用户名: 密码: 验证码:
葡聚糖基“智能”纳米凝胶的自组装辅助制备及生物应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米凝胶是一类由亲水性或两亲性高分子组成的纳米尺度三维互穿网络,由于其具有亲水性、稳定性和可修饰性,在生物显影,药物、基因输运,及生物活性分子检测等生物医用领域具有广阔的应用前景。本文基于葡聚糖这种生物相容性良好的天然大分子多糖,通过硝酸铈铵在葡聚糖链上引发多种功能单体的自由基聚合,并诱发葡聚糖主链与功能单体接枝链自组装形成纳米聚集体,通过在此过程中加入适当交联剂,从而将“聚合”、“组装”、“化学交联”等过程一步完成,高效制得具有环境敏感性的“智能”纳米凝胶(所得纳米凝胶水溶液的浓度可达10mg/mL以上)。在这种自组装辅助的一步法(self-assembly assisted method,SAA method)中,设计并使用具有不同功能性的单体或交联剂,可赋予纳米凝胶对pH、光或特定化学物质的环境敏感性。本研究在对这种自组装辅助一步法研究的基础上,对制备的多种功能性纳米凝胶进行了结构、组成的表征与分析,并探究了其在药物输送、生物标记等领域的生物应用前景。本论文具体开展了以下工作:
     (1)利用自组装辅助法通过氢键诱导的自组装合成了葡聚糖-聚丙烯酸纳米凝胶(Dex-PAANGs),并对其合成参数进行了研究,通过控制反应物的投料,可以控制粒子的粒径及表面电荷;对其进行荧光修饰后,制备得到的荧光纳米凝胶(fluorescent nanogels, FNGs)可有效标记脂肪干细胞(adipose-derived stem cells, ADSCs)。实验结果表明,粒径和表面电荷对其进入ADSCs的能力有显著影响,粒径小于200nm的带电粒子更容易进入细胞。此外,FNGs还可用于标记淋巴管内皮细胞(lymphaticendothelial cells, LECs),且不影响LECs的正常功能,具有很好的生物相容性;经皮下注射后,FNGs由于粒径较大(~200nm),不进入血管,而是经淋巴回流进入淋巴管,并在淋巴结部位显影,标记时间可长达2-4h,对淋巴结具有一定的选择性,有十分重要的临床意义。此外,研究表明,Dex-PAA NGs还可负载淋巴水肿治疗药物—血管内皮生长因子C(vascular endothelial growth factor C, VEGF-C),在治疗淋巴水肿中具有应用潜力。
     (2)针对肿瘤部位还原性较强、弱酸性的“肿瘤微环境”,通过引入含二硫键的交联剂二烯丙基二硫(diallyl disulfide, DADS),设计并成功制得还原环境敏感的葡聚糖基纳米凝胶,其在还原性环境中可“解交联”。并分别通过“氢键”和“疏水作用力”这两种不同的自组装驱动力,利用自组装辅助一步法制备了由亲水性单体丙烯酸(acrylic acid,AA)或疏水性单体丙烯酸甲酯(methyl acrylate, MA)组成的Dex-SS-PAANGs和Dex-SS-PMA NGs。在制备方法的研究中,本部分将单体由丙烯酸(acrylicacid, AA)这种聚阴离子单体拓展到丙烯酸甲酯(methyl acrylate, MA)这种疏水单体,从而将SAA法合成葡聚糖基纳米凝胶的单体范围从亲水性的阴离子单体推广到疏水性单体,大大提高了该法的普适性。
     在成功制备两类还原环境敏感的纳米凝胶,并对其机理进行研究的基础上,本部分对两类纳米凝胶的尺度、形貌、还原环境响应性、特别是抗肿瘤药物输送能力进行了研究。动态光散射(DLS)及静态光散射(SLS)研究发现,两类纳米凝胶均可在还原剂如谷胱甘肽GSH存在下出现一定的粒径和分子量变化,表现出一定的还原性环境“解交联”行为。这种还原性环境敏感的特点在还原性物质过表达的肿瘤部位的药物输送中具有重要意义,因而本研究将这类纳米凝胶用于抗肿瘤药物盐酸阿霉素(DOX)的负载,通过酸敏感的腙键将DOX负载于两类纳米凝胶中,并对药物释放行为及其在宫颈癌及乳腺癌治疗中的应用进行了研究。研究表明,Dex-SS-PMANGs的分布较Dex-SS-PAANGs窄,且粒径较小,分散均匀,性能更加稳定。Dex-SS-PMANGs通过腙键连接DOX的能力较Dex-SS-PAA NGs强,载药量和载药效率均较高。此外,Dex-SS-PMA-DOX载药纳米凝胶对人宫颈癌HeLa细胞和人乳腺癌MCF-7细胞的抑制能力较Dex-SS-PAA-DOX强,能够很好地抑制肿瘤细胞的生长。尤其是当使用还原剂GSH模拟体内环境时,这类二硫键交联的纳米凝胶比碳-碳键交联的载体能够更好地释药并杀死肿瘤细胞,其中对乳腺癌MCF-7细胞的杀伤能力更强一些。后续的在体抑瘤实验中,发现Dex-SS-PMA-DOX保留了DOX的抑制肿瘤生长的能力,同时明显降低了DOX的毒副作用。这表明Dex-SS-PMA-DOX是一种具有良好应用前景的抗肿瘤药物输送体系。
     (3)选用pH和葡萄糖双响应的丙烯酰胺基苯硼酸单体,利用疏水力诱导的自组装作用一步制备了具有pH/葡萄糖双响应性的葡聚糖-聚丙烯酰胺基苯硼酸纳米凝胶(Dex-PAAPBANGs, DABANGs)体系。该类纳米凝胶葡萄糖响应性的根源在于当二醇类物质(如葡萄糖等)存在时,PAAPBA链能够发生离解平衡的移动,电离程度增加,亲水性增强。研究发现,DABA NGs在pH=10时具有明显的葡萄糖响应性,当加入葡萄糖时,其粒径增大、Zeta电位变负。为进一步证实该纳米凝胶的葡萄糖响应性,本部分还选用了一种荧光发射光谱对于环境亲/疏水性敏感的荧光素单体2-[4-(3-羟基-4-氧代-4H-苯并吡喃-2-基)苯氧基]乙基丙烯酰胺(2-[4-(3-hydroxy-4-oxo-4H-chromen-2-yl)phenoxy] ethylacrylamide,3HF-AM),通过该单体与AAPBA单体的共聚一步制备了具有荧光性能的纳米凝胶FDABA NGs。研究表明,碱性条件下葡萄糖的加入可诱导FDABA NGs水溶液荧光颜色由蓝绿色向纯蓝色转变。这一“可视化”的葡萄糖敏感行为对于环境中的葡萄糖检测非常有利。此外,DABA NGs还能够通过非共价键力负载治疗糖尿病的药物胰岛素(insulin, INS),INS从载体中的释放行为具有一定的葡萄糖响应性,从而为胰岛素的葡萄糖敏感释放提供了可能。
     综上所述,本研究提出并实施了一种自组装辅助的一步法(SAA)成功制备了多种具有环境敏感性和良好生物相容性的葡聚糖基“智能”纳米凝胶。本研究主要的创新点在于将这种制备葡聚糖基纳米凝胶的SAA方法由水溶性阴离子单体拓展至疏水性单体,并通过采用二硫键连接的交联剂成功制备了性能可控的还原环境敏感性纳米凝胶,将SAA方法发展成为一定范围内普适的多糖基纳米凝胶制备方法,并为其生物医学应用奠定了基础。
Nanogels are nano-scaled three dimensional interpenetrating networksformed by hydrophilic or amphiphilic polymers, and their excellent stabilityin aqueous solutions and ability to deliver a wide range of cargoes haverendered them very popular in biomedical applications. Nanogels can bemodified with fluorescent or magnetic agents for bio-imaging, or loaded withdrugs, proteins and growth factors for environmental-sensitive release, orused for bioactive molecules detection in complexed system. In this work,we efficiently fabricated several dextran-based smart nanogels with aself-assembly assisted one-pot synthesis method (SAA method). Duringthis process, free radicals were initiated in dextran backbone by using cericammonium nitrate (CAN), afterwards, various functional monomerspolymerized from dextran backbone. With the proceeding of thepolymerization of monomers, the self-assembly between dextran backbonesand polymeric grafts was induced to form nano-aggregates. With theaddition of di-vinyl monomers in this process, the “polymerization”,“self-assembly”, and “crosslinking” were accomplished together with highefficiency. The functional nanogels can be fabricated by this SAA methodat the concentration of as high as10mg/mL. Various monomers andcrosslinkers were utilized for the preparation of nanogels with pH-, reducingenvironment-, or even glucose-responsiveness. The structure andcomposition of the as-prepared nanogels were confirmed and their potentialapplications in biomedical fields were explored. The main contributions inthis thesis are as follows:
     (1) Dextran-poly(acrylic acid) nanogels (Dex-PAA NGs) were fabricatedwith hydrogen force-assisted self-assembly, and parameters affectingnanogels size and Zeta potential were studied. Dex-PAA NGs were furtherconjugated with a small fluorescent molecule5-aminofluorescein (5-AF)through amide condensation and the acquired fluorescent NGs (FNGs) wereused for adipose-derived stem cells (ADSCs) imaging. Furtherinvestigations discovered that sizes and Zeta potentials were two importantfactors affecting FNGs ability to enter ADSCs cells, and the results showedthat charged nanogels with a diameter less than200nm could enter cellsmore efficiently. The preferred FNGs were then used for lymphaticendothelial cells (LECs) labeling, and the FNGs-labeled LECs functionssuch as Dil-Ac-LDL ingestion and micro-tube formation ability were notaffected. Owing to their capability of entering lymph vessel by lymphaticdrainage, FNGs could also be used for lymph node imaging when injectedsubcutaneously, and the imaging time lasted for2-4hours which was muchbetter than the currently used imaging agents. What s more, Dex-PAA NGswere used in loading vascular endothelial growth factor C (VEGF-C), a drugwhich has been proven useful for lymphedema treatment. Based on thestudy, Dex-PAA NGs are of potential in lymphedema treatment.
     (2) As is well known, the tumor microenvironment is more reductiveand acidic than normal human tissues, we fabricated reduction-sensitivedextran-based nanogels through the SAA method by using the disulfide bond(-SS-) containing diallyl disulfide (DADS) as crosslinker. The disulfidebond in the resultant nanogels could be reduced to thiols when reductant waspresent, as a result, the nanogels were de-crosslinkable in tumormicroenvironments. Here we fabricated Dex-SS-PAA NGs from acrylicacid (AA) based on the self-assembly force of hydrogen bond, andDex-SS-PMA NGs from methyl acrylate (MA) with hydrophobic interactions.The successful fabrication of Dex-SS-PMA NGs greatly expanded the scopeof the SAA method from hydrophilic monomers to hydrophobic ones, thusallowing the fabrication of a diverse range of dextran-based nanogels.
     After the successful fabrication of two kinds of reduction-sensitivenanogels and the studies on their fabrication mechanisms, the size,morphology, reduction-sensitiveness and anti-cancer drug delivery abilities ofthese two categories of nanogels were studied. Dynamic light scattering(DLS) and static light scattering (SLS) results showed that the size andmolecular weight (Mw) of the two nanogels changed with the addition ofreductive agent glutathione (GSH), so their reduction-sensitivede-crosslinkage behavior was verified. The reduction-sensitive carrierswere very useful and promising in anti-cancer drug delivery because of thereductive tumor microenvironment. With this in mind, we conjugated aneffective anti-cancer drug doxorubicin hydrochloride (DOX) onto theDex-SS-PAA NGs and Dex-SS-PMA NGs through an acid-labile hydrazonebond, and their release behaviors and anti-cancer effects on human cervicalcancer HeLa cells and human brease cancer MCF-7cells were studied.Compared with Dex-SS-PAA NGs, the Dex-SS-PMA NGs had a narrowersize distribution, smaller size than Dex-SS-PAA NGs, higher loading contentand encapsulation efficiency of DOX when load DOX through the hydrazonebond. Correspondingly, Dex-SS-PMA-DOX NGs also revealed a strongerinhibition ability toward HeLa cells and MCF-7cells. When GSH wasadded to the culture medium to simulate the tumor environment, the DADScrosslinked nanogels showed better anti-cancer performance than theirnon-degradable counterparts, especially toward MCF-7cells. The in vivoexperiments carried out on nude mice with MCF-7tumor xenograft showedthat Dex-SS-PMA-DOX retained the anti-cancer ability of free DOX butsignificantly reduced the side effects. Dex-SS-PMA-DOX was shown to bea very promising anti-cancer drug delivery system.
     (3) pH/glucose dual responsive nanogels based on dextran andpoly(3-acrylamidophenylboronic acid)(PAAPBA) were fabricated withhydrophobic force assisted self-assembly strategy. The as-preparedDex-PAAPBA NGs (short for DABA NGs) showed a narrow size dispersity.As the ionization equilibrium shift of the PAAPBA chains would shift to the formation of more negatively charged species when glucose was present,DABA NGs exhibited a volume increase and Zeta potential decrease uponglucose addition at slightly alkaline pH. The glucose sensitivity of DABANGs was visualized by introducing a stimuli-responsive fluorescent agent,2-[4-(3-hydroxy-4-oxo-4H-chromen-2-yl)phenoxy]ethylacrylamide (3HF-AM) into the system. The fluorescence color of the resultant FDABA NGschanged from greenish blue to a deeper blue when glucose was added, andthis fluorescence variation upon glucose addition might have potentialapplication for glucose detection. Moreover, DABA NGs could encapsulateinsulin-a drug used for diabetes treatment, and the insulin-loaded nanogelsshowed a glucose-responsive release behavior, which may have potential forin vivo insulin delivery.
     In conclusion, we proposed and realized an SAA method for thepreparation of various dextran-based smart nanogels with environmentalsensitiveness and good biocompatibility. The novelty of this thesis lies inthe development and the universal applicability of the SAA method, whichinclude the expandation of the SAA method from hydrophilic polyanionmonomers to hydrophobic ones, the introduction of disulfide-containingcrosslinkers to prepare reduction-sensitive nanogels, and the exploration ofthe biomedical applications of these dextran-based smart nanogels.
引文
[1]张阳德.纳米生物技术在医学上的研究现状及应用前景[J].临床外科杂志.2005,13(1):40-41.
    [2]徐勇,李楠.纳米技术在生物医学上的应用[J].材料导报.2007,21(8):11-13.
    [3] Navalakhe, R. M., Nandedkar, T. D. Application of nanotechnology in biomedicine[J].Indian Journal of Experimental Biology.2007,45(2):160-165.
    [4] Shidhaye, S., Lotlikar, V., Malke, S., et al. Nanogel engineered polymeric micelles fordrug delivery[J]. Current Drug Therapy.2008,3(3):209-217.
    [5] Kabanov, A. V., Vinogradov, S. V. Nanogels as pharmaceutical carriers: Finitenetworks of infinite capabilities[J]. Angewandte Chemie International Edition.2009,48(30):5418-5429.
    [6]杨祥良,徐辉碧,谬明阳.纳米药物安全性.北京:科学出版社,2010:41-42.
    [7] Zha, L., Banik, B., Alexis, F. Stimulus responsive nanogels for drug delivery[J]. SoftMatter.2011,7(13):5908-5916.
    [8] Zhang, Y., Jin, Q., Zhao, J., et al. Facile fabrication of pH-sensitive core–shellnanoparticles based on HEC and PMAA via template polymerization[J]. EuropeanPolymer Journal.2010,46(7):1425-1435.
    [9] Akiyoshi, K., Kobayashi, S., Shichibe, S., et al. Self-assembled hydrogel nanoparticleof cholesterol-bearing pullulan as a carrier of protein drugs: Complexation andstabilization of insulin[J]. Journal of Controlled Release.1998,54(3):313-320.
    [10] Yu, S., Yao, P., Jiang, M., et al. Nanogels prepared by self-assembly of oppositelycharged globular proteins[J]. Biopolymers.2006,83(2):148-158.
    [11] Daoud-Mahammed, S., Couvreur, P., Gref, R. Novel self-assembling nanogels:Stability and lyophilisation studies[J]. International Journal of Pharmaceutics.2007,332(1–2):185-191.
    [12] Sasaki, Y., Akiyoshi, K. Nanogel engineering for new nanobiomaterials: fromchaperoning engineering to biomedical applications[J]. The Chemical Record.2010,10(6):366-376.
    [13] Ozawa, Y., Sawada, S. I., Morimoto, N., et al. Self-assembled nanogel ofhydrophobized dendritic dextrin for protein delivery[J]. Macromolecular Bioscience.2009,9(7):694-701.
    [14] Song, J. M., Winnik, F. M., Brash, J. L. Synthesis and solution properties offluorescently labeled amphiphilic (N-alkylacrylamide) oligomers[J]. Macromolecules.1998,31(1):109-115.
    [15] Lee, K. Y., Jo, W. H., Kwon, I. C., et al. Structural determination and interior polarityof self-aggregates prepared from deoxycholic acid-modified chitosan in water[J].Macromolecules.1998,31(2):378-383.
    [16] Akiyoshi, K., Deguchi, S., Moriguchi, N., et al. Self-aggregates of hydrophobizedpolysaccharides in water. Formation and characteristics of nanoparticles[J].Macromolecules.1993,26(12):3062-3068.
    [17]郑俊民.药用高分子材料.北京:中国医药科技出版社,2000.
    [18] McAllister, K., Sazani, P., Adam, M., et al. Polymeric nanogels produced via inversemicroemulsion polymerization as potential gene and antisense delivery agents[J]. Journalof the American Chemical Society.2002,124(51):15198-15207.
    [19] Sahiner, N., Godbey, W. T., McPherson, G., et al. Microgel, nanogel and hydrogel–hydrogel semi-IPN composites for biomedical applications: synthesis andcharacterization[J]. Colloid and Polymer Science.2006,284(10):1121-1129.
    [20] Oh, J. K., Tang, C., Gao, H., et al. Inverse miniemulsion ATRP: A new method forsynthesis and functionalization of well-defined water-soluble/cross-linked polymericparticles[J]. Journal of the American Chemical Society.2006,128(16):5578-5584.
    [21] Kwon, Y. J., Standley, S. M., Goh, S. L., et al. Enhanced antigen presentation andimmunostimulation of dendritic cells using acid-degradable cationic nanoparticles[J].Journal of Controlled Release.2005,105(3):199-212.
    [22] Murthy, N., Xu, M., Schuck, S., et al. A macromolecular delivery vehicle forprotein-based vaccines: Acid-degradable protein-loaded microgels[J]. Proceedings of theNational Academy of Sciences.2003,100(9):4995-5000.
    [23] Hennink, W. E., van Nostrum, C. F. Novel crosslinking methods to designhydrogels[J]. Advanced Drug Delivery Reviews.2002,54(1):13-36.
    [24] Vinogradov, S., Batrakova, E., Kabanov, A. Poly(ethylene glycol)–polyethyleneimineNanoGel particles: novel drug delivery systems for antisense oligonucleotides[J].Colloids and Surfaces B: Biointerfaces.1999,16(1–4):291-304.
    [25] Zhang, Q., Remsen, E. E., Wooley, K. L. Shell cross-linked nanoparticles containinghydrolytically degradable, crystalline core domains[J]. Journal of the American ChemicalSociety.2000,122(15):3642-3651.
    [26] Wang, W., Li, T., Yu, T., et al. Synthesis of multiblock copolymers by couplingreaction based on self-assembly and click chemistry[J]. Macromolecules.2008,41(24):9750-9754.
    [27] Yusa, S.-i., Sugahara, M., Endo, T., et al. Preparation and characterization of apH-responsive nanogel based on a photo-cross-linked micelle formed from blockcopolymers with controlled structure[J]. Langmuir.2009,25(9):5258-5265.
    [28] Mok, H., Park, T. G. PEG-assisted DNA solubilization in organic solvents forpreparing cytosol specifically degradable PEG/DNA nanogels[J]. Bioconjugate Chemistry.2006,17(6):1369-1372.
    [29] Tang, M., Dou, H., Sun, K. One-step synthesis of dextran-based stable nanoparticlesassisted by self-assembly[J]. Polymer.2006,47(2):728-734.
    [30] Dou, H., Yang, W., Tao, K., et al. Thermal sensitive microgels with stable andreversible photoluminescence based on covalently bonded quantum dots[J]. Langmuir.2010,26(7):5022-5027.
    [31] Dou, H., Sun, K., Yang, W. The self-assembly of hydroxypropylcellulose andcarboxyl-ended surfactants to multi-morphological nanoparticles[J]. MacromolecularChemistry and Physics.2006,207(20):1899-1904.
    [32] Chou, S. Y., Krauss, P. R., Renstrom, P. J. Imprint of sub‐25nm vias and trenches inpolymers [J]. Applied Physics Letters.1995,67(21):3114-3116.
    [33]李洪珠.纳米压印光刻技术及其发展现状[J].电子与封装.2005,5(12):1-5.
    [34] Rolland, J. P., Maynor, B. W., Euliss, L. E., et al. Direct fabrication and harvesting ofmonodisperse, shape-specific nanobiomaterials[J]. Journal of the American ChemicalSociety.2005,127(28):10096-10100.
    [35] Gratton, S. E. A., Pohlhaus, P. D., Lee, J., et al. Nanofabricated particles forengineered drug therapies: A preliminary biodistribution study of PRINTnanoparticles[J]. Journal of Controlled Release.2007,121(1–2):10-18.
    [36] Qiao, J., Qi, L., Shen, Y., et al. Thermal responsive fluorescent block copolymer forintracellular temperature sensing[J]. Journal of Materials Chemistry.2012,22(23):11543-11549.
    [37] Markland, P., Zhang, Y., Amidon, G. L., et al. A pH-and ionic strength-responsivepolypeptide hydrogel: Synthesis, characterization, and preliminary protein releasestudies[J]. Journal of Biomedical Materials Research.1999,47(4):595-602.
    [38] Kang, H., Trondoli, A. C., Zhu, G., et al. Near-infrared light-responsive core–shellnanogels for targeted drug delivery[J]. ACS Nano.2011,5(6):5094-5099.
    [39] Filipcsei, G., Csetneki, I., Szilágyi, A., et al. Magnetic field-responsive smartpolymer composites. Oligomers-Polymer Composites-Molecular Imprinting, SpringerBerlin Heidelberg:2007; Vol.206,137-189.
    [40] Kanekiyo, Y., Sano, M., Iguchi, R., et al. Novel nucleotide-responsive hydrogelsdesigned from copolymers of boronic acid and cationic units and their applications as aQCM resonator system to nucleotide sensing[J]. Journal of Polymer Science Part A:Polymer Chemistry.2000,38(8):1302-1310.
    [41] Bontha, S., Kabanov, A. V., Bronich, T. K. Polymer micelles with cross-linked ioniccores for delivery of anticancer drugs[J]. Journal of Controlled Release.2006,114(2):163-174.
    [42] Bronich, T. K., Vinogradov, S. V., Kabanov, A. V. Interaction of nanosized copolymernetworks with oppositely charged amphiphilic molecules[J]. Nano Letters.2001,1(10):535-540.
    [43] Vaupel, P., Kallinowski, F., Okunieff, P. Blood flow, oxygen and nutrient supply, andmetabolic microenvironment of human tumors: a review [J]. Cancer Research.1989,49(23):6449-6465.
    [44] Na, K., Bae, Y. Self-assembled hydrogel nanoparticles responsive to tumorextracellular ph from pullulan derivative/sulfonamide conjugate: Characterization,aggregation, and adriamycin release in vitro[J]. Pharmaceutical Research.2002,19(5):681-688.
    [45] Gao, H., Yang, W., Min, K., et al. Thermosensitive poly(N-isopropylacrylamide)nanocapsules with controlled permeability[J]. Polymer.2005,46(4):1087-1093.
    [46] Han, S., Hagiwara, M., Ishizone, T. Synthesis of thermally sensitive water-solublepolymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methylether methacrylates[J]. Macromolecules.2003,36(22):8312-8319.
    [47] Lutz, J.-F. Polymerization of oligo(ethylene glycol)(meth)acrylates: Toward newgenerations of smart biocompatible materials[J]. Journal of Polymer Science Part A:Polymer Chemistry.2008,46(11):3459-3470.
    [48] Tanna, S., Sahota, T. S., Sawicka, K., et al. The effect of degree of acrylicderivatisation on dextran and concanavalin A glucose-responsive materials for closed-loopinsulin delivery[J]. Biomaterials.2006,27(25):4498-4507.
    [49] Bysell, H., Schmidtchen, A., Malmsten, M. Binding and release of consensuspeptides by poly(acrylic acid) microgels[J]. Biomacromolecules.2009,10(8):2162-2168.
    [50] Ulijn, R. V. Enzyme-responsive materials: a new class of smart biomaterials[J].Journal of Materials Chemistry.2006,16(23):2217-2225.
    [51] Murakami, Y., Maeda, M. DNA-responsive hydrogels that can shrink or swell[J].Biomacromolecules.2005,6(6):2927-2929.
    [52] Roy, D., Cambre, J. N., Sumerlin, B. S. Future perspectives and recent advances instimuli-responsive materials[J]. Progress in Polymer Science.2010,35(1–2):278-301.
    [53] Hoare, T., Pelton, R. Engineering glucose swelling responses inpoly(N-isopropylacrylamide)-based microgels[J]. Macromolecules.2007,40(3):670-678.
    [54] Wu, W., Mitra, N., Yan, E. C. Y., et al. Multifunctional hybrid nanogel for integrationof optical glucose sensing and self-regulated insulin release at physiological pH[J]. ACSNano.2010,4(8):4831-4839.
    [55] Sato, K., Yoshida, K., Takahashi, S., et al. pH-and sugar-sensitive layer-by-layerfilms and microcapsules for drug delivery[J]. Advanced Drug Delivery Reviews.2011,63(9):809-821.
    [56] Qiu, Y., Park, K. Environment-sensitive hydrogels for drug delivery[J]. AdvancedDrug Delivery Reviews.2012,64, Supplement(0):49-60.
    [57] Wu, Q., Wang, L., Yu, H., et al. Organization of glucose-responsive systems and theirproperties[J]. Chemical Reviews.2011,111(12):7855-7875.
    [58] Qi, W., Yan, X., Fei, J., et al. Triggered release of insulin from glucose-sensitiveenzyme multilayer shells[J]. Biomaterials.2009,30(14):2799-2806.
    [59] Wu, Y., Hu, H., Hu, J., et al. Glucose-regulated insulin release from acid-disintegrablemicrogels covalently immobilized with glucose oxidase and catalase[J]. MacromolecularRapid Communications.2012,33(21):1852-1860.
    [60] Kim, J. J., Park, K. Modulated insulin delivery from glucose-sensitive hydrogeldosage forms[J]. Journal of Controlled Release.2001,77(1–2):39-47.
    [61] Sato, K., Kodama, D., Endo, Y., et al. Preparation of insulin-containingmicrocapsules by a layer-by-layer deposition of Concanavalin A and glycogen[J]. Journalof Nanoscience and Nanotechnology.2009,9(1):386-390.
    [62] Yao, Y., Zhao, L., Yang, J., et al. Glucose-responsive vehicles containingphenylborate ester for controlled insulin release at neutral pH[J]. Biomacromolecules.2012,13(6):1837-1844.
    [63] Matsumoto, A., Yamamoto, K., Yoshida, R., et al. A totally synthetic glucoseresponsive gel operating in physiological aqueous conditions[J]. ChemicalCommunications.2010,46(13):2203.
    [64] Ancla, C., Lapeyre, V., Gosse, I., et al. Designed glucose-responsive microgels withselective shrinking behavior[J]. Langmuir.2011,27(20):12693-12701.
    [65] Ma, R., Yang, H., Li, Z., et al. Phenylboronic acid-based complex micelles withenhanced glucose-responsiveness at physiological pH by complexation withglycopolymer[J]. Biomacromolecules.2012,13(10):3409-3417.
    [66] Ehrick, J. D., Luckett, M. R., Khatwani, S., et al. Glucose responsive hydrogelnetworks based on protein recognition[J]. Macromolecular Bioscience.2009,9(9):864-868.
    [67] Zhang, K., Wu, X. Y. Modulated insulin permeation across a glucose-sensitivepolymeric composite membrane[J]. Journal of Controlled Release.2002,80(1–3):169-178.
    [68] Traitel, T., Cohen, Y., Kost, J. Characterization of glucose-sensitive insulin releasesystems in simulated in vivo conditions[J]. Biomaterials.2000,21(16):1679-1687.
    [69] Lee, S. J., Park, K. Synthesis and characterization of sol–gel phase-reversiblehydrogels sensitive to glucose[J]. Journal of Molecular Recognition.1996,9(5-6):549-557.
    [70] Wu, Z., Zhang, X., Guo, H., et al. An injectable and glucose-sensitive nanogel forcontrolled insulin release[J]. Journal of Materials Chemistry.2012,22(42):22788-22796.
    [71] Wang, Y., Zhang, X., Han, Y., et al. pH-and glucose-sensitive glycopolymernanoparticles based on phenylboronic acid for triggered release of insulin[J].Carbohydrate Polymers.2012,89(1):124-131.
    [72] Hoare, T., Pelton, R. Charge-Switching, Amphoteric glucose-responsive microgelswith physiological swelling activity[J]. Biomacromolecules.2008,9(2):733-740.
    [73] Matsumoto, A., Ikeda, S., Harada, A., et al. Glucose-responsive polymer bearing anovel phenylborate derivative as a glucose-sensing moiety operating at physiological pHconditions[J]. Biomacromolecules.2003,4(5):1410-1416.
    [74] Zhao, L., Ding, J., Xiao, C., et al. Glucose-sensitive polypeptide micelles forself-regulated insulin release at physiological pH[J]. Journal of Materials Chemistry.2012,22(24):12319-12328.
    [75] Zhang, X., Wang, Y., Zheng, C., et al. Phenylboronic acid-functionalizedglycopolymeric nanoparticles for biomacromolecules delivery across nasal respiratory[J].European Journal of Pharmaceutics and Biopharmaceutics.2012,82(1):76-84.
    [76] Meng, F., Hennink, W. E., Zhong, Z. Reduction-sensitive polymers and bioconjugatesfor biomedical applications[J]. Biomaterials.2009,30(12):2180-2198.
    [77] Xu, Y., Meng, F., Cheng, R., et al. Reduction-sensitive reversibly crosslinkedbiodegradable micelles for triggered release of doxorubicin[J]. MacromolecularBioscience.2009,9(12):1254-1261.
    [78] Cheng, R., Feng, F., Meng, F., et al. Glutathione-responsive nano-vehicles as apromising platform for targeted intracellular drug and gene delivery[J]. Journal ofControlled Release.2011,152(1):2-12.
    [79] Chen, W., Zheng, M., Meng, F., et al. In situ forming reduction-sensitive degradablenanogels for facile loading and triggered intracellular release of proteins[J].Biomacromolecules.2013,14(4):1214-1222.
    [80] Ma, N., Li, Y., Xu, H., et al. Dual redox responsive assemblies formed fromdiselenide block copolymers[J]. Journal of the American Chemical Society.2009,132(2):442-443.
    [81] Ma, N., Xu, H., An, L., et al. Radiation-sensitive diselenide block co-polymermicellar aggregates: Toward the combination of radiotherapy and chemotherapy[J].Langmuir.2011,27(10):5874-5878.
    [82] Li, X., Zuo, J., Guo, Y., et al. Volume phase transition temperature tuning andinvestigation of the swelling–deswelling oscillation of responsive microgels[J]. PolymerInternational.2007,56(8):968-975.
    [83] Zhang, J., Chu, L.-Y., Cheng, C.-J., et al. Graft-type poly(N-isopropylacrylamide-co-acrylic acid) microgels exhibiting rapid thermo-and pH-responsive properties[J].Polymer.2008,49(10):2595-2603.
    [84] Jiang, J., Hua, D., Tang, J. One-pot synthesis of pH-and thermo-sensitivechitosan-based nanoparticles by the polymerization of acrylic acid/chitosan withmacro-RAFT agent[J]. International Journal of Biological Macromolecules.2010,46(1):126-130.
    [85] Pich, A., Tessier, A., Boyko, V., et al. Synthesis and characterization ofpoly(vinylcaprolactam)-based microgels exhibiting temperature and pH-sensitiveproperties[J]. Macromolecules.2006,39(22):7701-7707.
    [86] Lin, C.-L., Chiu, W.-Y., Lee, C.-F. Thermal/pH-sensitive core-shell copolymer latexand its potential for targeting drug carrier application[J]. Polymer.2005,46(23):10092-10101.
    [87] Ngai, T., Behrens, S. H., Auweter, H. Novel emulsions stabilized by pH andtemperature sensitive microgels[J]. Chemical Communications.2005,0(3):331-333.
    [88] Li, M., Tang, Z., Sun, H., et al. PH and reduction dual-responsive nanogelcross-linked by quaternization reaction for enhanced cellular internalization andintracellular drug delivery[J]. Polymer Chemistry.2013,4(4):1199-1207.
    [89] Liu, H., Li, J. Preparation and characterization of poly (PEGMA) modifiedsuperparamagnetic nanogels used as potential MRI contrast agents[J]. Iranian PolymerJournal.2008,17(8):721-727.
    [90] Wu, W., Shen, J., Banerjee, P., et al. Chitosan-based responsive hybrid nanogels forintegration of optical pH-sensing, tumor cell imaging and controlled drug delivery[J].Biomaterials.2010,31(32):8371-8381.
    [91] Ferreira, S. A., Gama, F. M., Vilanova, M. Polymeric nanogels as vaccine deliverysystems[J]. Nanomedicine: Nanotechnology, Biology, and Medicine.2013,9(2):159-173.
    [92] Dorwal, D. Nanogels as novel and versatile pharmaceuticals[J]. International Journalof Pharmacy and Pharmaceutical Sciences.2012,4(Suppl.3):67-74.
    [93] Chacko, R. T., Ventura, J., Zhuang, J., et al. Polymer nanogels: A versatile nanoscopicdrug delivery platform[J]. Advanced Drug Delivery Reviews.2012,64(9):836-851.
    [94] Asadian-Birjand, M., Sousa-Herves, A., Steinhilber, D., et al. Functional nanogels forbiomedical applications[J]. Current Medicinal Chemistry.2012,19(29):5029-5043.
    [95] Yallapu, M. M., Jaggi, M., Chauhan, S. C. Design and engineering of nanogels forcancer treatment[J]. Drug Discovery Today.2011,16(9-10):457-463.
    [96] Oishi, M., Nagasaki, Y. Stimuli-responsive smart nanogels for cancer diagnostics andtherapy[J]. Nanomedicine.2010,5(3):451-468.
    [97] Ganta, S., Devalapally, H., Shahiwala, A., et al. A review of stimuli-responsivenanocarriers for drug and gene delivery[J]. Journal of Controlled Release.2008,126(3):187-204.
    [98] Jochum, F. D., Theato, P. Temperature-and light-responsive smart polymermaterials[J]. Chemical Society Reviews.2013.
    [99] Ju, X.-J., Xie, R., Yang, L., et al. Biodegradable intelligent materials in response tochemical stimuli for biomedical applications[J]. Expert Opinion on Therapeutic Patents.2009,19(5):683-696.
    [100] Raemdonck, K., Demeester, J., De Smedt, S. Advanced nanogel engineering fordrug delivery[J]. Soft Matter.2009,5(4):707-715.
    [101]徐勇,李楠.纳米技术在生物医学上的应用[J].材料导报.2007,21(8):11-13.
    [102] Goh, S. L., Murthy, N., Xu, M., et al. Cross-Linked Microparticles as carriers for thedelivery of plasmid DNA for vaccine development[J]. Bioconjugate Chemistry.2004,15(3):467-474.
    [103] Bae, K. H., Mok, H., Park, T. G. Synthesis, characterization, and intracellulardelivery of reducible heparin nanogels for apoptotic cell death[J]. Biomaterials.2008,29(23):3376-3383.
    [104] Lee, H., Mok, H., Lee, S., et al. Target-specific intracellular delivery of siRNA usingdegradable hyaluronic acid nanogels[J]. Journal of Controlled Release.2007,119(2):245-252.
    [105] Ravaine, V., Ancla, C., Catargi, B. Chemically controlled closed-loop insulindelivery[J]. Journal of Controlled Release.2008,132(1):2-11.
    [106] Li, Y., Wang, J., Wientjes, M. G., et al. Delivery of nanomedicines to extracellularand intracellular compartments of a solid tumor[J]. Advanced Drug Delivery Reviews.2012,64(1):29-39.
    [107] Maeda, H., Wu, J., Sawa, T., et al. Tumor vascular permeability and the EPR effectin macromolecular therapeutics: a review[J]. Journal of Controlled Release.2000,65(1–2):271-284.
    [108] Danhier, F., Feron, O., Préat, V. To exploit the tumor microenvironment: Passive andactive tumor targeting of nanocarriers for anti-cancer drug delivery[J]. Journal ofControlled Release.2010,148(2):135-146.
    [109] Xiong, W., Gao, X., Zhao, Y., et al. The dual temperature/pH-sensitive multiphasebehavior of poly(N-isopropylacrylamide-co-acrylic acid) microgels for potentialapplication in in situ gelling system[J]. Colloids and Surfaces B: Biointerfaces.2011,84(1):103-110.
    [110] Wu, W., Zhou, S. Hybrid micro-/nanogels for optical sensing and intracellularimaging[J]. Nano reviews.2010,1.
    [111] Wu, W., Aiello, M., Zhou, T., et al. In-situ immobilization of quantum dots inpolysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging,and drug delivery[J]. Biomaterials.2010,31(11):3023-3031.
    [112] Noh, Y.-W., Kong, S.-H., Choi, D.-Y., et al. Near-infrared emitting polymernanogels for efficient sentinel lymph node mapping[J]. ACS Nano.2012,6(9):7820-7831.
    [113] Lim, C.-K., Singh, A., Heo, J., et al. Gadolinium-coordinated elastic nanogels forin vivo tumor targeting and imaging[J]. Biomaterials.2013,34(28):6846-6852.
    [114] Wang, Q. S., Li, G. Q., Mao, W. Y., et al. Glucose-responsive vesicular sensor basedon boronic acid-glucose recognition in the ARS/PBA/DBBTAB covesicles[J]. Sensors andActuators B-Chemical.2006,119(2):695-700.
    [115] Morris, G. A., K k, S. M., Harding, S. E., et al. Polysaccharide drug deliverysystems based on pectin and chitosan[J]. Biotechnology and Genetic Engineering Reviews.2010,27(1):257-284.
    [116] Ghosh, S., Sen, G., Jha, U., et al. Novel biodegradable polymeric flocculant basedon polyacrylamide-grafted tamarind kernel polysaccharide[J]. Bioresource Technology.2010,101(24):9638-9644.
    [117] Krishnamoorthi, S., Mal, D., Singh, R. P. Characterization of graft copolymer basedon polyacrylamide and dextran[J]. Carbohydrate Polymers.2007,69(2):371-377.
    [118] Onishi, Y. Effects of dextran molecular weight on graft copolymerization ofdextran-methyl methacrylate[J]. Polymer.1980,21(7):819-824.
    [119] Derkaoui, S. M., Labbé, A., Purnama, A., et al. Films of dextran-graft-polybutylmethacrylate to enhance endothelialization of materials[J]. Acta Biomaterialia.2010,6(9):3506-3513.
    [120] Tanna, S., Joan Taylor, M., Sahota, T. S., et al. Glucose-responsive UV polymeriseddextran–concanavalin A acrylic derivatised mixtures for closed-loop insulin delivery[J].Biomaterials.2006,27(8):1586-1597.
    [121] Dou, H., Tang, M., Sun, K. A facile one-pot synthesis to dextran-based nanoparticleswith carboxy functional groups[J]. Macromolecular Chemistry and Physics.2005,206(21):2177-2181.
    [122] Dou, H., Tang, M., Yang, W., et al. One-pot synthesis, characterization, and drugloading of polysaccharide-based nanoparticles with carboxy functional groups[J]. Colloidand Polymer Science.2007,285(9):1043-1047.
    [123] Dou, H., Xu, B., Tao, K., et al. The one-pot synthesis of dextran-based nanoparticlesand their application in in-situ fabrication of dextran-magnetite nanocomposites[J].Journal of Materials Science: Materials in Medicine.2008,19(7):2575-2580.
    [124] Sam, S., Touahir, L., Salvador Andresa, J., et al. Semiquantitative study of theEDC/NHS activation of acid terminal groups at modified porous silicon surfaces[J].Langmuir.2009,26(2):809-814.
    [125] Wang, L., Neoh, K.-G., Kang, E.-T., et al. Biodegradable magnetic-fluorescentmagnetite/poly(dl-lactic acid-co-,β-malic acid) composite nanoparticles for stem celllabeling[J]. Biomaterials.2010,31(13):3502-3511.
    [126] Lu, F., Wu, S.-H., Hung, Y., et al. Size effect on cell uptake in well-suspended,uniform mesoporous silica nanoparticles[J]. Small.2009,5(12):1408-1413.
    [127] He, C., Hu, Y., Yin, L., et al. Effects of particle size and surface charge on cellularuptake and biodistribution of polymeric nanoparticles[J]. Biomaterials.2010,31(13):3657-3666.
    [128] Kutsevol, N., Guenet, J. M., Melnik, N., et al. Solution properties ofdextran-polyacrylamide graft copolymers[J]. Polymer.2006,47(6):2061-2068.
    [129] Derkaoui, S. M., Avramoglou, T., Barbaud, C., et al. Synthesis and characterizationof a new polysaccharide-graft-polymethacrylate copolymer for three-dimensional hybridhydrogels[J]. Biomacromolecules.2008,9(11):3033-3038.
    [130] McCormick, C. L., Lin, K. C. Water-soluble copolymers-2. synthesis andcharacterization of model dextran-g-acrylamides by Ce(IV)/hno//3-induced initiation[J].Journal of macromolecular science. Chemistry.1981, A16(8):1441-1462.
    [131] Gupta, K. C., Sahoo, S., Khandekar, K. Graft copolymerization of ethyl acrylateonto cellulose using ceric ammonium nitrate as initiator in aqueous medium[J].Biomacromolecules.2002,3(5):1087-1094.
    [132] Dahou, W., Ghemati, D., Oudia, A., et al. Preparation and biological characterizationof cellulose graft copolymers[J]. Biochemical Engineering Journal.2010,48(2):187-194.
    [133] Pourjavadi, A., Mahdavinia, G. R., Zohuriaan-Mehr, M. J., et al. Modified chitosan.I. Optimized cerium ammonium nitrate-induced synthesis of chitosan-graft-polyacrylonitrile[J]. Journal of Applied Polymer Science.2003,88(8):2048-2054.
    [134] Wu, S., Jin, Z., Kim, J. M., et al. Graft copolymerization of methyl acrylate ontopullulan using ceric ammonium nitrate as initiator[J]. Carbohydrate Polymers.2009,76(1):129-132.
    [135] Zhang, L., Johnson, A. F. Radical grafting reactions onto starch and otherwater-soluble copolymers in isolated gel droplets[J]. Chinese Journal of Polymer Science(English Edition).1993,11(2):144-152.
    [136] Athawale, V. D., Lele, V. Synthesis and characterisation of graft copolymers ofmaize starch and methacrylonitrile[J]. Carbohydrate Polymers.2000,41(4):407-416.
    [137] Goyal, P., Kumar, V., Sharma, P. Graft copolymerization of acrylamide ontotamarind kernel powder in the presence of ceric ion[J]. Journal of Applied PolymerScience.2008,108(6):3696-3701.
    [138] z, N., Akar, A. Aminomethylene phosphonic acid–ceric ion redox systems foraqueous polymerization of vinyl monomers[J]. European Polymer Journal.2000,36(1):193-199.
    [139] Mishra, A., Srinivasan, R., Bajpai, M., et al. Use of polyacrylamide-grafted Plantagopsyllium mucilage as a flocculant for treatment of textile wastewater[J]. Colloid&Polymer Science.2004,282(7):722-727.
    [140] Zheng, S.-Y., Chen, Z.-C., Lu, D.-S., et al. Graft copolymerization of water-solublemonomers containing quaternary ammonium group on poly(vinyl alcohol) using cericions[J]. Journal of Applied Polymer Science.2005,97(6):2186-2191.
    [141] Dou, H., Jiang, M., Peng, H., et al. pH-dependent self-assembly: micellization andmicelle–hollow-sphere transition of cellulose-based copolymers[J]. Angewandte ChemieInternational Edition.2003,42(13):1516-1519.
    [142] Yu, S., Hu, J., Pan, X., et al. Stable and pH-sensitive nanogels prepared byself-assembly of chitosan and ovalbumin[J]. Langmuir.2006,22(6):2754-2759.
    [143] Liu, G., Qiu, Q., Shen, W., et al. Aqueous dispersion polymerization of2-methoxyethyl acrylate for the synthesis of biocompatible nanoparticles using ahydrophilic RAFT polymer and a redox initiator[J]. Macromolecules.2011,44(13):5237-5245.
    [144] Martin, M. M., Lindqvist, L. The pH dependence of fluorescein fluorescence[J].Journal of Luminescence.1975,10(6):381-390.
    [145] Sj back, R., Nygren, J., Kubista, M. Absorption and fluorescence properties offluorescein[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.1995,51(6): L7-L21.
    [146] Albanese, A., Tang, P. S., Chan, W. C. W. The effect of nanoparticle size, shape, andsurface chemistry on biological systems[J]. Annual Review of Biomedical Engineering.2012,14(1):1-16.
    [147] Yoo, J.-W., Doshi, N., Mitragotri, S. Adaptive micro and nanoparticles: Temporalcontrol over carrier properties to facilitate drug delivery[J]. Advanced Drug DeliveryReviews.2011,63(14–15):1247-1256.
    [148] Verma, A., Stellacci, F. Effect of surface properties on nanoparticle–cellinteractions[J]. Small.2010,6(1):12-21.
    [149] Guilak, F., Awad, H. A., Fermor, B., et al. Adipose-derived adult stem cells forcartilage tissue engineering[J]. Biorheology.2004,41(3):389-399.
    [150] Walia, B., Satija, N., Tripathi, R. P., et al. Induced pluripotent stem cells:fundamentals and applications of the reprogramming process and its ramifications onregenerative medicine[J]. Stem Cell Reviews and Reports.2012,8(1):100-115.
    [151] Elabd, C., Chiellini, C., Carmona, M., et al. Human multipotent adipose-derivedstem cells differentiate into functional brown adipocytes[J]. Stem Cells.2009,27(11):2753-2760.
    [152] Liu, G., Zhang, Y., Liu, B., et al. Bone regeneration in a canine cranial model usingallogeneic adipose derived stem cells and coral scaffold[J]. Biomaterials.2013,34(11):2655-2664.
    [153] Gimble, J. M., Katz, A. J., Bunnell, B. A. Adipose-derived stem cells forregenerative medicine[J]. Circulation Research.2007,100(9):1249-1260.
    [154] Cowan, C. M., Shi, Y.-Y., Aalami, O. O., et al. Adipose-derived adult stromal cellsheal critical-size mouse calvarial defects[J]. Nature Biotechnology.2004,22(5):560-567.
    [155] Yukawa, H., Watanabe, M., Kaji, N., et al. Monitoring transplanted adiposetissue-derived stem cells combined with heparin in the liver by fluorescence imaging usingquantum dots[J]. Biomaterials.2012,33(7):2177-2186.
    [156] Hasegawa, U., Nomura, S. M., Kaul, S. C., et al. Nanogel-quantum dot hybridnanoparticles for live cell imaging[J]. Biochemical and Biophysical ResearchCommunications.2005,331(4):917-921.
    [157] Lequeux, C., Oni, G., Mojallal, A., et al. Adipose derived stem cells: efficiency,toxicity, stability of BrdU labeling and effects on self-renewal and adiposedifferentiation[J]. Molecular and Cellular Biochemistry.2011,351(1):65-75.
    [158] Wang, C., Cheng, L., Xu, H., et al. Towards whole-body imaging at the single celllevel using ultra-sensitive stem cell labeling with oligo-arginine modified upconversionnanoparticles[J]. Biomaterials.2012,33(19):4872-4881.
    [159] Qin, J., Li, K., Peng, C., et al. MRI of iron oxide nanoparticle-labeled ADSCs in amodel of hindlimb ischemia[J]. Biomaterials.2013,34(21):4914-4925.
    [160] Bulte, J. W. M., Douglas, T., Witwer, B., et al. Magnetodendrimers allow endosomalmagnetic labeling and in vivo tracking of stem cells[J]. Nature Biotechnology.2001,19(12):1141-1147.
    [161] Andreas, K., Georgieva, R., Ladwig, M., et al. Highly efficient magnetic stem celllabeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRItracking[J]. Biomaterials.2012,33(18):4515-4525.
    [162] Rice, H. E., Hsu, E. W., Sheng, H., et al. Superparamagnetic iron oxide labeling andtransplantation of adipose-derived stem cells in middle merebral artery occlusion-injuredmice[J]. American Journal of Roentgenology.2007,188(4):1101-1108.
    [163] Elhami, E., Goertzen, A., Xiang, B., et al. Viability and proliferation potential ofadipose-derived stem cells following labeling with a positron-emitting radiotracer[J].European Journal of Nuclear Medicine and Molecular Imaging.2011,38(7):1323-1334.
    [164] Mizuno, H., Hyakusoku, H. Fat Grafting to the breast and adipose-derived stemcells: recent scientific consensus and controversy[J]. Aesthetic Surgery Journal.2010,30(3):381-387.
    [165] Reul, R., Tsapis, N., Hillaireau, H., et al. Near infrared labeling of PLGA for in vivoimaging of nanoparticles[J]. Polymer Chemistry.2012,3(3):694-702.
    [166] Yukawa, H., Mizufune, S., Mamori, C., et al. Quantum dots for labeling adiposetissue-derived stem cells[J]. Cell Transplantation.2009,18(5-6):591-599.
    [167] Fang, C.-Y., Vaijayanthimala, V., Cheng, C.-A., et al. The exocytosis of fluorescentnanodiamond and its use as a long-term cell tracker[J]. Small.2011,7(23):3363-3370.
    [168] Wolbank, S., Peterbauer, A., Wassermann, E., et al. Labelling of humanadipose-derived stem cells for non-invasive in vivo cell tracking[J]. Cell and TissueBanking.2007,8(3):163-177.
    [169] Koo, H., Huh, M. S., Ryu, J. H., et al. Nanoprobes for biomedical imaging in livingsystems[J]. Nano Today.2011,6(2):204-220.
    [170] Ute Resch-Genger, M. G., Sara Cavaliere-Jaricot, Roland Nitschke, Thomas Nann.Quantum dots versus organic dyes as fluorescent labels[J]. Nature Methods.2008,5(9):763-775.
    [171] Maila nder, V., Landfester, K. Interaction of nanoparticles with cells[J].Biomacromolecules.2009,10(9):2379-2400.
    [172] Iversen, T.-G., Skotland, T., Sandvig, K. Endocytosis and intracellular transport ofnanoparticles: Present knowledge and need for future studies[J]. Nano Today.2011,6(2):176-185.
    [173] Gao, H. J., Shi, W. D., Freund, L. B. Mechanics of receptor-mediated endocytosis[J].Proceedings of the National Academy of Sciences of the United States of America.2005,102(27):9469-9474.
    [174] Conner, S. D., Schmid, S. L. Regulated portals of entry into the cell[J]. Nature.2003,422(6927):37-44.
    [175] Lemarchand, C., Gref, R., Passirani, C., et al. Influence of polysaccharide coatingon the interactions of nanoparticles with biological systems[J]. Biomaterials.2006,27(1):108-118.
    [176] Xue, Y. N., Huang, Z. Z., Zhang, J. T., et al. Synthesis and self-assembly ofamphiphilic poly(acrylic acid-b-DL-lactide) to form micelles for pH-responsive drugdelivery[J]. Polymer.2009,50(15):3706-3713.
    [177] Skobe, M., Hawighorst, T., Jackson, D. G., et al. Induction of tumorlymphangiogenesis by VEGF-C promotes breast cancer metastasis[J]. Nature Medicine.2001,7(2):192-198.
    [178] Tanaka, E., Choi, H., Fujii, H., et al. Image-guided oncologic surgery using invisiblelight: completed pre-clinical development for sentinel lymph node mapping[J]. Annals ofSurgical Oncology.2006,13(12):1671-1681.
    [179]蒋朝华,胡学庆,刘宁飞.人真皮来源淋巴管内皮细胞的流式细胞仪分选和生物学特点[J].组织工程与重建外科杂志.2009,5(5):267-271.
    [180] Wunderbaldinger, P. Optical imaging of lymph nodes[J]. European Journal ofRadiology.2006,58(3):390-393.
    [181] Szuba, A., Skobe, M., Karkkainen, M. J., et al. Therapeutic lymphangiogenesis withhuman recombinant VEGF-C[J]. The FASEB Journal.2002,16(14):1985-1987.
    [182] Van Sluis, R., Bhujwalla, Z. M., Raghunand, N., et al. In vivo imaging ofextracellular pH using1H MRSI[J]. Magnetic Resonance in Medicine.1999,41(4):743-750.
    [183] Cardone, R. A., Casavola, V., Reshkin, S. J. The role of disturbed pH dynamics andthe Na+/H+exchanger in metastasis[J]. Nature Reviews Cancer.2005,5(10):786-795.
    [184] Brown, S. C., Palazuelos, M., Sharma, P., et al. Nanoparticle characterization forcancer nanotechnology and other biological applications[J]. Methods in molecular biology(Clifton, N.J.).2010,62439-65.
    [185] Koo, A. N., Min, K. H., Lee, H. J., et al. Tumor accumulation and antitumor efficacyof docetaxel-loaded core-shell-corona micelles with shell-specific redox-responsivecross-links[J]. Biomaterials.2012,33(5):1489-1499.
    [186] Song, N., Liu, W., Tu, Q., et al. Preparation and in vitro properties ofredox-responsive polymeric nanoparticles for paclitaxel delivery[J]. Colloids and SurfacesB: Biointerfaces.2011,87(2):454-463.
    [187]董朝霞,林梅钦,李明远, et al.光散射技术在研究高分子溶液和凝胶方面的应用[J].高分子通报.2001,(5):25-33.
    [188]何天白,胡汉杰.海外高分子科学的新进展.北京:化学工业出版社,1997.
    [189] Colanceska-Ragenovic, K., Dimova, V., Kakurinov, V., et al. Synthesis of1-nonanoyl/octadecanoyl-4-substituted thiosemicarbazides and substituted1,2,4-trizolesas biological active compounds[J]. Journal of Heterocyclic Chemistry.2003,40(5):905-908.
    [190] Zhou, L., Cheng, R., Tao, H., et al. Endosomal pH-activatable poly(ethyleneoxide)-graft-doxorubicin prodrugs: synthesis, drug release, and biodistribution intumor-bearing mice[J]. Biomacromolecules.2011,12(5):1460-1467.
    [191] Kurita, K., Kawata, M., Koyama, Y., et al. Graft copolymerization of vinylmonomers onto chitin with cerium (IV) ion[J]. Journal of Applied Polymer Science.1991,42(11):2885-2891.
    [192] Zhou, S., Min, X., Dou, H., et al. Facile fabrication of dextran-based fluorescentnanogels as potential glucose sensors[J]. Chemical Communications.2013,49(82):9473-9475.
    [193] Piao, L., Dai, Z., Deng, M., et al. Synthesis and characterization of PCL/PEG/PCLtriblock copolymers by using calcium catalyst[J]. Polymer.2003,44(7):2025-2031.
    [194] Basu Ray, G., Chakraborty, I., Moulik, S. P. Pyrene absorption can be a convenientmethod for probing critical micellar concentration (CMC) and indexing micellarpolarity[J]. Journal of Colloid and Interface Science.2006,294(1):248-254.
    [195] Shaw, J. E., Sicree, R. A., Zimmet, P. Z. Global estimates of the prevalence ofdiabetes for2010and2030[J]. Diabetes Research and Clinical Practice.2010,87(1):4-14.
    [196] Hovorka, R. Closed-loop insulin delivery: from bench to clinical practice[J]. NatureReviews Endocrinology.2011,7(7):385-395.
    [197] Khan, F., Saxl, T. E., Pickup, J. C. Fluorescence intensity-and lifetime-basedglucose sensing using an engineered high-Kd mutant of glucose/galactose-bindingprotein[J]. Analytical Biochemistry.2010,399(1):39-43.
    [198] Yin, R., Han, J., Zhang, J., et al. Glucose-responsive composite microparticles basedon chitosan, concanavalin A and dextran for insulin delivery[J]. Colloids and Surfaces B:Biointerfaces.2010,76(2):483-488.
    [199] Taylor, M., Tanna, S., Sahota, T., et al. Rheological characterisation of dextran–concanavalin A mixtures as a basis for a self-regulated drug delivery device[J]. EuropeanJournal of Pharmaceutics and Biopharmaceutics.2006,62(1):94-100.
    [200] Wang, B., Ma, R., Liu, G., et al. Glucose-responsive micelles from self-assembly ofpoly(ethylene glycol)-b-poly(acrylic acid-co-acrylamidophenylboronic acid) and thecontrolled release of insulin[J]. Langmuir.2009,25(21):12522-12528.
    [201] Lee, M.-C., Kabilan, S., Hussain, A., et al. Glucose-sensitive holographic sensorsfor monitoring bacterial growth[J]. Analytical Chemistry.2004,765748-5755.
    [202] Wang, B., Ma, R., Liu, G., et al. Effect of coordination on theglucose-responsiveness of PEG-b-(PAA-co-PAAPBA) micelles[J]. Macromolecular RapidCommunications.2010,31(18):1628-1634.
    [203] Xing, S., Guan, Y., Zhang, Y. Kinetics of glucose-induced swelling ofP(NIPAM-AAPBA) microgels[J]. Macromolecules.2011,44(11):4479-4486.
    [204] Yasumasa Kanekiyo, M. S., Ritsuko Iguchi, Seiji Shinkai. Novelnucleotide-responsive hydrogels designed from copolymers of boronic acid and cationicunits and their applications as a QCM resonator system to nucleotide sensing[J]. Journalof Polymer Science: Part A: Polymer Chemistry.2000,381302-1310.
    [205]刘紫微.温度和葡萄糖双重敏感性共聚物微凝胶的研究[硕士论文].上海:东华大学.2008.
    [206] Jin, X., Zhang, X., Wu, Z., et al. Amphiphilic random glycopolymer based onphenylboronic acid: Synthesis, characterization, and potential as glucose-sensitivematrix[J]. Biomacromolecules.2009,10(6):1337-1345.
    [207] Fonseca, V., Clark, N. G. Standards of medical care in diabetes: response topower[J]. Diabetes Care.2006,29(2):476-477.
    [208] Demchenko, A., Klymchenko, A., Pivovarenko, V., et al. Multiparametriccolor-changing fluorescence probes[J]. Journal of Fluorescence.2003,13(4):291-295.
    [209] Chen, C.-Y., Chen, C.-T. A PNIPAM-based fluorescent nanothermometer withratiometric readout[J]. Chemical Communications.2011,47(3):994-996.
    [210] Han, H., Davis, M. E. Targeted nanoparticles assembled via complexation ofboronic-acid-containing targeting moieties to diol-containing polymers[J]. BioconjugateChemistry.2013,24(4):669-677.
    [211] Yang, Y.-Y., Chung, T.-S., Ping Ng, N. Morphology, drug distribution, and in vitrorelease profiles of biodegradable polymeric microspheres containing protein fabricated bydouble-emulsion solvent extraction/evaporation method[J]. Biomaterials.2001,22(3):231-241.
    [212] Avgoustakis, K. Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles:preparation, properties and possible applications in drug delivery[J]. Current DrugDelivery.2004,1(4):321-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700