用户名: 密码: 验证码:
光活性天然聚合物的体系设计与功能化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然高分子化合物资源丰富、来源广泛、可生物降解,它们是取之不尽、用之不竭的重要绿色化工原料。天然高分子化合物因具有多种功能基团,可以通过物理、化学等各种方法赋予其新的功能。本研究将两种螺吡喃单体引入天然多糖基化合物体系中,设计并合成了具有光活性的天然高分子材料,赋予其独特的光学性能,并研究了相关机理。相关研究成果能为我国制浆造纸工业提高产品附加值,开发新的功能性产品,为天然高分子化学工业研发新型感光材料、防伪材料、传感材料、光调节的缓释材料提供理论支撑。本论文主要内容和结果如下:
     设计并合成两种光响应单体—羧基螺吡喃(SPCOOH)和丙烯基螺吡喃化合物(SPMA)。对于螺吡喃衍单体,研究了取代基及溶液介质对光致变色特性影响;分析SPMA在不同溶剂中的消光过程动力学,结果表明螺吡喃化合物在不同溶剂中的消光速率是:二氯甲烷>甲苯>丙酮,且在溶液中的消光过程符合一级动力学方程。
     合成了含螺吡喃疏水侧链的双亲支链淀粉共聚物(SPP),利用其疏水基在水溶液中的交联缔合作用,制备出光响应的纳米水凝胶。纳米水凝胶的平均粒径和分子量随紫外光照射而增大,且光响应水凝胶分为三种状态—紫外光照射开环(Mer-form)、可见光照射闭环(SP-form)、黑暗条件下中间态(Mer-sp-form)。研究了SPP水凝胶退色动力学以及在DMSO/H2O溶液中的聚集过程,实验结果表明SPP的退色速率随水比例升高而降低。以芘为模拟药物,研究了SPP水凝胶在PBS缓冲溶液中的包载及光控释放药物的能力,包载率和载药量随着凝胶比例增加而增大,螺吡喃处于开环状态下的药物释放量大于闭环状态的释放量,因此可通过光控来调节疏水性药物的释放速率。
     采用原子转移自由基聚合(ATRP)的方法设计并合成了EC-g-PHEMA-g-PSPMA三嵌段聚合物,通过改变反应配比,制备出不同嵌段接枝密度和接枝长度的聚合物,动力学分析证明,实验所采用的体系适合ATRP反应且聚合反应是活性/可控的。同时,对EC-g-PHEMA-g-PSPMA胶束溶液的聚集态进行分析,结果表明,胶束的聚集体形态主要受亲水/疏水段比例影响较大。疏水核所占比例越大,越有利于胶束之间的相互吸附,亲水链所占比例大,有利于胶束之间相互分离。PSPMA的段链越长,聚合物闭环响应时间越长,这是由于开环部花菁(MC)结构产生过多,形成空间位阻越大,导致闭环时间缓慢。PSPMA受紫外光激发转变为亲水的MC结构,使胶束分离成二级小胶束,经可见光照射,聚合物聚集形态又返回至原始状态。最后,利用EC-g-PHEMA-g-PSPMA在水相中聚集形态的之间的相互转变,成功实现了药物的负载与光控释放。
     将壳聚糖季铵盐附着于木质纤维表面,赋予纤维正电性,利用库仑引力提升羧基螺吡喃(SPCOOH)与纤维结合效率,制得光响应纤维。改性后纤维的吸附动力学研究发现,螺吡喃对纤维的吸附过程符合准一级动力学方程,且随着温度升高,螺吡喃在纤维上的吸附速率常数增大。利用光响应纤维与植物纤维配抄的方法,制得光响应型纸样,在紫外灯照射下光响应纤维显示出红色荧光,且光响应纤维由无色变为红色,经可见光照射又恢复至无色,在可见光下光响应纸基与普通纸张没有差别,具有防伪特征。
     利用滤纸纤维表面羟基的活性,通过酰化反应制备出大分子引发剂,成功引发ATRP反应,将丙烯基螺吡喃(SPMA)接枝聚合在纤维表面上,实现纤维表面的光功能化组装。功能化纸基由于螺吡喃接枝聚合于纤维表面,使纤维表面亲水基团相对减少,导致功能化纸基的亲水性略有下降。光功能化纸基在紫外光照射下,显示出明显的红色荧光,移去紫外光,纸基由无色变为红色,经可见光照射时,红色又变为无色,这是由于纤维表面接枝的螺吡喃聚合物受紫外光-可见光照射,其化学结构随之产生开环-闭环,最终实现显色-退色的光可调控效果。功能纸基在紫外光下产生荧光并变色的双重效果,可应用于防伪包装材料等方面。
As a sort of wide material sources, excellent repetition and tunable structure,polysaccharide compounds suit for many different demands. Polysaccharide molecule chaincontains a lot of functional groups, such as hydroxyl, amino, carboxyl, so in this paper twokinds of spiropyran monomers were introduced to natural polysaccharide compound system,to design and synthesis of natural macromolecular materials with photo-responsivecharacteristics, given its unique optical properties. This topic results provided theoreticalsupport for the development of new photosensitive material, anti-counterfeiting materials,sensing materials, and light controlled release materials. The main content and the results ofthis paper are as following:
     According to the structure of polysaccharide compounds, two kinds of light-responsivemonomers (SPCOOH and SPMA) were designed and prepared. For spiropyran monomers,their photochromic properties were affected by substituent groups and solvent. SPMAextinction kinetic dynamics in different solvents were also analyzed. The results have shownthat the closing reaction of SPMA was a first order reaction, and the reaction rate indichloromethane, methylbenzene and acetone reduced in turn.
     Amphiphilic polymer with hydrophobic spiropyran and starch was synthesized.According to its hydrophobic group crosslinking association in aqueous solution,light-responsive nanogels were prepared. The Mwand Dhof the nanogels significantlychanged after irradiation under different wavelengths of light. The synthesized SpP nanogelsexisted in the following three states: Mer-Sp-form (515nm), Mer-form (535nm), andSp-form. SPP extinction kinetic dynamics and aggregation process in DMSO/H2O solventswere also analyzed. The closing reaction rate of SPP decreased with water ratio rise. The druguptake and release properties were investigated by using pyrene as a model drug. The resultsindicate that the loading efficiency increased when the feeding ratio of SpP to pyreneincreased. The release amount and rate decrease in the following order: Mer-Sp-form Mer-form Sp-form. So the release rate can be adjusted by light controlled.
     A light-responsive triblock copolymer of ethyl cellulose-g-poly (2-hydroxyethlmethacrylate)-g-poly (spiropyran ether methacrylate)(EC-g-PHEMA-g-PSPMA) wasprepared by atom transfer radial polymerization. Different block grafting density and lengthof grafted polymer was preparaed by changing reactive ratio. Dynamics analysis proved thatthe experiment system was suitable for ATRP and polymerization reaction was active/controlled. At the same time, the EC-g-PHEMA-g-PSPMA micellar solution ofaggregation were analyzed, and the results show that the micellar aggregation morphologywas mainly affected by hydrophilic/hydrophobic ratio. The larger the proportion ofhydrophobic core, the more adsorbed between micelles. The larger proportion of hydrophilicchain, the more separated between micelles. For PSPMA segments, the polymer closed-loopresponse time would long if have high degree of polymerization with PSPMA. The spacesteric hindrance may form with more MC structure which lead to greater slowly during theclosed-loop process. The micelle diameter can be controlled by UV and visible light. Micellescan be modulated by changing the ratio of hydrophilic PHEMA to hydrophobic PSPMA.Probe pyrene as a hydrophobic model drug was loaded onto micelles. Therefore, drug releasecould be controlled by changing light.
     Chitosan quaternary ammonium salt attached to surface of wood fiber. The fiber showedelectropositive and light-renponsive due to SPCOOH combined with fiber. The resultsshowed that adsorption kinetics of modified fiber showed fitted quasi first order equation.And with increasing temperature, adsorption rate constant increased on fiber. An experimentof making light-responsive paper with light responsive fiber was carried out. Light-responsivefiber showed red fluorescence under ultraviolet light irradiation, and the fiber changed tocolorless under visible light irradiation. The responsive paper has no difference with theordinary paper. It has the security features.
     Fiber macromolecular initiator was firstly synthesized by direct acylation of fiber with2-bromopropionyl bromide. And a light-responsive fiber grafed poly (spiropyran ethermethacrylate)(Fiber-g-PSPMA) was prepared by atom transfer radial polymerization. Thehydrophilicity of functionalized paper was reduced due to spiropyran graftedpolymerizationon the fiber surface. Functionalized paper showed red fluorescence under ultraviolet lightirradiation, and the paper changed to colorless under visible light irradiation. This because Spunderwent isomerization, it changed into merocyanine (Mer) under UV. And the Mermolecule was exposed to visible light, it reverted into colourless Sp. Functionalized paper hasdouble fluorescent and color changing effects under ultraviolet light, which can be applied toanti-counterfeiting packaging materials.
引文
[1] Wang Q., Qiu W., Wu J., et al. Schiff base compounds derived from(R)-3-phenyl-2-phthalimidopropionic acid: photochromism, solvatochromism, andfluorescence [J]. Structural Chemistry,2013,24(1):295-301
    [2] Kobatake S., Takami S., Muto H., et al. Rapid and reversible shape changes of molecularcrystals on photoirradiation [J]. Nature,2007,446(7137):778-781
    [3] He Y., Yamamoto Y., Jin W., et al. Photoconductive Nanotubes: HexabenzocoroneneGraphitic Nanotube Appended with Dithienylethene Pendants: Photochromism for theModulation of Photoconductivity (Adv. Mater.7/2010)[J]. Advanced Materials,2010,22(7):829-832
    [4] Shishido A., Tsutsumi O., Kanazawa A., et al. Rapid optical switching by means ofphotoinduced change in refractive index of azobenzene liquid crystals detected byreflection-mode analysis [J]. Journal of the American Chemical Society,1997,119(33):7791-7796
    [5] Irie M. Photochromism and molecular mechanical devices [J]. Bulletin of the ChemicalSociety of Japan,2008,81(8):917-926
    [6] Al-Kaysi R. O., Müller A. M., Bardeen C. J. Photochemically driven shape changes ofcrystalline organic nanorods [J]. Journal of the American Chemical Society,2006,128(50):15938-15939
    [7] Spangenberg A., Métivier R., Gonzalez J., et al. Multiscale approach of photochromism:synthesis and photochromic properties of a diarylethene in solution, in nanoparticles, andin bulk crystals [J]. Advanced Materials,2009,21(3):309-313
    [8] Fomina N., Sankaranarayanan J., Almutairi A. Photochemical mechanisms oflight-triggered release from nanocarriers [J]. Advanced drug delivery reviews,2012,64(11):1005-1020
    [9] Wang Y., Han P., Xu H., et al. Photocontrolled self-assembly and disassembly of blockionomer complex vesicles: A facile approach toward supramolecular polymernanocontainers [J]. Langmuir,2009,26(2):709-715
    [10] Hirshberg Y. Reversible formation and eradication of colors by irradiation at lowtemperatures. A photochemical memory model [J]. Journal of the American ChemicalSociety,1956,78(10):2304-2312
    [11] Jhang P. C., Chuang N. T., Wang S. L. Layered zinc phosphates with photoluminescenceand photochromism: chemistry in deep eutectic solvents [J]. Angewandte ChemieInternational Edition,2010,49(25):4200-4204
    [12] Pu S., Li H., Liu G., et al. Photochromism of new diarylethenes bearing both thiazole andbenzene moieties [J]. Tetrahedron Letters,2010,51(27):3575-3579
    [13] Liu G., Pu S., Wang X. Photochromism of new3,5-position hybrid diarylethenederivatives bearing both thiophene and thiazole moieties [J]. Tetrahedron,2010,66(46):8862-8871
    [14] Di Nunzio M. R., Gentili P. L., Romani A., et al. Photochromism and Thermochromismof some Spirooxazines and Naphthopyrans in the Solid State and in Polymeric Film [J].The Journal of Physical Chemistry C,2010,114(13):6123-6131
    [15] Poon C.-T., Lam W. H., Yam V. W.-W. Gated Photochromism inTriarylborane-Containing Dithienylethenes: A New Approach to a―Lock–Unlock‖System [J]. Journal of the American Chemical Society,2011,133(49):19622-19625
    [16] Manchester J., Bassani D. M., Duprey J.-L. H., et al. Photocontrolled Binding andBinding-Controlled Photochromism within Anthracene-Modified DNA [J]. Journal of theAmerican Chemical Society,2012,134(26):10791-10794
    [17] Shoji H., Kobatake S. Thermal bleaching reactions of photochromic diarylethenes withthiophene-S, S-dioxide for a light-starting irreversible thermosensor [J]. ChemicalCommunications,2013,49:2362-2364
    [18] Browne W. R., Feringa B. L. Chiroptical molecular switches [J]. Molecular Switches,2011,121-180
    [19] Browne W. R., Pijper D., Pollard M. M., et al. Switching at the Nanoscale: ChiropticalMolecular Switches and Motors [J]. Chirality at the Nanoscale: Nanoparticles, Surfaces,Materials and more,2009,349-590
    [20] Alfimov M. V., Fedorova O. A., Gromov S. P. Photoswitchable molecular receptors [J].Journal of Photochemistry and Photobiology A: Chemistry,2003,158(2-3):183-198
    [21]王建营,冯长根,胡文祥.光致变色聚合物研究进展[J].化学进展,2006,18(2):298-307
    [22]贾屹夫,张复实.无机光致变色材料的研究进展[J].信息记录材料,2011,12(6):34-40
    [23] Xie N., Chen Y. Two addressable fluorescent switches based on a photochromicdiarylethene [J]. J Mater Chem,2006,16(10):982-985
    [24] Parkin I. P., Kafizas A., Carmalt C. J., et al. The combinatorial APCVD of gradedTiO2-VO2mixed-phase composites and their dual functional property as self-cleaningand photochromic window coatings [J]. ACS combinatorial science,2013,5(6):309-319
    [25] Djaoued Y., Balaji S., Beaudoin N. Sol–gel synthesis of mesoporous WO3–TiO2composite thin films for photochromic devices [J]. Journal of Sol-Gel Science andTechnology,2013,1-10
    [26] Liu W., Pu S., Jiang D., et al. Fluorescent probes for Al (III) and Cr (III) based on aphotochromic diarylethene bearing a fluorescent rhodamine unit [J]. Microchimica Acta,2011,174(3-4):329-336
    [27] Wong H.-L., Tao C.-H., Zhu N., et al. Photochromic alkynes as versatile building blocksfor metal alkynyl systems: design, synthesis, and photochromic studies ofdiarylethene-containing platinum (II) phosphine alkynyl complexes [J]. InorganicChemistry,2010,50(2):471-81
    [28] Bertoldo M., Nazzi S., Zampano G., et al. Synthesis and photochromic response of a newprecisely functionalized chitosan with―clicked‖spiropyran [J]. Carbohydrate Polymers,2011,85(2):401-407
    [29] Zhao W., Carreira E. M. One-pot synthesis of novel photochromic oxazine compounds[J]. Organic Letters,2011,13(19):5084-5087
    [30] Tomatsu I., Peng K., Kros A. Photoresponsive hydrogels for biomedical applications [J].Advanced drug delivery reviews,2011,63(14):1257-1266
    [31] Sumaru K., Ohi K., Takagi T., et al. Photoresponsive Properties ofPoly(N-isopropylacrylamide) Hydrogel Partly Modified with Spirobenzopyran [J].Langmuir,2006,22(9):4353-4356
    [32] Liu J., Nie J., Zhao Y., et al. Preparation and properties of different photoresponsivehydrogels modulated with UV and visible light irradiation [J]. Journal of Photochemistryand Photobiology A: Chemistry,2010,211(1):20-25
    [33] Ercole F., Davis T. P., Evans R. A. Photo-responsive systems and biomaterials:photochromic polymers, light-triggered self-assembly, surface modification, fluorescencemodulation and beyond [J]. Polymer Chemistry,2010,1(1):37-54
    [34] White E. M., Seppala J. E., Rushworth P. M., et al. Switching the Adhesive State ofCatecholic Hydrogels using Phototitration [J]. Macromolecules,2013,46(22):8882-8887
    [35] Sumaru K., Takagi T., Satoh T., et al. Photo-induced reversible proton dissociation ofspirobenzopyran in aqueous systems [J]. Journal of Photochemistry and Photobiology A:Chemistry,2013,261:46-52
    [36] Coelho P. J., Castro M. C. R., Fonseca A. M. C., et al. Photoswitching in azo dyesbearing thienylpyrrole and benzothiazole heterocyclic systems [J]. Dyes and Pigments,2012,92(1):745-748
    [37] Weingart O., Lan Z., Koslowski A., et al. Chiral pathways and periodic decay incis-azobenzene photodynamics [J]. The Journal of Physical Chemistry Letters,2011,2(13):1506-9
    [38] Wang D., Wang X. Amphiphilic azo polymers: Molecular engineering, self-assembly andphotoresponsive properties [J]. Progress in Polymer Science,2012,5(5):1804-1809
    [39] Li N., Ye G., He Y., et al. Hollow microspheres of amphiphilic azo homopolymers:self-assembly and photoinduced deformation behavior [J]. Chemical Communications,2011,47(16):4757-4759
    [40] Hoppmann C., Seedorff S., Richter A., et al. Light‐Directed Protein Binding of aBiologically Relevant β‐Sheet [J]. Angewandte Chemie International Edition,2009,48(36):6636-6639
    [41] Schrader T. E., Cordes T., Schreier W. J., et al. Folding and unfolding of light-triggeredβ-hairpin model peptides [J]. The Journal of Physical Chemistry B,2010,115(18):5219-5226
    [42] Hachikubo Y., Iwai S., Uyeda T. Q. Photoregulated assembly/disassembly of DNA‐templated protein arrays using modified oligonucleotide carrying azobenzene side chains[J]. Biotechnology and bioengineering,2010,106(1):1-8
    [43] Patra D., Zhang H., Sengupta S., et al. Dual Stimuli-Responsive, RechargeableMicropumps via―Host–Guest‖Interactions [J].ACS nano,2013,7(9):7674-7679
    [44] Di Motta S., Avellini T., Silvi S., et al. Photophysical Properties and ConformationalEffects on the Circular Dichroism of an Azobenzene–Cyclodextrin [1] Rotaxane and ItsMolecular Components [J]. Chemistry-A European Journal,2013,19(9):3131-3138
    [45] Tamesue S., Takashima Y., Yamaguchi H., et al. Photoswitchable supramolecularhydrogels formed by cyclodextrins and azobenzene polymers [J]. Angewandte Chemie,2010,122(41):7623-7626
    [46] Chen M., Nielsen S. R., Uyar T., et al. Electrospun UV-responsive supramolecularnanofibers from a cyclodextrin–azobenzene inclusion complex [J]. Journal of MaterialsChemistry C,2013,1(4):850-855
    [47] Chen X., Jiang H., Wang Y., et al. β-Cyclodextrin-induced fluorescence enhancement ofa thermal-responsive azobenzene modified polydiacetylene vesicles for a temperaturesensor [J]. Materials Chemistry and Physics,2010,124(1):36-40
    [48] Ding H., Sheng L., Wang Z., et al. Spectroscopy Studies on the Interaction BetweenBovine Serum Albumin and Colloidal Spheres Self-Assembled fromAzobenzene-Containing Amphiphilic Diblock Copolymers [J]. Journal ofMacromolecular Science, Part B,2012,51(3):525-537
    [49] Wang J., Liu H.-B., Ha C.-S. Zinc-supported azobenzene derivative-based colorimetricfluorescent turn-on‘sensing of bovine serum albumin [J]. Tetrahedron,2009,65(47):9686-9689
    [50] J rgensen K. B. Photochemical Oxidative Cyclisation of Stilbenes and Stilbenoids-TheMallory-Reaction [J]. Molecules,2010,15(6):4334-4358
    [51] Miljani S., Frkanec L., Mei Z., et al. Photoinduced Gelation by Stilbene Oxalyl AmideCompounds [J]. Langmuir,2005,21(7):2754-2760
    [52] Fomina N., Mcfearin C., Sermsakdi M., et al. UV and near-IR triggered release frompolymeric nanoparticles [J]. Journal of the American Chemical Society,2010,132(28):9540-9542
    [53] Kim M. S., Gruneich J., Jing H., et al. Photo-induced release of active plasmid fromcrosslinked nanoparticles: o-nitrobenzyl/methacrylate functionalized polyethyleneimine[J]. Journal of Materials Chemistry,2010,20(17):3396-3403
    [54] Park C., Lee K., Kim C. Photoresponsive Cyclodextrin‐Covered Nanocontainers andTheir Sol-Gel Transition Induced by Molecular Recognition [J]. Angewandte Chemie,2009,121(7):1301-1304
    [55] Kloxin A. M., Kasko A. M., Salinas C. N., et al. Photodegradable hydrogels for dynamictuning of physical and chemical properties [J]. Science,2009,324(5923):59-63
    [56] Kloxin A. M., Tibbitt M. W., Kasko A. M., et al. Tunable hydrogels for externalmanipulation of cellular microenvironments through controlled photodegradation [J].Advanced Materials,2010,22(1):61-66
    [57] Woodcock J. W., Wright R. A., Jiang X., et al. Dually responsive aqueous gels fromthermo-and light-sensitive hydrophilic ABA triblock copolymers [J]. Soft Matter,2010,6(14):3325-3336
    [58] Zhao H., Sterner E. S., Coughlin E. B., et al. O-nitrobenzyl alcohol derivatives:Opportunities in polymer and materials science [J]. Macromolecules,2012,45(4):1723-1736
    [59] Gamys C. G., Schumers J.-M., Vlad A., et al. Amine-functionalized nanoporous thinfilms from a poly (ethylene oxide)-block-polystyrene diblock copolymer bearing aphotocleavable o-nitrobenzyl carbamate junction [J]. Soft Matter,2012,8(16):4486-4493
    [60] Yan B., Boyer J.-C., Branda N. R., et al. Near-infrared light-triggered dissociation ofblock copolymer micelles using upconverting nanoparticles [J]. Journal of the AmericanChemical Society,2011,133(49):19714-19717
    [61] Cao J., Huang S., Chen Y., et al. Near-infrared light-triggered micelles for fast controlleddrug release in deep tissue [J]. Biomaterials,2013,34(26):6272-6283
    [62] Shigenaga A., Yamamoto J., Sumikawa Y., et al. Development and photo-responsivepeptide bond cleavage reaction of two-photon near-infrared excitation-responsivepeptide [J]. Tetrahedron Letters,2010,51(21):2868-2871
    [63] Structured C.-S., Microspheres P. Fluorescence Turn-On‘‘Patterning With PolymersHaving Pendant Triphenylmethane Groups as Fluorophore Precursors [J]. MacromolRapid Commun,2011,32(12):870-875
    [64] Barak L. S., Bai Y., Snyder J. C., et al. Triphenylmethane Dye Activation ofBeta-Arrestin [J]. Biochemistry,2013,52(32):5403-5414
    [65] De Souza Pietra R. C. C., Rodrigues L. F., Teixeira E., et al. TriphenylmethaneDerivatives Have High In Vitro and In Vivo Activity against the Main Causative Agentsof Cutaneous Leishmaniasis [J]. PloS one,2013,8(1): e51864
    [66] Mal N. K., Fujiwara M., Tanaka Y., et al. Photo-switched storage and release of guestmolecules in the pore void of coumarin-modified MCM-41[J]. Chemistry of materials,2003,15(17):3385-3394
    [67] Wang Z.-S., Hara K., Dan-Oh Y., et al. Photophysical and (photo) electrochemicalproperties of a coumarin dye [J]. The Journal of Physical Chemistry B,2005,109(9):3907-3914
    [68] Ling J., Rong M. Z., Zhang M. Q. Photo-stimulated self-healing polyurethane containingdihydroxyl coumarin derivatives [J]. Polymer,2012,53(13):2691-2698
    [69] Wells L. A., Lasowski F., Fitzpatrick S. D., et al. Responding to change: thermo-andphoto-responsive polymers as unique biomaterials [J]. Critical Reviews in BiomedicalEngineering,2010,38(6):487-509
    [70] Shi D., Matsusaki M., Akashi M. Photo-tunable protein release from biodegradablenanoparticles composed of cinnamic acid derivatives [J]. Journal of Controlled Release,2011,149(2):182-189
    [71] Jung J. S., Cho E. H., Jo S., et al. Photo-induced negative differential resistance oforganic thin film transistors using anthracene derivatives [J]. Organic Electronics,2013,14(9):2204-2209
    [72] Shi D., Matsusaki M., Akashi M. Photo-cross-linking induces size change and stealthproperties of water-dispersible cinnamic acid derivative nanoparticles [J]. Bioconjugatechemistry,2009,20(10):1917-1923
    [73]许金钩,王尊本.荧光分析法[M].北京:科学出版社,2006
    [74]邹武新,谈廷风,李旭,等.聚乙二醇支载的螺吡喃类光致变色化合物的合成及其逆光致变色性质[J].高等学校化学学报,2005,26(8):1471-1473
    [75]殷德飞,程红波,霍晓莲,等.含席夫碱基的螺吡喃双功能光致变色材料的合成及性质[J].高等学校化学学报,2011,32(10):2301-2305
    [76]金丹,张峰,张德纯.一种新型双缩合螺吡喃的合成、表征及晶体结构[J].有机化学,2010,30(7):1005-1009
    [77]谈廷风,韩杰,庞美丽,等.6-氯-8-溴螺(吲哚啉-2,2'[2H]苯并[b]吡喃)的合成及光致变色性能研究[J].高等学校化学学报,2007,28(3):472-475
    [78]吴成泰,何永炳,付恩琴.含氮大环化合物的研究[J].有机化学,2001,21(11):914-922
    [79]吴丽,王颖伟,杨志范.两种新型吲哚啉螺吡喃的合成及其光致变色性质研究[J].精细石油化工,2013,30(2):46-50
    [80]魏荣宝,张大为,梁娅,等.含氧、氮、硫杂螺环结构的光致变色化合物研究进展[J].有机化学,2008,28(8):1366-1378
    [81] Heller H. G., Oliver S. N., Whittall J., et al. Photochromic spiropyran compounds [M].Google Patents.1989
    [82] Shiraishi Y., Itoh M., Hirai T. Thermal isomerization of spiropyran to merocyanine inaqueous media and its application to colorimetric temperature indication [J]. PhysicalChemistry Chemical Physics,2010,12(41):13737-13745
    [83] Zanoni M., Coleman S., Fraser K. J., et al. Physicochemical study ofspiropyran-terthiophene derivatives: photochemistry and thermodynamics [J]. PhysicalChemistry Chemical Physics,2012,14(25):9112-9120
    [84] Kohl-Landgraf J. R., Braun M., O Zc Oban C., et al. Ultrafast dynamics of a spiropyran inwater [J]. Journal of the American Chemical Society,2012,134(34):14070-14077
    [85] Shiraishi Y., Adachi K., Itoh M., et al. Spiropyran as a selective, sensitive, andreproducible cyanide anion receptor [J]. Organic letters,2009,11(15):3482-3485
    [86] Schaudel B., Guermeur C., Sanchez C., et al. Spirooxazine-and spiropyran-doped hybridorganic–inorganic matrices with very fast photochromic responses [J]. Journal ofMaterials Chemistry,1997,7(1):61-65
    [87] Deniz E., Tomasulo M., Defazio R. A., et al. Fluorescence patterning in films of aphotoswitchable BODIPY–spiropyran dyad [J]. Physical Chemistry Chemical Physics,2010,12(37):11630-11634
    [88] Higuchi A., Hamamura A., Shindo Y., et al. Photon-modulated changes of cellattachments on poly (spiropyran-co-methyl methacrylate) membranes [J].Biomacromolecules,2004,5(5):1770-1174
    [89] Beiermann B. A., Davis D. A., Kramer S. L., et al. Environmental effects onmechanochemical activation of spiropyran in linear PMMA [J]. Journal of MaterialsChemistry,2011,21(23):8443-8447
    [90] Thomas V., Namdeo M., Murali Mohan Y., et al. Review on polymer, hydrogel andmicrogel metal nanocomposites: a facile nanotechnological approach [J]. Journal ofMacromolecular Science, Part A: Pure and Applied Chemistry,2007,45(1):107-119
    [91] Chen S.-C., Wu Y.-C., Mi F.-L., et al. A novel pH-sensitive hydrogel composed ofN, O-carboxymethyl chitosan and alginate cross-linked by genipin forprotein drug delivery [J]. Journal of Controlled Release,2004,96(2):285-300
    [92] Gong Y., Gao M., Wang D., et al. Incorporating fluorescent CdTe nanocrystals into ahydrogel via hydrogen bonding: toward fluorescent microspheres withtemperature-responsive properties [J]. Chemistry of materials,2005,17(10):2648-2653
    [93] Haines L. A., Rajagopal K., Ozbas B., et al. Light-activated hydrogel formation via thetriggered folding and self-assembly of a designed peptide [J]. Journal of the AmericanChemical Society,2005,127(48):17025-17029
    [94] Qiu Z., Yu H., Li J., et al. Spiropyran-linked dipeptide forms supramolecular hydrogelwith dual responses to light and to ligand–receptor interaction [J]. ChemicalCommunications,2009,23:3342-3344
    [95] Alonso M., Reboto V., Guiscardo L., et al. Spiropyran derivative of an elastin-likebioelastic polymer: photoresponsive molecular machine to convert sunlight intomechanical work [J]. Macromolecules,2000,33(26):9480-9482
    [96] Lee S. J., Jung S. H., Lee S.-H., et al. Sol-Gel Phase Transitions in a PhotochromicSpiropyran-Modified Material by Incorporation in a Hydrogel [J]. J NanosciNanotechnol,2009,9(10):5990-5996
    [97] Zió kowski B., Florea L., Theobald J., et al. Self-protonatingspiropyran-co-NIPAM-co-acrylic acid hydrogel photoactuators [J]. Soft Matter,2013,9(36):8754-60
    [98] Nagarajan R. Molecular packing parameter and surfactant self-assembly: the neglectedrole of the surfactant tail [J]. Langmuir,2002,18(1):31-38
    [99] Yokoyama M. Polymeric micelles as a new drug carrier system and their requiredconsiderations for clinical trials [J]. Expert Opinion on Drug Delivery,2010,7(2):145-158
    [100] Kim S., Shi Y., Kim J. Y., et al. Overcoming the barriers in micellar drug delivery:loading efficiency, in vivo stability, and micelle-cell interaction [J]. Expert Opinion onDrug Delivery,2010,7(1):49-62
    [101] R sler A., Vandermeulen G. W., Klok H.-A. Advanced drug delivery devices viaself-assembly of amphiphilic block copolymers [J]. Advanced drug delivery reviews,2012,64:270-279
    [102] Mccracken M., Sammons M. Sizing of a vesicle drug formulation by quasi-elastic lightscattering and comparison with electron microscopy and ultracentrifugation [J]. Journalof pharmaceutical sciences,1987,76(1):56-59
    [103] Mayer L. D., Tai L. C., Ko D. S., et al. Influence of vesicle size, lipid composition, anddrug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice [J]. CancerResearch,1989,49(21):5922-5930
    [104] Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeationenhancement, vesicle penetration, and transdermal drug delivery [J]. Critical Reviewsin Therapeutic Drug Carrier Systems,1996,13(3-4):257-388
    [105] Aripin N. F. K., Park J. W., Park H. J. Preparation of vesicle drug carrier from palmoil-and palm kernel oil-based glycosides [J]. Colloids and Surfaces B: Biointerfaces,2012,95:144-153
    [106]荣利霞,魏柳荷,董宝中,等.两亲性嵌段聚合物的同步辐射小角x射线散射研究[J].物理学报,2005,51(8):1773-1777
    [107]杨婷婷,徐莹莹,姚丽,等. ATRP法合成两亲的含氟柱状刷PBIEM-g-(PAA-b-PFA)[J].高分子学报,2009,1(11):1146-1153
    [108]宋付权,武玉海,俞巨高.疏水-超疏水表面的简易制备方法[J].中国力学学会学术大会'2009论文摘要集,2009
    [109]张雪飞,胡俊丽,陈学思,等.载有胰岛素的可生物降解微球的制备与表征[J].高等学校化学学报,2005,26(3):554-557
    [110] Seki T., Ichimura K. Formation of head-to-tail and side-by-side aggregates ofphotochromic spiropyrans in bilayer membrane [J]. Journal of Physical Chemistry,1990,94(9):3769-3775
    [111] Ohya Y., Okuyama Y., Fukunaga A., et al. Photo-sensitive lipid membrane perturbationby a single chain lipid having terminal spiropyran group [J]. Supramolecular Science,1998,5(1):21-29
    [112] Ohya Y., Okuyama Y., Ouchi T. Photo-Induced Drug Release from Liposome UsingPhotochromic Lipid Having Spiropyran Group [M]. Advanced Biomaterials inBiomedical Engineering and Drug Delivery Systems. Springer.1996:353-354
    [113]褚衡,李纯清,陈绪煌,等.光致变色化合物及其应用[J].湖北工学院学报,1999,14(3):88-94
    [114]武振羽,王瑞芝.带有可变色染料的胶粘剂在服装上的应用[J].河北化工,1999,1):24-26
    [115]秦传香,秦志忠,王筱梅,等.发光纤维的研究进展[J].合成纤维工业,2005,6(28):55-61
    [116] Matyjaszewski K., Xia J. Atom transfer radical polymerization [J]. Chemical Reviews,2001,101(9):2921-2990
    [117] Siegwart D. J., Oh J. K., Matyjaszewski K. ATRP in the design of functional materialsfor biomedical applications [J]. Progress in polymer science,2012,37(1):18-37
    [118] Nicola R., Kwak Y., Matyjaszewski K. A Green Route to Well-DefinedHigh-Molecular-Weight (Co) polymers Using ARGET ATRP with Alkyl Pseudohalidesand Copper Catalysis [J]. Angewandte Chemie,2010,122(3):551-554
    [119] Medina-Castillo A. L., Fernandez-Sanchez J. F., Segura-Carretero A., et al. Design andsynthesis by ATRP of novel, water-insoluble, lineal copolymers and their application inthe development of fluorescent and pH-sensing nanofibres made by electrospinning [J].Journal of Materials Chemistry,2011,21(18):6742-6750
    [120] Xu F. J., Cai Q. J., Li Y. L., et al. Covalent Immobilization of Glucose Oxidase onWell-Defined Poly(glycidyl methacrylate) Si(111) Hybrids from Surface-InitiatedAtom-Transfer Radical Polymerization [J]. Biomacromolecules,2005,6(2):1012-1020
    [121] Broyer R. M., Quaker G. M., Maynard H. D. Designed Amino Acid ATRP Initiators forthe Synthesis of Biohybrid Materials [J]. Journal of the American Chemical Society,2007,130(3):1041-1047
    [122] Oh K. S., Lee K. E., Han S. S., et al. Formation of Core/Shell Nanoparticles with aLipid Core and Their Application as a Drug Delivery System [J]. Biomacromolecules,2005,6(2):1062-1067
    [123] Paik H. J., Gaynor S. G., Matyjaszewski K. Synthesis and characterization of graftcopolymers of poly (vinyl chloride) with styrene and (meth) acrylates by atom transferradical polymerization [J]. Macromolecular rapid communications,1998,19(1):47-52
    [124] Wang X.-S., Luo N., Ying S.-K. Synthesis of EPDM-g-PMMA through atom transferradical polymerization [J]. Polymer,1999,40(16):4515-4520
    [125]王文涛,倪才华. ATRP技术用于热敏性高聚物在硅胶表面的接枝[J].高分子学报,2008,1(9):899-904
    [126]刘春华,范保林,刘榛.原子转移自由基聚合(ATRP)在二氧化硅表面接枝中的应用[J].高分子通报,2009,(4):64-70
    [127]何纪卿.表面改性羟基磷灰石纳米杂化粒子及复合材料的制备与表征[D].北京化工大学,2012.
    [128] Nurmi L., Holappa S., Mikkonen H., et al. Controlled grafting of acetylated starch byatom transfer radical polymerization of MMA [J]. European polymer journal,2007,43(4):1372-1382.
    [129] Carlmark A., Malmstr m E. E. ATRP grafting from cellulose fibers to createblock-copolymer grafts [J]. Biomacromolecules,2003,4(6):1740-1745
    [130] Coulembier O., Degée P., Gerbaux P., et al. Synthesis of AmphiphilicPoly((R,S)-β-malic acid)-graft-poly(-caprolactone):―Grafting From‖and―GraftingThrough‖Approaches [J]. Macromolecules,2005,38(8):3141-3150
    [131] Moad G., Rizzardo E., Thang S. H. Living radical polymerization by the RAFT process[J]. Australian Journal of Chemistry,2005,58(6):379-410
    [132] Kolb H. C., Finn M., Sharpless K. B. Click chemistry: diverse chemical function from afew good reactions [J]. Angewandte Chemie International Edition,2001,40(11):2004-2021
    [133]杨素华,庞美丽,孟继本.双功能螺吡喃螺噁嗪类光致变色化合物研究进展[J].有机化学,2011,31(011):1725-1735
    [134]杨松杰,田禾.有机光致变色材料最新研究进展[J].化工学报,2003,54(4):497-507
    [135]沈庆月,陆春华,许仲梓.光致变色材料的研究与应用[J].材料导报,2006,19(10):31-35
    [136]冯晓强,陈烽.光致变色的研究进展[J].应用光学,2000,21(3):1-6
    [137] Buchholtz F., Zelichenok A., Krongauz V. Synthesis of new photochromic polymersbased on phenoxynaphthacenequinone [J]. Macromolecules,1993,26(5):906-910
    [138] García A. A., Cherian S., Park J., et al. Photon-controlled phase partitioning ofspiropyrans [J]. The Journal of Physical Chemistry A,2000,104(26):6103-6107
    [139]庞美丽,杨涛涛,李晶晶,等.新型含氮杂环螺吡喃化合物的合成及性能研究[J].化学学报,2010,68(18):1895-1902
    [140] Frade V. H., Gon alves M. S. T., Coutinho P. J., et al. Synthesis and spectral propertiesof long-wavelength fluorescent dyes [J]. Journal of Photochemistry and Photobiology A:Chemistry,2007,185(2):220-230
    [141] Zarzar L. D., Kim P., Aizenberg J. Bio‐inspired Design of Submerged Hydrogel‐Actuated Polymer Microstructures Operating in Response to pH [J]. Advanced Materials,2011,23(12):1442-1446
    [142] Patterson J., Hubbell J. A. Enhanced proteolytic degradation of molecularly engineeredPEG hydrogels in response to MMP-1and MMP-2[J]. Biomaterials,2010,31(30):7836-7845
    [143] Bai W., Gariano N. A., Spivak D. A. Macromolecular Amplification of BindingResponse in Superaptamer Hydrogels [J]. Journal of the American Chemical Society,2013,135(18):6977-6984
    [144] Zou W., Liu X., Yu L., et al. Synthesis and Characterization of BiodegradableStarch-Polyacrylamide Graft Copolymers Using Starches with Different Microstructures[J]. Journal of Polymers and the Environment,2013,21(2):359-365
    [145] Liu H., Yu L., Simon G., et al. Effects of annealing on gelatinization and microstructuresof corn starches with different amylose/amylopectin ratios [J]. Carbohydrate Polymers,2009,77(3):662-669
    [146] Akiyama E., Morimoto N., Kujawa P., et al. Self-Assembled Nanogels ofCholesteryl-Modified Polysaccharides: Effect of the Polysaccharide Structure on TheirAssociation Characteristics in the Dilute and Semidilute Regimes [J].Biomacromolecules,2007,8(8):2366-2273
    [147] Hirakura T., Nomura Y., Aoyama Y., et al. Photoresponsive Nanogels Formed by theSelf-Assembly of Spiropyrane-Bearing Pullulan That Act as Artificial MolecularChaperones [J]. Biomacromolecules,2004,5(5):1804-1809
    [148] Akiyama E., Morimoto N., Kujawa P., et al. Self-assembled nanogels ofcholesteryl-modified polysaccharides: Effect of the polysaccharide structure on theirassociation characteristics in the dilute and semidilute regimes [J]. Biomacromolecules,2007,8(8):2366-2373
    [149] Patnaik S., Sharma A. K., Garg B., et al. Photoregulation of drug release in azo-dextrannanogels [J]. International journal of pharmaceutics,2007,342(1):184-193
    [150] Kim S. J., Kim W. I., Yamato M., et al. Successive grafting of PHEMA and PIPAAmonto cell culture surface enables rapid cell sheet recovery [J]. Tissue Engineering andRegenerative Medicine,2013,10(3):139-145
    [151] Dragusin D M, Van Vlierberghe S, Dubruel P, et al. Novel gelatin-PHEMA porousscaffolds for tissue engineering applications[J]. Soft Matter,2012,8(37):9589-9602
    [152] Ribeiro A., Veiga F., Santos D., et al. Bioinspired imprinted PHEMA-hydrogels forocular delivery of carbonic anhydrase inhibitor drugs [J]. Biomacromolecules,2011,12(3):701-709
    [153] Gloria A., De Santis R., Ambrosio L., et al. A multi-component fiber-reinforcedPHEMA-based hydrogel/HAPEXTM device for customized intervertebral discprosthesis [J]. Journal of biomaterials applications,2011,25(8):795-810
    [154] Samsonova O., Pfeiffer C., Hellmund M., et al. Low molecular weightPDMAEMA-block-PHEMA block-copolymers synthesized via RAFT-polymerization:potential non-viral gene delivery agents?[J]. Polymers,2011,3(2):693-718
    [155] Sui X., Yuan J., Zhou M., et al. Synthesis of cellulose-graft-poly (N,N-dimethylamino-2-ethyl methacrylate) copolymers via homogeneous ATRP and theiraggregates in aqueous media [J]. Biomacromolecules,2008,9(10):2615-2620
    [156]沈利英,陈肖卓,于海涛,等.刺激响应型有机小分子凝胶的研究进展[J].有机化学,2009,29(3):321-333
    [157] Niu A., Liaw D.-J., Sang H.-C., et al. Light-scattering study of a zwitterionicpolycarboxybetaine in aqueous solution [J]. Macromolecules,2000,33(9):3492-3494
    [158] Sanwlani S., Bohidar H. Differential Hydration Induced Coil-Sphere Transition ofGelatin Chains in Binary Liquid Solutions [J]. Journal of Physical Chemistry&Biophysics,2013,3(1):1000114
    [159]龙柱,董翠华.可逆温致变色防伪纸制备及其性能研究[J].中国造纸,2010,29(z1):24-32
    [160]田威,高玉杰.防伪纸及其防伪方式的选择[J].天津造纸,2010,32(1):19-20
    [161]刘伟,刘晓洪,殷肖海,等.热处理对苎麻纤维结晶度的影响[J].纺织科技进展,2009,(4):50-51
    [162] Mwaikambo L. Review of the history, properties and application of plant fibres [J].African Journal of Science and Technology,2006,7(2):120-133
    [163] Mcdougall G., Morrison I., Stewart D., et al. Plant fibres: botany, chemistry andprocessing for industrial use [J]. Journal of the Science of Food and Agriculture,1993,62(1):1-20
    [164] Zhang M. Q., Rong M. Z., Lu X. Fully biodegradable natural fiber composites fromrenewable resources: all-plant fiber composites [J]. Composites Science and Technology,2005,65(15):2514-2525
    [165] Plackett D., L gstrup Andersen T., Batsberg Pedersen W., et al. Biodegradablecomposites based on L-polylactide and jute fibres [J]. Composites Science andTechnology,2003,63(9):1287-1296
    [166] Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi [J].Biotechnology advances,2009,27(2):185-194
    [167] Hutchens S. A., Benson R. S., Evans B. R., et al. Biomimetic synthesis ofcalcium-deficient hydroxyapatite in a natural hydrogel [J]. Biomaterials,2006,27(26):4661-4670
    [168] Swatloski R. P., Spear S. K., Holbrey J. D., et al. Dissolution of cellose with ionicliquids [J]. Journal of the American Chemical Society,2002,124(18):4974-4975
    [169] O‘connell D. W., Birkinshaw C., O‘dwyer T. F. Heavy metal adsorbents prepared fromthe modification of cellulose: A review [J]. Bioresource Technology,2008,99(15):6709-6724
    [170] Mclean B. W., Bray M. R., Boraston A. B., et al. Analysis of binding of the family2acarbohydrate-binding module from Cellulomonas fimi xylanase10A to cellulose:specificity and identification of functionally important amino acid residues [J]. Proteinengineering,2000,13(11):801-809
    [171] Orts W. J., Shey J., Imam S. H., et al. Application of cellulose microfibrils in polymernanocomposites [J]. Journal of Polymers and the Environment,2005,13(4):301-306
    [172] Wagner K., Byrne R., Zanoni M., et al. A multiswitchable poly (terthiophene) bearing aspiropyran functionality: understanding photo-and electrochemical control [J]. Journal ofthe American Chemical Society,2011,133(14):5453-5462
    [173] Shao N., Wang H., Gao X., et al. Spiropyran-based fluorescent anion probe and itsapplication for urinary pyrophosphate detection [J]. Analytical chemistry,2010,82(11):4628-4636
    [174]韩迎迎,袁庆钊,杨飞,等.造纸法烟草薄片与天然烟叶表面润湿特性的研究[J].
    林产化学与工业,2013,33(4):79-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700