENACERRAF B, MAURER P H, OJEDA A. Studies on Artificial Antigens.2. Antigenicity inGuinea Pigs of Arsanilic Acid Conjugates of Copolymers of D-or L-Alpha-Amino Acids [J]. J ExpMed,1963,118(6):945-950.
    [25] KANTOR F S, BENACERRAF B, OJEDA A. Studies on Artificial Antigens.1. Antigenicity ofDnp-Polylysine and Dnp Copolymer of Lysine and Glutamic Acid in Guinea Pigs [J]. J Exp Med,1963,117(1):55-69.
    [26] SINHA V, KUMRIA R. Polysaccharides in colon-specific drug delivery [J]. Int J Pharm,2001,224(1):19-38.
    [27] BALDWIN A D, KIICK K L. Polysaccharide‐modified synthetic polymeric biomaterials [J].Peptide Science,2010,94(1):128-140.
    [28] YANG J-S, XIE Y-J, HE W. Research progress on chemical modification of alginate: A review [J].Carbohydrate polymers,2011,84(1):33-39.
    [29] JANES K, CALVO P, ALONSO M. Polysaccharide colloidal particles as delivery systems formacromolecules [J]. Advanced drug delivery reviews,2001,47(1):83-97.
    [30] KEAN T, THANOU M. Biodegradation, biodistribution and toxicity of chitosan [J]. AdvancedDrug Delivery Reviews,2010,62(1):3-11.
    [31] LIU Z, JIAO Y, WANG Y, et al. Polysaccharides-based nanoparticles as drug delivery systems [J].Advanced Drug Delivery Reviews,2008,60(15):1650-1662.
    [32] VARUM K, OTTOY M, SMIDSROD O. Water-solubility of partially N-acetylated chitosans as afunction of pH: effect of chemical composition and depolymerisation [J]. Carbohydrate polymers,1994,1994
    [33] GEORGE M, ABRAHAM T E. Polyionic hydrocolloids for the intestinal delivery of proteindrugs: alginate and chitosan—a review [J]. Journal of Controlled Release,2006,114(1):1-14.
    [34] TOOLE B P. Hyaluronan: from extracellular glue to pericellular cue [J]. Nat Rev Cancer,2004,4(7):528-539.
    [35] PLATT V M, SZOKA JR F C. Anticancer therapeutics: targeting macromolecules andnanocarriers to hyaluronan or CD44, a hyaluronan receptor [J]. Molecular pharmaceutics,2008,5(4):474-486.
    [36] CHEN G, JIANG M. Cyclodextrin-based inclusion complexation bridging supramolecularchemistry and macromolecular self-assembly [J]. Chem Soc Rev,2011,40(5):2254-2266.
    [37] BENITO J M, G MEZ-GARC A M, ORTIZ MELLET C, et al. Optimizing saccharide-directedmolecular delivery to biological receptors: design, synthesis, and biological evaluation ofglycodendrimer-cyclodextrin conjugates [J]. Journal of the American Chemical Society,2004,126(33):10355-10363.
    [38] DAVIS M E, BREWSTER M E. Cyclodextrin-based pharmaceutics: past, present and future [J].Nature Reviews Drug Discovery,2004,3(12):1023-1035.
    [39] PINHASSI R I, ASSARAF Y G, FARBER S, et al. Arabinogalactan Folic Acid Drug Conjugatefor Targeted Delivery and Target-Activated Release of Anticancer Drugs to FolateReceptor-Overexpressing Cells [J]. Biomacromolecules,2009,11(1):294-303.
    [40] LEATHERS T D. Biotechnological production and applications of pullulan [J]. AppliedMicrobiology and Biotechnology,2003,62(5-6):468-473.
    [41] LINHARDT R J.2003Claude S. Hudson Award address in carbohydrate chemistry. Heparin:structure and activity [J]. Journal of medicinal chemistry,2003,46(13):2551-2564.
    [42] LINHARDT R J, AMPOFO S A, FAREED J, et al. Isolation and characterization of humanheparin [J]. Biochemistry,1992,31(49):12441-12445.
    [43] SCH MER M, SCH LL C, FREY H. Hyperbranched aliphatic polyether polyols [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2013,51(5):995-1019.
    [44] OISHI M, NAGASAKI Y. Stimuli-responsive smart nanogels for cancer diagnostics and therapy[J]. Nanomedicine-Uk,2010,5(3):451-468.
    [45] HILDEBRAND G E, HARNISCH S. Advanced Drug Delivery Systems for Biopharmaceuticals[J]. Modern Biopharmaceuticals: Design, Development and Optimization,2005,1360-1391.
    [46] SOUSSAN E, CASSEL S, BLANZAT M, et al. Drug delivery by soft matter: matrix and vesicularcarriers [J]. Angewandte Chemie International Edition,2009,48(2):274-288.
    [47] UDHRAIN A, SKUBITZ K M, NORTHFELT D W. Pegylated liposomal doxorubicin in thetreatment of AIDS-related Kaposi’s sarcoma [J]. International journal of nanomedicine,2007,2(3):345.
    [48] KATAOKA K, HARADA A, NAGASAKI Y. Block copolymer micelles for drug delivery: design,characterization and biological significance [J]. Advanced Drug Delivery Reviews,2001,47(1):113-131.
    [49] MALMSTEN M. Surfactants and polymers in drug delivery [M]. Marcel Dekker New York,2002
    [50] YOKOYAMA M, KWON G S, OKANO T, et al. Preparation of micelle-forming polymer-drugconjugates [J]. Bioconjugate chemistry,1992,3(4):295-301.
    [51] DENG C, JIANG Y, CHENG R, et al. Biodegradable polymeric micelles for targeted andcontrolled anticancer drug delivery: promises, progress and prospects [J]. Nano Today,2012,7(5):467-480.
    [52] MAMMEN M, CHOI S-K, WHITESIDES G M. Polyvalent interactions in biological systems:implications for design and use of multivalent ligands and inhibitors [J]. Angewandte ChemieInternational Edition,1998,37(20):2754-2794.
    [53] BOAS U, HEEGAARD P M. Dendrimers in drug research [J]. Chem Soc Rev,2004,33(1):43-63.
    [54] TANG M, SZOKA F. The influence of polymer structure on the interactions of cationic polymerswith DNA and morphology of the resulting complexes [J]. Gene therapy,1997,4(8):
    [55] CAMINADE A M, TURRIN C O, MAJORAL J P. Dendrimers and DNA: combinations of twospecial topologies for nanomaterials and biology [J]. Chemistry-a European Journal,2008,14(25):7422-7432.
    [56] NANJWADE B K, BECHRA H M, DERKAR G K, et al. Dendrimers: emerging polymers fordrug-delivery systems [J]. European Journal of Pharmaceutical Sciences,2009,38(3):185-196.
    [57] MAEDA H. Tumor-selective delivery of macromolecular drugs via the EPR effect: backgroundand future prospects [J]. Bioconjugate chemistry,2010,21(5):797-802.
    [58] ACHARYA S, SAHOO S K. PLGA nanoparticles containing various anticancer agents andtumour delivery by EPR effect [J]. Advanced drug delivery reviews,2011,63(3):170-183.
    [59] MAEDA H, BHARATE G, DARUWALLA J. Polymeric drugs for efficient tumor-targeted drugdelivery based on EPR-effect [J]. European Journal of Pharmaceutics and Biopharmaceutics,2009,71(3):409-419.
    [60] SAHA R N, VASANTHAKUMAR S, BENDE G, et al. Nanoparticulate drug delivery systems forcancer chemotherapy [J]. Molecular membrane biology,2010,27(7):215-231.
    [61] CARMELIET P, JAIN R K. Angiogenesis in cancer and other diseases [J]. Nature,2000,407(6801):249-257.
    [62] JAIN R K. The next frontier of molecular medicine: delivery of therapeutics [J]. Nature medicine,1998,4(6):655-657.
    [63] NAGAMITSU A, GREISH K, MAEDA H. Elevating blood pressure as a strategy to increasetumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors [J].Japanese journal of clinical oncology,2009,39(11):756-766.
    [64] CHRASTINA A, MASSEY K A, SCHNITZER J E. Overcoming in vivo barriers to targetednanodelivery [J]. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology,2011,3(4):421-437.
    [65] HOBBS S K, MONSKY W L, YUAN F, et al. Regulation of transport pathways in tumor vessels:role of tumor type and microenvironment [J]. Proceedings of the National Academy of Sciences,1998,95(8):4607-4612.
    [66] JAIN R K. Delivery of molecular and cellular medicine to solid tumors [J]. Advanced drugdelivery reviews,2001,46(1):149-168.
    [67] CABRAL H, MATSUMOTO Y, MIZUNO K, et al. Accumulation of sub-100nm polymericmicelles in poorly permeable tumours depends on size [J]. Nat Nanotechnol,2011,6(12):815-823.
    [68] FANG J, NAKAMURA H, MAEDA H. The EPR effect: unique features of tumor blood vesselsfor drug delivery, factors involved, and limitations and augmentation of the effect [J]. Advanced drugdelivery reviews,2011,63(3):136-151.
    [69] MONSKY W L, FUKUMURA D, GOHONGI T, et al. Augmentation of transvascular transport ofmacromolecules and nanoparticles in tumors using vascular endothelial growth factor [J]. Cancer Res,1999,59(16):4129-4135.
    [70] KANO M R, BAE Y, IWATA C, et al. Improvement of cancer-targeting therapy, usingnanocarriers for intractable solid tumors by inhibition of TGF-β signaling [J]. Proceedings of theNational Academy of Sciences,2007,104(9):3460-3465.
    [71] JOKERST J V, LOBOVKINA T, ZARE R N, et al. Nanoparticle PEGylation for imaging andtherapy [J]. Nanomedicine-Uk,2011,6(4):715-728.
    [72] KNOP K, HOOGENBOOM R, FISCHER D, et al. Poly (ethylene glycol) in drug delivery: prosand cons as well as potential alternatives [J]. Angewandte Chemie International Edition,2010,49(36):6288-6308.
    [73] GREF R, MINAMITAKE Y, PERACCHIA M T, et al. Biodegradable long-circulating polymericnanospheres [J]. Science,1994,263(5153):1600-1603.
    [74] HARRIS J M, CHESS R B. Effect of pegylation on pharmaceuticals [J]. Nature Reviews DrugDiscovery,2003,2(3):214-221.
    [75] LESERMAN L D, BARBET J, KOURILSKY F, et al. Targeting to cells of fluorescent liposomescovalently coupled with monoclonal antibody or protein A [J].1980,
    [76] HEATH T D, FRALEY R T, PAPAHDJOPOULOS D. Antibody targeting of liposomes: cellspecificity obtained by conjugation of F (ab')2to vesicle surface [J]. Science,1980,210(4469):539-541.
    [77] HOOKS M A, WADE C S, MILLIKAN W J. Muromonab CD‐3: A Review of Its Pharmacology,Pharmacokinetics, and Clinical Use in Transplantation [J]. Pharmacotherapy: The Journal of HumanPharmacology and Drug Therapy,1991,11(1):26-37.
    [78] JAMES J, DUBS G. FDA approves new kind of lymphoma treatment. Food and DrugAdministration [J]. AIDS treatment news,1997,(284):2.
    [79] ALBANELL J, BASELGA J. Trastuzumab, a humanized anti-HER2monoclonal antibody, for thetreatment of breast cancer [J]. Drugs Today,1999,35(12):931-946.
    [80] SUGANO M, EGILMEZ N K, YOKOTA S J, et al. Antibody targeting of doxorubicin-loadedliposomes suppresses the growth and metastatic spread of established human lung tumor xenografts insevere combined immunodeficient mice [J]. Cancer Res,2000,60(24):6942-6949.
    [81] BAREFORD L M, SWAAN P W. Endocytic mechanisms for targeted drug delivery [J]. Advanceddrug delivery reviews,2007,59(8):748-758.
    [82] YU B, TAI H C, XUE W, et al. Receptor-targeted nanocarriers for therapeutic delivery to cancer[J]. Molecular membrane biology,2010,27(7):286-298.
    [83] NOBS L, BUCHEGGER F, GURNY R, et al. Biodegradable nanoparticles for direct or two-steptumor immunotargeting [J]. Bioconjugate chemistry,2006,17(1):139-145.
    [84] WEINBERG W C, FRAZIER-JESSEN M R, WU W J, et al. Development and regulation ofmonoclonal antibody products: challenges and opportunities [J]. Cancer and metastasis reviews,2005,24(4):569-584.
    [85] PEER D, KARP J M, HONG S, et al. Nanocarriers as an emerging platform for cancer therapy [J].Nat Nano,2007,2(12):751-760.
    [86] ORLOVA A, TOLMACHEV V, PEHRSON R, et al. Synthetic affibody molecules: a novel classof affinity ligands for molecular imaging of HER2-expressing malignant tumors [J]. Cancer Res,2007,67(5):2178-2186.
    [87] ALEXIS F, BASTO P, LEVY‐NISSENBAUM E, et al. HER‐2‐TargetedNanoparticle–Affibody Bioconjugates for Cancer Therapy [J]. ChemMedChem,2008,3(12):1839-1843.
    [88] WILLUDA J, HONEGGER A, WAIBEL R, et al. High Thermal Stability Is Essential for TumorTargeting of Antibody Fragments Engineering of a Humanized Anti-epithelial Glycoprotein-2(Epithelial Cell Adhesion Molecule) Single-Chain Fv Fragment [J]. Cancer Res,1999,59(22):5758-5767.
    [89] CORTEZ-RETAMOZO V, BACKMANN N, SENTER P D, et al. Efficient cancer therapy with ananobody-based conjugate [J]. Cancer Res,2004,64(8):2853-2857.
    [90] CHOU L Y, MING K, CHAN W C. Strategies for the intracellular delivery of nanoparticles [J].Chem Soc Rev,2011,40(1):233-245.
    [91] CHOI K Y, CHUNG H, MIN K H, et al. Self-assembled hyaluronic acid nanoparticles for activetumor targeting [J]. Biomaterials,2010,31(1):106-114.
    [92] THOMAS T P, SHUKLA R, KOTLYAR A, et al. Dendrimer Epidermal Growth FactorConjugate Displays Superagonist Activity [J]. Biomacromolecules,2008,9(2):603-609.
    [93] CUI B, WU C, CHEN L, et al. One at a time, live tracking of NGF axonal transport usingquantum dots [J]. Proceedings of the National Academy of Sciences,2007,104(34):13666-13671.
    [94] STERN S T, MCNEIL S E. Nanotechnology safety concerns revisited [J]. Toxicological sciences,2008,101(1):4-21.
    [95] GU F X, KARNIK R, WANG A Z, et al. Targeted nanoparticles for cancer therapy [J]. Nano today,2007,2(3):14-21.
    [96] BRISSETTE R, PRENDERGAST J K A, GOLDSTEIN N I. Identification of cancer targets andtherapeutics using phage display [J]. Curr Opin Drug Disc,2006,9(3):363-369.
    [97] KRAG D N, SHUKLA G S, SHEN G-P, et al. Selection of tumor-binding ligands in cancerpatients with phage display libraries [J]. Cancer Res,2006,66(15):7724-7733.
    [98] DESGROSELLIER J S, CHERESH D A. Integrins in cancer: biological implications andtherapeutic opportunities [J]. Nat Rev Cancer,2010,10(1):9-22.
    [99] WILSON D S, SZOSTAK J W. In vitro selection of functional nucleic acids [J]. Annual review ofbiochemistry,1999,68(1):611-647.
    [100] TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment: RNAligands to bacteriophage T4DNA polymerase [J]. Science,1990,249(4968):505-510.
    [101] ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specificligands [J]. Nature,1990,346(6287):818-822.
    [102] FAROKHZAD O C, CHENG J, TEPLY B A, et al. Targeted nanoparticle-aptamerbioconjugates for cancer chemotherapy in vivo [J]. Proceedings of the National Academy of Sciences,2006,103(16):6315-6320.
    [103] GUO J, GAO X, SU L, et al. Aptamer-functionalized PEG–PLGA nanoparticles forenhanced anti-glioma drug delivery [J]. Biomaterials,2011,32(31):8010-8020.
    [104] WU Z, TANG L-J, ZHANG X-B, et al. Aptamer-modified nanodrug delivery systems [J].ACS nano,2011,5(10):7696-7699.
    [105] DRABOVICH A P, BEREZOVSKI M V, MUSHEEV M U, et al. Selection of SmartSmall-Molecule Ligands: The Proof of Principle [J]. Anal Chem,2009,81(1):490-494.
    [106] TALEKAR M, KENDALL J, DENNY W, et al. Targeting of nanoparticles in cancer: drugdelivery and diagnostics [J]. Anti-Cancer Drug,2011,22(10):949-962.
    [107] XIA W, LOW P S. Folate-targeted therapies for cancer [J]. Journal of medicinal chemistry,2010,53(19):6811-6824.
    [108] REDDY J A, DORTON R, WESTRICK E, et al. Preclinical evaluation of EC145, afolate-vinca alkaloid conjugate [J]. Cancer Res,2007,67(9):4434-4442.
    [109] LIANG C, YANG Y, LING Y, et al. Improved therapeutic effect of folate-decoratedPLGA–PEG nanoparticles for endometrial carcinoma [J]. Bioorganic&medicinal chemistry,2011,19(13):4057-4066.
    [110] HILGENBRINK A R, LOW P S. Folate receptor‐mediated drug targeting: Fromtherapeutics to diagnostics [J]. J Pharm Sci,2005,94(10):2135-2146.
    [111]GU F, ZHANG L, TEPLY B A, et al. Precise engineering of targeted nanoparticles by usingself-assembled biointegrated block copolymers [J]. Proceedings of the National Academy of Sciences,2008,105(7):2586-2591.
    [112] KAMALY N, KALBER T, THANOU M, et al. Folate receptor targeted bimodal liposomesfor tumor magnetic resonance imaging [J]. Bioconjugate Chemistry,2009,20(4):648-655.
    [113] OHGUCHI Y, KAWANO K, HATTORI Y, et al. Selective delivery of folate-PEG-linked,nanoemulsion-loaded aclacinomycin A to KB nasopharyngeal cells and xenograft: effect of chainlength and amount of folate-PEG linker [J]. Journal of drug targeting,2008,16(9):660-667.
    [114] WIJAGKANALAN W, KAWAKAMI S, HASHIDA M. Glycosylated carriers forcell-selective and nuclear delivery of nucleic acids [J]. Frontiers in bioscience (Landmark edition),2010,162970-2987.
    [115] GANTA S, DEVALAPALLY H, SHAHIWALA A, et al. A review of stimuli-responsivenanocarriers for drug and gene delivery [J]. Journal of Controlled Release,2008,126(3):187-204.
    [116] LEE E S, GAO Z, BAE Y H. Recent progress in tumor pH targeting nanotechnology [J].Journal of Controlled Release,2008,132(3):164-170.
    [117] STUBBS M, MCSHEEHY P M, GRIFFITHS J R, et al. Causes and consequences of tumouracidity and implications for treatment [J]. Molecular medicine today,2000,6(1):15-19.
    [118] CHEN W, MENG F, LI F, et al. pH-responsive biodegradable micelles based on acid-labilepolycarbonate hydrophobe: synthesis and triggered drug release [J]. Biomacromolecules,2009,10(7):1727-1735.
    [119] YUAN Z, QUE Z, CHENG S, et al. pH-triggered blooming of ‘nano-flowers’ for tumorintracellular drug delivery [J]. Chemical Communications,2012,48(65):8129-8131.
    [120] VAN BUTSELE K, CAJOT S, VAN VLIERBERGHE S, et al. pH‐Responsive Flower‐Type Micelles Formed by a Biotinylated Poly (2‐vinylpyridine)‐block‐poly (ethylene oxide)‐block‐poly (ε‐caprolactone) Triblock Copolymer [J]. Advanced Functional Materials,2009,19(9):1416-1425.
    [121] GAO G H, LEE J W, NGUYEN M K, et al. pH-responsive polymeric micelle based onPEG-poly (β-amino ester)/(amido amine) as intelligent vehicle for magnetic resonance imaging indetection of cerebral ischemic area [J]. Journal of Controlled Release,2011,155(1):11-17.
    [122] CHEN W, MENG F, CHENG R, et al. pH-Sensitive degradable polymersomes for triggeredrelease of anticancer drugs: A comparative study with micelles [J]. Journal of Controlled Release,2010,142(1):40-46.
    [123] MENG F, HENNINK W E, ZHONG Z. Reduction-sensitive polymers and bioconjugates forbiomedical applications [J]. Biomaterials,2009,30(12):2180-2198.
    [124] KUPPUSAMY P, LI H, ILANGOVAN G, et al. Noninvasive imaging of tumor redox statusand its modification by tissue glutathione levels [J]. Cancer Res,2002,62(1):307-312.
    [125] ZHANG A, ZHANG Z, SHI F, et al. Redox‐Sensitive Shell‐Crosslinked Polypeptide‐block‐Polysaccharide Micelles for Efficient Intracellular Anticancer Drug Delivery [J].Macromolecular bioscience,2013,13(9):1249-1258.
    [126] GAO Z, ZHANG L, SUN Y. Nanotechnology applied to overcome tumor drug resistance [J].Journal of Controlled Release,2012,162(1):45-55.
    [127] ZHAO Y. Rational design of light‐controllable polymer micelles [J]. The Chemical Record,2007,7(5):286-294.
    [128] ZHU L, KATE P, TORCHILIN V P. Matrix metalloprotease2-responsive multifunctionalliposomal nanocarrier for enhanced tumor targeting [J]. ACS nano,2012,6(4):3491-3498.
    [129] MARIN A, MUNIRUZZAMAN M, RAPOPORT N. Mechanism of the ultrasonic activationof micellar drug delivery [J]. Journal of controlled release,2001,75(1):69-81.
    [130] HUSSEINI G A, PITT W G. Ultrasonic‐activated micellar drug delivery for cancertreatment [J]. J Pharm Sci,2009,98(3):795-811.
    [131] CHENG Z, THOREK D L, TSOURKAS A. Gadolinium‐Conjugated DendrimerNanoclusters as a Tumor‐Targeted T1Magnetic Resonance Imaging Contrast Agent [J]. AngewandteChemie International Edition,2010,49(2):346-350.
    [132] CHENG Z, AL ZAKI A, HUI J Z, et al. Multifunctional nanoparticles: cost versus benefit ofadding targeting and imaging capabilities [J]. Science,2012,338(6109):903-910.
    [133] YAN X, WANG F, ZHENG B, et al. Stimuli-responsive supramolecular polymeric materials[J]. Chem Soc Rev,2012,41(18):6042-6065.
    [134] ZHOU J, RITTER H. Cyclodextrin functionalized polymers as drug delivery systems [J].Polymer Chemistry,2010,1(10):1552-1559.
    [135] CHEN Y, LIU Y. Cyclodextrin-based bioactive supramolecular assemblies [J]. Chem SocRev,2010,39(2):495-505.
    [136] XIAO W, CHEN W H, XU X D, et al. Design of a Cellular‐Uptake‐Shielding “Plug andPlay” Template for Photo Controllable Drug Release [J]. Adv Mater,2011,23(31):3526-3530.
    [137] ALLEN T M, CULLIS P R. Drug delivery systems: entering the mainstream [J]. Science,2004,303(5665):1818-1822.
    [138] SHAHIN M, AHMED S, KAUR K, et al. Decoration of polymeric micelles withcancer-specific peptide ligands for active targeting of paclitaxel [J]. Biomaterials,2011,32(22):5123-5133.
    [139] ZHU Z, LI Y, LI X, et al. Paclitaxel-loaded poly (N-vinylpyrrolidone)-b-poly(ε-caprolactone) nanoparticles: Preparation and antitumor activity in vivo [J]. Journal of ControlledRelease,2010,142(3):438-446.
    [140] ISHIHARA T, MAEDA T, SAKAMOTO H, et al. Evasion of the accelerated blood clearancephenomenon by coating of nanoparticles with various hydrophilic polymers [J]. Biomacromolecules,2010,11(10):2700-2706.
    [141] LI B, WANG Q, WANG X, et al. Preparation, drug release and cellular uptake ofdoxorubicin-loaded dextran-b-poly (-caprolactone) nanoparticles [J]. Carbohydrate polymers,2013,93(2):430-437.
    [142] WANG X, ISHIDA T, KIWADA H. Anti-PEG IgM elicited by injection of liposomes isinvolved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes [J]. Journal ofControlled Release,2007,119(2):236-244.
    [143] SUN H, GUO B, LI X, et al. Shell-sheddable micelles based on dextran-SS-poly(ε-caprolactone) diblock copolymer for efficient intracellular release of doxorubicin [J].Biomacromolecules,2010,11(4):848-854.
    [144] SCHATZ C, LOUGUET S, LE MEINS J F, et al. Polysaccharide‐block‐polypeptideCopolymer Vesicles: Towards Synthetic Viral Capsids [J]. Angewandte Chemie,2009,121(14):2610-2613.
    [145] LIU Z, CAI W, HE L, et al. In vivo biodistribution and highly efficient tumour targeting ofcarbon nanotubes in mice [J]. Nat Nanotechnol,2007,2(1):47-52.
    [146] WU D-Q, LU B, CHANG C, et al. Galactosylated fluorescent labeled micelles as a livertargeting drug carrier [J]. Biomaterials,2009,30(7):1363-1371.
    [147] BAE Y, FUKUSHIMA S, HARADA A, et al. Design of environment‐sensitivesupramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive tointracellular pH change [J]. Angewandte Chemie International Edition,2003,42(38):4640-4643.
    [148] BAE Y, NISHIYAMA N, FUKUSHIMA S, et al. Preparation and biological characterizationof polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumorpermeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy [J].Bioconjugate chemistry,2005,16(1):122-130.
    [149] MURTHY N, CAMPBELL J, FAUSTO N, et al. Design and synthesis of pH-responsivepolymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides [J].Journal of Controlled Release,2003,89(3):365-374.
    [150] MURTHY N, THNG Y X, SCHUCK S, et al. A novel strategy for encapsulation and releaseof proteins: hydrogels and microgels with acid-labile acetal cross-linkers [J]. Journal of the AmericanChemical Society,2002,124(42):12398-12399.
    [151] HUANG X, DU F, CHENG J, et al. Acid-sensitive polymeric micelles based onthermoresponsive block copolymers with pendent cyclic orthoester groups [J]. Macromolecules,2009,42(3):783-790.
    [152] CUI L, COHEN J A, BROADERS K E, et al. Mannosylated dextran nanoparticles: apH-sensitive system engineered for immunomodulation through mannose targeting [J]. Bioconjugatechemistry,2011,22(5):949-957.
    [153] BACHELDER E M, BEAUDETTE T T, BROADERS K E, et al. Acetal-derivatized dextran:an acid-responsive biodegradable material for therapeutic applications [J]. Journal of the AmericanChemical Society,2008,130(32):10494-10495.
    [154] COHEN J L, SCHUBERT S, WICH P R, et al. Acid-degradable cationic dextran particles forthe delivery of siRNA therapeutics [J]. Bioconjugate chemistry,2011,22(6):1056-1065.
    [155] KIM Y, POURGHOLAMI M H, MORRIS D L, et al. Triggering the fast release of drugsfrom crosslinked micelles in an acidic environment [J]. Journal of Materials Chemistry,2011,21(34):12777-12783.
    [156] SUN H, GUO B, CHENG R, et al. Biodegradable micelles with sheddable poly (ethyleneglycol) shells for triggered intracellular release of doxorubicin [J]. Biomaterials,2009,30(31):6358-6366.
    [157] JA CZEWSKI D, SONG J, CS NYI E, et al. Organometallic polymeric carriers for redoxtriggered release of molecular payloads [J]. Journal of Materials Chemistry,2012,22(13):6429-6435.
    [158] GHUGARE S V, MOZETIC P, PARADOSSI G. Temperature-sensitive poly (vinylalcohol)/poly (methacrylate-co-N-isopropyl acrylamide) microgels for doxorubicin delivery [J].Biomacromolecules,2009,10(6):1589-1596.
    [159] THORNTON P D, MART R J, ULIJN R V. Enzyme‐Responsive Polymer HydrogelParticles for Controlled Release [J]. Adv Mater,2007,19(9):1252-1256.
    [160] KIMIZUKA N, KAWASAKI T, KUNITAKE T. Self-organization of bilayer membranesfrom amphiphilic networks of complementary hydrogen bonds [J]. Journal of the American ChemicalSociety,1993,115(10):4387-4388.
    [161] ZHANG X, WANG C. Supramolecular amphiphiles [J]. Chem Soc Rev,2011,40(1):94-101.
    [162] GOHY J-F, LOHMEIJER B G, SCHUBERT U S. Metallo-supramolecular block copolymermicelles [J]. Macromolecules,2002,35(12):4560-4563.
    [163] WANG C, KANG Y, LIU K, et al. pH and enzymatic double-stimuli responsivemulti-compartment micelles from supra-amphiphilic polymers [J]. Polym Chem,2012,3(11):3056-3059.
    [164] CHEN L, TIAN Y-K, DING Y, et al. Multistimuli Responsive Supramolecular Cross-LinkedNetworks On the Basis of the Benzo-21-Crown-7/Secondary Ammonium Salt Recognition Motif [J].Macromolecules,2012,45(20):8412-8419.
    [165] WANG C, CHEN Q, XU H, et al. Photoresponsive Supramolecular Amphiphiles forControlled Self‐Assembly of Nanofibers and Vesicles [J]. Adv Mater,2010,22(23):2553-2555.
    [166] YAN Q, YUAN J, CAI Z, et al. Voltage-responsive vesicles based on orthogonal assembly oftwo homopolymers [J]. Journal of the American Chemical Society,2010,132(27):9268-9270.
    [167] XUE M, ZHONG X, SHAPOSHNIK Z, et al. pH-operated mechanized porous siliconnanoparticles [J]. Journal of the American Chemical Society,2011,133(23):8798-8801.
    [168] WANG L, LI L L, FAN Y S, et al. Host-Guest Supramolecular Nanosystems for CancerDiagnostics and Therapeutics [J]. Adv Mater,2013,25(28):3888-3898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700