用户名: 密码: 验证码:
高强度纳米复合水凝胶的形成机理及力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作从高强度聚N-异丙基丙烯酰胺(PNIPAm)-锂藻土纳米复合水凝胶(NC凝胶)的网络结构形成机理、大形变下的宏观和微观力学行为以及力学性能增强方法等方面对NC凝胶进行了深入系统的研究。研究的主要思路是:通过石英晶体微天平(QCM)直接测定PNIPAm分子链和锂藻土纳米片层之间的相互作用;借助粒径分布、ζ-电位、流变测试和倒瓶法观测PNIPAm分子链和锂藻土纳米片层在水溶液混合体系中的聚集和凝胶化进程,利用拉曼光谱探讨两者的作用机理;通过单轴拉伸和撕裂测试研究大形变NC凝胶的应变硬化及自增强现象,使用AFM纳米压痕技术研究NC凝胶的微观力学行为,并对其微观机理进行分析;在体积相转变温度以上对NC凝胶进行热处理,使其达到快捷的力学增强。本工作的主要内容和结果如下:
     1.采用QCM-D的方法研究了PNIPAm和锂藻土之间的相互作用。QCM结果表明,PNIPAm可吸附于石英传感器金电极的表面,形成牢固的修饰层。将锂藻土分散液引入附有PNIPAm修饰层的QCM石英传感器后,频率变化f大幅下降,耗散变化D同时上涨,表明锂藻土纳米片层可大量吸附于PNIPAm修饰层上,直接证明两者之间具有较强的相互作用。通过D和-f的动态关系发现,锂藻土在PNIPAm修饰层上的吸附过程可分为两个明显的线性阶段:第1阶段是锂藻土吸附层在QCM传感器上的快速建立;第2阶段是锂藻土纳米颗粒在初始建立的吸附层内的致密化过程。通过跟踪PEG和PNIPAm分子链对锂藻土片层的竞争吸附行为发现,PEG的引入使粘土片层急剧地从PNIPAm上脱附,直接证明PEG分子链在锂藻土片层上的优先吸附能力,揭示了PEG组分的引入使PNIPAm-锂藻土NC凝胶力学强度下降的原因。
     2.通过粒径分布、ζ-电位、流变测试等方法观测了PNIPAm分子链和锂藻土纳米片层在水溶液混合体系中的聚集、凝胶化进程,使用拉曼光谱分析了两者的作用机理。在较稀的混合体系中,两者浓度比CPNIPAm: CXLS的提高使混合体系的平均粒径逐渐增大,ζ-电位向正电方向移动,表明PNIPAm分子链和锂藻土纳米片层在较稀的水溶液中发生聚集。较高浓度的PNIPAm-锂藻土混合体系的流变行为显示,PNIPAm与锂藻土混合体系需要较长的时间才能达到稳定状态,体系粘度随锂藻土浓度的提高明显增大,而PNIPAm浓度的提高对体系粘度的影响较微小。通过倒瓶的方法,我们进一步探索了PNIPAm-锂藻土混合体系的凝胶化进程,并建立了混合体系的凝胶化相图。拉曼光谱的结果显示,随着混合体系中粘土含量的提高,PNIPAm分子链上CH3侧基的反对称伸缩振动峰发生蓝移,同时对称伸缩峰高度和面积减小,趋向于纯PNPAm固体的拉曼光谱,表明CH3周围的水分子减少,即在混合体系中PNIPAm通过CH3与锂藻土纳米片层发生相互作用。
     3.通过单轴拉伸、撕裂测试以及AFM纳米压痕研究了PNIPAm-锂藻土NC凝胶的宏观和微观力学行为。通过单轴拉伸和撕裂测试发现了NC凝胶在大形变条件下普遍存在应变硬化的现象,由于粘土片层取向后不可完全恢复,粘土含量较高的NC凝胶在大形变后发生了自增强的力学行为。采用AFM纳米压痕技术研究了NC凝胶在微观尺度下的力学行为,结果显示在拉伸或撕裂形变后NC凝胶杨氏模量明显增大,即大形变NC凝胶在微观尺度下亦表现出应变硬化的力学行为,与宏观现象一致,说明NC凝胶的网络结构在微观尺度下也是均匀分布的。通过跟踪大形变NC凝胶的恢复过程发现,大形变NC凝胶的杨氏模量在前10h发生大幅下降,对于粘土含量较高的NC凝胶,其杨氏模量最终平衡在一个高于新制备NC凝胶的水平,即在微观尺度下证实了NC凝胶大形变后发生自增强的力学行为。通过硬球有效体积的模型解释了NC凝胶发生增强现象的微观机制,当粘土含量超过6w/v%时,锂藻土纳米片层的平均间距L小于片层直径d,粘土片层的运动受到空间位阻的制约,使其在取向后无法完全恢复,使NC凝胶在大形变后发生了自增强。
     4.通过在体积相转变温度以上对PNIPAm-锂藻土NC凝胶进行热处理,使其快捷增强。热处理后NC凝胶的拉伸性能明显提高,溶胀度规律性地下降。随着加热温度的提高或处理时间的延长,NC凝胶的拉伸杨氏模量进一步提高,粘土含量越高热致增强效应越明显。热处理NC凝胶溶胀后的动态储能模量显示,NC凝胶的热致增强作用在溶胀后并没有消失,说明了热处理所导致的结构变化是不可逆的,而且水对凝胶网络的膨胀不会破坏新增加的交联点结构。SEM结果显示,热处理温度越高或时间越长将使得NC凝胶的微孔洞愈加致密,可直接说明热处理确实使得NC凝胶的网络结构致密化。在盐溶液中热处理的结果表明,盐溶液能够对热处理过程的增强效应起到促进作用,粘土含量越高,这种增强作用则越明显。
The network structure and gel forming mechanism of poly(N-isopropylacrylamide)(PNIPAm)-hectorite nanocomposite hydrogels (NC gels), large strain mechanical behaviors ofNC gel both in macro and micro scale, as weel as reinforcing method were investigatedsystematically in this work. First, the interaction between the PNIPAm chains and hectoritewas directly monitored on the quartz crystal micro-balance (QCM). Second, through sizedistribution, ζ-potential, rheology measurments and bottle inverting method, the aggregatesand gelation of the PNIPAm-hectorite aqueous mixtures were studied, and the bindingmechanism was reveal by Raman spectra. Third, the strain hardening and self-reinforcementphenomena of the NC gels under large deformation were investigated by uniaxial tensile andfracture tests, and the micro-scale mechanical behaviors and mechanism of the NC gels werestudied using AFM nanoindentation technology. Besides, the NC gels were successfullyreinforced by a facial method of heat treatment at temperature high than the volume phasetransition point. The main contents and results are as follow:
     1. Using the QCM-D technic, the interaction between PNIPAm and hectorite wasinvestigated. The PNIPAm chains were able to adsorbe onto the gold surface of the QCMquartz electrod and form a strongly binding layer. Large amount of the frequency drop wasfound for the adsorption of hectorite on the PNIPAm layer, confirming strong interactionhappened between the PNIPAm chains and hectorite platelets directly. The real-timedynamic relationship between the D and f revealed that the adsorption of hectorite on thePNIPAm could be divided into two stages: the hectorite adsorbed layer was initially built upon the PNIPAm, and following by the densification of the clay platelets in this built-up layer.In addition, the completive adsorption berween PEG and PNIPAm on the hectorite weredetected by the QCM-D, manifesting that the hectorite was desorbed dramatically from thePNIPAm when the PEG solution was introduced into the QCM, which indicated the preferential adsorption of PEG on the hectorite platelets directly.
     2. Through size distribution, ζ-potential, rheology measurments and bottle invertingmethod, the aggregates and gelation of the PNIPAm-hectorite aqueous mixtures were studied,and the binding mechanism was reveal by Raman spectra.. With the increased concentrationratio CPNIPAm:CXLS, the size distributions of the diluted mixtures moved toward the directionof high value, and the ζ-potential distribution moved toward the direction of positivepotential, indicating that the PNIPAm chains and hectorite particles aggregated in the dilutedcondition. The rheology behaviors of the concentrated PNIPAm-hectorite mixturesmanifested that, long time was needed for these mixtures to get equilibrium, and the viscosityincrease of the mixture was evident with higher concentration of hectorite, while unobviouswith the increase of PNIPm concentration. Further, we explored the gelation process of thePNIPAm-hectorite mixtures and the gelation diagram of the mixtures was established bybottles inverting method. The Raman spectra of PNIPAm in the mixtures showed that theantisymmetry stretch of the CH3group on the PNIPAm chains shifted to lower wavenumber,and the height and area of CH3symmetry stretch decreased with increased clay content,similar to that in dry state, indicating hydrophobic interaction happened between the PNIPAmchains and hectorite platelets through the CH3group.
     3. The uniaxial tensile and fracture tests showed that, strain hardening phenomenahappened on the PNIPAm-hectorite NC gels under large deformation, caused by theorientation of clay platelets and polymer chains. And because of the un-recoverableorientation of the clay platelets, self-reinforcement behaviors happened in NC gels with highclay content after large-deformation. Through the AFM nanoindentation technology, weinvestigated the mechanical behaviors of the PNIPAm-hectorite NC gels in nano-scale. TheAFM results showed that, the Young‘s modulus of the NC gels increased obviously after bothtensile and fracture tests. That is, strain hardening phenomenon also happened in nano scaleon the NC gels under large deformation, consistent with the results in macro scale, indicating the network structure of the NC gels was uniform in micro scale. The dynamic recoveryprocess of the NC gels after large deformation monitored by AFM showed that, the Young‘smodulus of the highly deformed NC gels decreased substantially before10h. For the NCgels with higher clay content, the Young‘s modulus was finally equilibrium at a level higherthan that of the as prepared ones, indicating that self-reinforcement happened for the NC gelsafter large deformation The self-reinforcement of the NC gels with high clay content afterlarge deformation was interpreted with the average distance between the clay particlesevaluated from the effective equivalent volume of the hard spheres. This distance wassmaller than the particle diameter when the clay concentration beyond6w/v%, whichhampered seriously the relaxation of the orientated clay platelets.
     4. A facile method was explored to reinforce the PNIPAm-hectorite nanocomposite hydrogels(NC gel) by heat treatment at temperature above the volume phase transition temperature, whichengenders enhanced mechanical strength and depressed swelling capacity with denser microporousstructure, compared with the non-treated NC gels. This reinforcement effect was strengthenedwhen the NC gels were heated at a higher temperature for a longer time. The NC gelscontaining more clay platelets showed a more evident reinforcement. Even after swelling inwater, this reinforcement still remained as revealed by the dynamic modulus and swellingratio of the swollen heat treated NC gels. The SEM photos showed that higher heatingtemperature or longer treatment time will led to a denser porous structure of the NC gels,which indicating directly the reinforcement of the NC gels by heat treatment. Additionally,salt solution could improve the reinforcement effect of the heat-treatment NC gels, which wasmore obvious with higher clay content.
引文
[1] Flory, P. J. Introductory lecture [J]. Faraday Discuss. Chem. Soc.1974,7-18.
    [2] Hoffman, A. S. Hydrogels for biomedical applications [J]. Advanced Drug DeliveryReviews2002,43,3-12.
    [3]何曼君;陈维孝;董西侠.高分子物理[M].复旦大学出版社:上海,1990.
    [4]翟茂林;哈鸿飞.水凝胶的合成、性质及应用[M].大学化学:2001; Vol.16.
    [5] Tanaka, T.; Fillmore, D.; Sun, S.; Nishio, I.; Swislow, G.; Shah, A. Phase transitions inionic gels [J]. Phys. Rev. Lett.1980,45,1636.
    [6] Morishima, K.; Tanaka, Y.; Ebara, M.; Shimizu, T.; Kikuchi, A.; Yamato, M.; Okano, T.;Kitamori, T. Demonstration of a bio-microactuator powered by cultured cardiomyocytescoupled to hydrogel micropillars [J]. Sensors and Actuators B: Chemical2006,119(1),345-350.
    [7] Shuhendler, A. J.; Staruch, R.; Oakden, W.; Gordijo, C. R.; Rauth, A. M.; Stanisz, G. J.;Chopra, R.; Wu, X. Y. Thermally-triggered off–on–off‘response of gadolinium-hydrogel–lipid hybrid nanoparticles defines a customizable temperature window for non-invasivemagnetic resonance imaging thermometry [J]. Journal of Controlled Release2012,157(3),478-484.
    [8] Lee, E.; Kim, B. Preparation and characterization of pH-sensitive hydrogel microparticlesas a biological on–off switch [J]. Polym. Bull.2011,67(1),67-76.
    [9] Yu, F.; Cao, X.; Zeng, L.; Zhang, Q.; Chen, X. An interpenetrating HA/G/CS biomimichydrogel via Diels–Alder click chemistry for cartilage tissue engineering [J]. CarbohydratePolymers2013,97(1),188-195.
    [10] Maldonado-Codina, C.; Morgan, P. B. In vitro water wettability of silicone hydrogelcontact lenses determined using the sessile drop and captive bubble techniques [J]. Journal ofBiomedical Materials Research PartA2007,83A(2),496-502.
    [11] Islam, M. R.; Lu, Z.; Li, X.; Sarker, A. K.; Hu, L.; Choi, P.; Li, X.; Hakobyan, N.; Serpe,M. J. Responsive polymers for analytical applications: A review [J]. Analytica Chimica Acta2013,789(0),17-32.
    [12] Kim, J.; Park, K. Smart hydrogels for bioseparation [J]. Bioseparation1998,7(4-5),177-184.
    [13] Simhadri, J. J.; Stretz, H. A.; Oyanader, M.; Arce, P. E. Role of Nanocomposite HydrogelMorphology in the Electrophoretic Separation of Biomolecules: A Review [J]. Industrial&Engineering Chemistry Research2010,49(23),11866-11877.
    [14] Adrus, N.; Ulbricht, M. Novel hydrogel pore-filled composite membranes with tunableand temperature-responsive size-selectivity [J]. Journal of Materials Chemistry2012,22(7),3088-3098.
    [15] Tokarev, I.; Minko, S. Stimuli-Responsive Porous Hydrogels at Interfaces for MolecularFiltration, Separation, Controlled Release, and Gating in Capsules and Membranes [J].Advanced Materials2010,22(31),3446-3462.
    [16] Yu, X.; Genqi, L.; Cheng, Z.; Jiae, L. Sulfoacetic acid modifying poly(vinyl alcohol)hydrogel and its electroresponsive behavior under DC electric field [J]. Smart Materials andStructures2013,22(1),014009.
    [17] Wang, E.; Desai, M. S.; Lee, S.-W. Light-Controlled Graphene-Elastin CompositeHydrogelActuators [J]. Nano Letters2013,13(6),2826-2830.
    [18] Yoshida, M.; Nagaoka, N.; Asano, M.; Omichi, H.; Kubota, H.; Ogura, K.; Vetter, J.;Spohr, R.; Katakai, R. Reversible on-off switch function of ion-track pores for thermo-responsive films based on copolymers consisting of diethyleneglycol-bis-allylcarbonate andacryloyl-L-proline methyl ester [J]. Nuclear Instrument and Methods in Physics Research,Section B1997,122,39-44.
    [19] Osada, Y.; Matsuda,A. Shape memory in hydrogels [J]. Nature1995,376,219.
    [20] White, E. M.; Yatvin, J.; Grubbs, J. B.; Bilbrey, J. A.; Locklin, J. Advances in smartmaterials: Stimuli-responsive hydrogel thin films [J]. Journal of Polymer Science Part B:Polymer Physics2013,51(14),1084-1099.
    [21]陈莉.智能高分子材料[M].化学工业出版社:北京,2005.
    [22] Lin, C. C.; Metters, A. T. Advanced drug delivery reviews [J]. Adv. Drug Delivery Rev.2006,58,1379-1408.
    [23] Zohuriaan-Mehr, M. J.; Kabiri, K. Superabsorbent polymer materials: a review [J].Iranian Polymer Journal2008,17,451-477.
    [24] Katsuno, C.; Konda, A.; Urayama, K.; Takigawa, T.; Kidowaki, M.; Ito, K. Pressure-responsive polymer membranes of slide-ring gels with movable cross-links [J]. Adv. Mater.2013,,25,4636-4640.
    [25] Ito, K. Novel Cross-Linking Concept of Polymer Network: Synthesis, Structure, andProperties of Slide-Ring Gels with Freely Movable Junctions [J]. Polymer J.2007,39,489-499.
    [26] Granick, S.; Rubinstein, M. Polymers: a multitude of macromolecules [J]. Nat. Mater.2004,3,586-587.
    [27] Okumura, Y.; Ito, K. The polyrotaxane gel: a topological gel by figure-of-right cross-links [J].Adv. Mater.2001,13,485-487.
    [28] Weng, L.; Gouldstone, A.; Wu, Y.; Chen, W. Mechanically strong double networkphotocrosslinked hydrogels from N,N-dimethylacrylamide and glycidyl methacrylatedhyaluronan [J]. Biomaterials2008,29,2153-2163.
    [29] Myung, D.; Koh, W.; Ko, J.; Hu, Y.; Carrasco, M.; Noolandi, J.; Ta, C. N.; Frank, C. W.Biomimetic strain hardening in interpenetrating polymer network hydrogels [J]. Polymer2007,48,5376-5387.
    [30] Malkoch, M.; Vestberg, R.; Gupta, N.; Mespouille, L.; Dubois, P.; Mason, A.; Hedrick,J.; Liao, Q.; Frank, C.; Kingsbury, K.; Hawker, C. Synthesis of well-defined hydrogelnetworks using Click chemistry [J]. Chem. Commun.2006,,(26),2774-2776.
    [31] Yu, Q.; Tanaka, Y.; Furukawa, H.; Kurokawa, T.; Gong, J. P. Direct observation ofdamage zone around crack tips in double-network gels.[J]. Macromolecules2009,42,3852-3855.
    [32] Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-network hydrogels withextremely high mechanical strength [J].Adv. Mater.2003,151155-1158.
    [33] Tanaka, Y.; Kawauchi, Y.; Kurokawa, T.; Furukawa, H.; Okajima, T.; Gong, J. P.Localized yielding around crack tips of double-network gels [J]. Macromol Rapid Commun.2008291514-1520.
    [34] Huang, T.; Xu, H. G.; Jiao, K. X.; Zhu, L. P.; Brown, H. R.; Wang, H. L. A novelhydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel[J].Adv. Mater.2007191622-1626.
    [35] Hu, J.; Hiwatashi, K.; T., K.; Liang, S. M.; Wu, Z. L.; Gong, J. P. Microgel-reinforcedhydrogel films with high mechanical strength and their visible mesoscale fracture structure[J]. Macromolecules201144,7775-7781.
    [36] Qin, X.; Zhao, F.; Liu, Y.; Wang, H.; Feng, S. High mechanical strength hydrogelspreparation using hydrophilic reactive microgels as crosslinking agents [J]. Colloid Polym Sci2009287,621-625.
    [37] Haraguchi, K.; Takehisa, T. Nanocomposite hydrogels: a unique organic-inorganicnetwork structure with extraordinary mechanical, optical, and swelling/de-swelling properties[J].Adv. Mater.2002,141120-1124.
    [38] Katsuno, C.; Konda, A.; Urayama, K.; Takigawa, T.; Kidowaki, M.; Ito, K. Pressure-Responsive Polymer Membranes of Slide-Ring Gels with Movable Cross-Links [J]. AdvancedMaterials2013,25(33),4636-4640.
    [39] Okumura, Y.; Ito, K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links [J].Adv. Mater.200113485-487.
    [40] Na, Y.; Kurokawa, T.; Katsuyama, Y.; Tsukeshiba, H.; Gong, J. P.; Osada, Y.; Okabe, S.;Karino, T.; Shibayama, M. Structural characteristics of double network gels with extremelyhigh mechanical strength [J]. Macromolecules2004,37,5370-5374.
    [41] Haraguchi, K.; Farnworth, R.; Ohbayashi, A.; Takehisa, T. Compositional effects onmechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay [J]. Macromolecules2003,36,5732-5741.
    [42]杨剑;腾风恩.纳米材料综述[J].材料导报1997,2,6-10.
    [43] Messersmith, P. B.; Znidarsich, F. In Nanophase and Nanocomposite Materials II [J].Pittburgh: Materials Research Society1997,507.
    [44] Liang; Liu, J.; Gong, X. Thermosensitive poly(N-isopropylacrylamide) clayNanocomposites with enhanced temperature response [J]. Langmuir: the ACS journal ofsurfaces and colloids2000,16(25),9895-9899.
    [45] Haraguchi, K.; Li, H. Mechanical properties and structure of polymer-claynanocomposite gels with high clay content [J]. Macromolecules2006,39,1898-1905.
    [46] Liu, X.; Thomas, J. K. Study of surface properties of clay laponite using pyrene as aphotophysical probe molecule [J]. Langmuir: the ACS journal of surfaces and colloids1991,7(11),2808-2816.
    [47] Dijkstra, M.; Hansen, J. P.; Madden, P. A. Gelation of a clay colloid suspension [J].Physical Review Letters1995,75(11),2236-2239.
    [48] Haraguchi, K.; Li, H. J.; Matsuda, K.; Takehisa, T.; Elliott, E. Mechanism of formingorganic/inorganic network structures during in-situ free-radical polymerization in PNIPA-claynanocomposite hydrogels [J]. Macromolecules2005,38,3482-3490.
    [49] Rose, S.; Dizeux, A.; Narita, T.; Hourdet, D.; Marcellan, A. Time dependence ofdissipative and recovery processes in nanohybrid hydrogels [J]. Macromolecules2013,46,4095-4104.
    [50] Mahdavinia, G. R.; Hasanpour, J.; Rahmani, Z.; Karami, S.; Etemadi, H. Nanocompositehydrogel from grafting of acrylamide onto HPMC using sodium montmorillonite nanoclayand removal of crystal violet dye [J]. Cellulose2013,20(5),2591-2604.
    [51] Zhang, D.; Yang, J.; Bao, S.; Wu, Q.; Wang, Q. Semiconductor nanoparticle-basedhydrogels prepared via self-initiated polymerization under sunlight, even visible light [J].Scientific Reports,2013,3,1399-1405.
    [52] Xiang, Y.; Peng, Z.; Chen, D. A new polymer/clay nano-composite hydrogel withimproved response rate and tensile mechanical properties.[J]. Eur. Polym. J.2006,42,2125-2132.
    [53] Lee, W. F.; Chen, Y. C. Effect of intercalated hydrotalcite on swelling and mechanicalbehavior for poly(acrylicacid-co-N-isopropylacrylamide)/hydrotalcite nanocompositehydrogels.[J]. J.Appl. Polym. Sci.2005,98,1572-1580.
    [54] Xiong, L.; Zhu, M.; Hu, X.; Liu, X.; Tong, Z. Ultrahigh deformability and transparenceof hectorite clay nanocomposite hydrogels with nimble pH response [J]. Macromolecules200942,3811-3817.
    [55] Wang, J.; Lin, L.; Cheng, Q.; Jiang, L. A strong bio-inspired layered PNIPAM-claynanocomposite hydrogel [J].Angew. Chem. Int. Ed.2012,514676-4680.
    [56] Liu, Y.; Zhu, M.; Liu, X.; Zhang, W.; Sun, B.; Chen, Y.; Adler, H. P. High clay contentnanocomposite hydrogels with surprising mechanical strength and interesting deswellingkinetics [J]. Polymer2006,471-5.
    [57] Tamesue, S.; Ohtani, M.; Yamada, K.; Ishida, Y.; Spruell, J. M.; Lynd, N. A.; Hawker, C.J.; Aida, T. Linear versus dendritic molecular binders for hydrogel network formation withclay nanosheets: studies with ABA triblock copolyethers carrying guanidinium ion pendants[J]. J.Am. Chem. Soc.2013,135,15650-15655.
    [58] Chen, P.; Xu, S.; Wu, R.; Wang, J.; Gu, R.; J., D. A transparent Laponite polymernanocomposite hydrogel synthesis via in-situ copolymerization of two ionic monomers [J].Applied Clay Science2013,72,196-200.
    [59] Nie, J.; Du, B.; Oppermann, W. Swelling, elasticity, and spatial inhomogeneity ofpoly(N-isopropylacrylamide)/clay nanocomposite hydrogels.[J]. Macromolecules200538,5729-5736.
    [60] Xiong, L.; Hu, X.; Liu, X.; Tong, Z. Network chain density and relaxation of in situsynthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility[J]. Polymer2008,49,5064-5071.
    [61] Endo, H.; Miyazaki, S.; Haraguchi, K.; Shibayama, M. Structure of NanocompositeHydrogel Investigated by Means of Contrast Variation Small-Angle Neutron Scattering [J].Macromolecules2008,41,5406-5411.
    [62] Shibayama, M.; Karino, T.; Miyazaki, S.; Okabe, S.; Takehisa, T.; Haraguchi, K. Small-angle neutron scattering study on uniaxially stretched poly(N-isopropylacrylamide)-claynanocomposite gels [J]. Macromolecules20053810772-10781.
    [63] Haraguchi, K.; Takehisa, T.; Ebato, M. Control of cell cultivation and cell sheetdetachment on the surface of polymer/clay nanocomposite hydrogels [J]. Biomacromolecules2006,7,3267-3275.
    [64] Wang, T.; Liu, D.; Lian, C.; Zheng, S.; Liu, X.; Wang, C.; Tong, Z. Rapid cell sheetdetachment from alginate semi-interpenetrating nanocomposite hydrogels of PNIPAm andhectorite clay [J]. Reactive&Functional Polymers2011,71,447-454.
    [65] Haraguchi, K.; Li, H.; Ren, H.; Zhu, M. Modification of nancomposite gels byirreversible rearrangement of polymer/clay network structure through drying [J].Macromolecules2010,439848-9853.
    [66] Shibayama, M.; Suda, J.; Karino, T.; Okabe, S.; Takehisa, T.; Haraguchi, K. Structure anddynamics of poly(N-isopropylacrylamide)-clay nanocomposite gels [J]. Macromolecules2004,37,9606-9612.
    [67] Zhu, C.-H.; Lu, Y.; Peng, J.; Chen, J.-F.; Yu, S.-H. Photothermally Sensitive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light-Controlled Liquid Microvalves [J].Advanced Functional Materials2012,22(19),4017-4022.
    [68] Tang, Z.; Akiyama, Y.; Yamato, M.; Okano, T. Comb-type grafted poly(N-isopropylacrylamide) gel modified surfaces for rapid detachment of cell sheet [J].Biomaterials2010,31(29),7435-43.
    [69] Cooperstein, M. A.; Canavan, H. E. Biological cell detachment from poly(N-isopropylacrylamide) and its applications [J]. Langmuir: the ACS journal of surfaces and colloids2010,26(11),7695-707.
    [70] Schmidt, S.; Zeiser, M.; Hellweg, T.; Duschl, C.; Fery, A.; M hwald, H. Adhesion andMechanical Properties of PNIPAM Microgel Films and Their Potential Use as SwitchableCell Culture Substrates [J].Advanced Functional Materials2010,20(19),3235-3243.
    [71] Galperin, A.; Long, T. J.; Buddy, D. R. Degradable, thermo-sensitive poly(N-isopropylacrylamide)-based scaffolds with controlled porosity for tissue engineering applications [J].Biomacromolecules2010,11,2583-2592.
    [72] Curie, P.; Curie, J. Development by pressure of polar electricity in hemihedral crystalswith inclined faces [J]. Bulletin Soc Min de France1880,3,90-93.
    [73] Lippmann, G. On the principle of energy conservation [J]. Ann Chem and Phys1881,24,145-178.
    [74] Sauerbrey, G. Verwendung von schwingquarzen zur w gung dünner schichten und zurmikrow gung [J]. Z. Phys.1959,155,206-222.
    [75] Nomura, T.; Okuhara, M. Frequency shifts of piezoelectric quartz crystals immersed inorganic liquids [J].Anal. Chim.Acta.1982,142,281.
    [76] Nomura, T.; Minemura, A.,.. Behavior of a piezoelectric quartz crystal in an aqueoussolution and the application to the determination of minute amount of cyanide [J]. NipponKagaku kaishi1980,1261.
    [77] Konash, P. L.; Bastiaans, G. J. Piezoelectric crystal detectors in liquid chromatography[J].Anal. Chem.198159,1921-1930.
    [78] Kanazawa, K.; Gordon, J. G. Frequency of a quartz microbalance in contact with liquid[J].Anal Chem1985,57,1770-1771.
    [79] Rodahl, M.; Kasemo, B. A simple setup to simultaneously measure the resonantfrequency and the absolute dissipation factor of a quartz crystal microbalance [J]. Review ofScientific Instruments1996,67(9),3238-3241.
    [80] Modin, C.; Stranne, A.-L.; Foss, M.; Duch, M.; Justesen, J.; Chevallier, J.; Andersen, L.K.; Hemmersam, A. G.; Pedersen, F. S.; Besenbacher, F. QCM-D studies of attachment anddifferential spreading of pre-osteoblastic cells on Ta and Cr surfaces [J]. Biomaterials2006,27(8),1346-1354.
    [81] Gran li, A.; Edvardsson, M.; H k, F. DNA-Based Formation of a Supported, Three-Dimensional Lipid Vesicle Matrix Probed by QCM-D and SPR [J]. ChemPhysChem2004,5(5),729-733.
    [82] Abdelmaksoud, M.; Bender, J. W.; Krim, J. Bridging the Gap between Macro-andNanotribology: A Quartz Crystal Microbalance Study of Tricresylphosphate Uptake on Metaland Oxide Surfaces [J]. Physical Review Letters2004,92(17),176101.
    [83] Asari, Y.; Nakamoto, T.; Moriizumi, T. Evaluation of gas adsorption characteristics ofteflon using a QCM [J]. Transactions of the Institute of Electronics, Information andCommunication Engineers C-II1996, J79C-II (3),133-4.
    [84] Koshets, I. A.; Kazantseva, Z. I.; Shirshov, Y. M.; Cherenok, S. A.; Kalchenko, V. I.Calixarene films as sensitive coatings for QCM-based gas sensors [J]. Sensors and ActuatorsB-Chemical2005,106(1),177-181.
    [85] Nakamoto, T.; Suzuki, Y.; Moriizumi, T. Study of VHF-band QCM gas sensor [J].Sensors andActuators B-Chemical2002,84(2-3),98-105.
    [86] Matsuguchi, M.; Kadowaki, Y.; Tanaka, M. A QCM-based NO2gas detector usingmorpholine-functional cross-linked copolymer coatings [J]. Sensors and Actuators B-Chemical2005,108(1-2),572-575.
    [87] Matsuguchi, M.; Kadowaki, Y.; Noda, K.; Naganawa, R. HCl gas monitoring based on aQCM using morpholine-functional styrene-co-chloromethylstyrene copolymer coatings [J].Sensors andActuators B-Chemical2007,120(2),462-466.
    [88] zmen, A.; Tekce, F.; Ebeo lu, M. A.; Ta alt n, C.; ztürk, Z. Z. Finding thecomposition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificialneural network [J]. Sensors andActuators B: Chemical2006,115,450-454.
    [89] Kikuchi, M.; Shiratori, S. Quartz crystal microbalance (QCM) sensor for CH3SH gas byusing polyelectrolyte-coated sol-gel film [J]. Sensors and Actuators B-Chemical2005,108(1-2),564-571.
    [90] H k, F.; Rodahl, M.; Brzezinski, P.; Kasemo, B. Energy Dissipation Kinetics for Proteinand Antibody Antigen Adsorption under Shear Oscillation on a Quartz Crystal Microbalance[J]. Langmuir: theACS journal of surfaces and colloids1998,14(4),729-734.
    [91] Zhang, G. Study on conformation change of thermally sensitive linear grafted poly(N-isopropylacrylamide) chains by quartz crystal microbalance [J]. Macromolecules200437,6553-6557.
    [92] Liu, G.; Zhang, G. Collapse and swelling of thermally sensitive poly(N-isopropylacrylamide) brushes monitored with a quartz crystal microbalance [J]. J. Phys.Chem. B2005109,,743-747.
    [93] Plunkett, M. A.; Wang, Z.; Rutland, M. W.; Johannsmann, D. Adsorption of pNIPAMlayers on hydrophobic gold surfaces, measured in situ by QCM and SPR [J]. Langmuir2003,19,6837-6844.
    [94] Wu, B.; Wu, K.; Wang, P.; Zhu, D. M. Adsorption kinetics and adsorption isotherm ofpoly(N-isopropylacrylamide) on gold surfaces studied using QCM-D [J]. J. Phys. Chem. C2007,111,1131-1135.
    [95] Liu, G.; Zhao, J.; Sun, Q.; Zhang, G. Role of chain interpenetration in layer-by-layerdeposition of polyelectrolytes [J]. J. Phys. Chem. B2008,112,3333-3338.
    [96] Enarsson, L.; W gberg, L. Conformation of preadsorbed polyelectrolyte layers on silicastudied by secondary adsorption of colloidal silica [J]. Journal of colloid and interface science2008,325,84-92.
    [97] Ma, C.; Xu, L.; Xu, W.; Zhang, G. Degradable polyurethane for marine anti-biofouling[J]. J. Mater. Chem. B20131,3099-3106.
    [98] Binnig, G.; Quate, C. F.Atomic force microscope [J]. Phys. Rev. Lett.1986,56,930-933.
    [99]彭昌盛;宋少先;谷庆宝.扫描探针显微技术理论与应用[M].化学工业出版社:2007.
    [100] Beach, E. R.; Tormoen, G. W.; Drelich, J.; Han, R. Pull-off force measurementsbetween rough surfaces by atomic force microscopy [J]. Journal of colloid and interfacescience2002,247,84-99.
    [101] Lord, D. L.; Buckley, J. S. An AFM study of the morphological features that affectwetting at crude oil-water-mica interfaces [J]. Colloids and Surfaces2002,206,531-546.
    [102] Woodward, J. T.; Zasadzinski, J. A. Height amplifications of scanning tunnelingmicroscopy images in air [J]. Langmuir: the ACS journal of surfaces and colloids1994,101340-1344.
    [103] Eppell, S. J.; Zypman, F. R.; Marchant, R. E. Probing the resolution limits and tipinteractions of atomic force microscopy in the study of globular proteins [J]. Langmuir: theACS journal of surfaces and colloids1993,9,2281-2288.
    [104] Hertz, H. ber die Berührung fester elastischer K rper [J]. J. Reine Angew. Mathematik1881,92,156-171.
    [105] Radmacher, M.; Fritz, M.; Hansma, P. K. Imaging soft samples with the atomic forcemicroscope: gelatin in water and propanol [J]. Biophys. J.1995,69264-270.
    [106] Zhang, W. K.; Zhang, X. Single molecule mechanochemistry of macromolecules [J].Prog. Polym. Sci.2003,28,1271-1295.
    [107] Janshoff, A.; Neitzert, M.; Oberd rfer, Y.; Fuchs, H. Force Spectroscopy of MolecularSystems—Single Molecule Spectroscopy of Polymers and Biomolecules [J]. AngewandteChemie International Edition2000,39(18),3212-3237.
    [108] Minko, S.; Roiter, Y. AFM single molecule studies of adsorbed polyelectrolytes [J].Curr. Opin. Colloid Interface Sci.2005,10,9-15.
    [109] Yang, A. C.; Kunz, M. S.; Logan, J. A. Micronecking operative during crazing inpolymer glasses [J]. Macromolecules1993,26,1767-1773.
    [110] Yang, A. C. Young's moduli of material in polymer deformation zones by an AFMdeflection technique [J]. Mater. Chem. Phys.199541,295-298.
    [111] Stark, R. W.; Drobek, T.; Weth, M.; Fricke, J.; Heckl, W. M. Determination of elasticproperties of single aerogel powder particles with the AFM [J]. Ultramicroscopy1998,75161-169.
    [112] Thom, T.; Fouchez, S.; Delalande, S. Determination of silicone coating Young'smodulus using atomic force microscopy [J]. Physica B2009404,22-25.
    [113] Sui, X.; Chen, Q.; Hempenius, M. A.; Vancso, G. J. Probing the collapse dynamics ofpoly(N-isopropylacrylamide) brushes by AFM: effects of co-nonsolvency and graftingdensities [J]. Small2011,7(10),1440-1447.
    [114] Choi, D.; Jeon, J.; Lee, P.; Hwang, W.; Lee, K.; H., P. Young's modulus measurementsof nanohoneycomb structures by flexural testing in atomic force microscopy [J]. CompositeStructures2007,79,548-553.
    [115] Schneider, A.; Francius, G.; Obeid, R.; Schwint, P.; Hemmerl, J.; Frisch, B.; Schaaf,P.; Voegel, J.; Senger, B.; Picart, C. Polyelectrolyte multilayers with a tunable Young'smodulus: influence of film stiffness on cell adhesion [J]. Langmuir: the ACS journal ofsurfaces and colloids2006,22,1193-1200.
    [116] Yoshikawa, H. Y.; Rossetti, F. F.; Kaufmann, S.; Kaindl, T.; Madsen, J.; Engel, U.;Lewis, A. L.; Armes, S. P.; Tanaka, M. Quantitative evaluation of mechanosensing of cells ondynamically tunable hydrogels [J]. Journal of the American Chemical Society2011,133(5),1367-1374.
    [117] Zink, M.; Grubmüller, H. Mechanical Properties of the Icosahedral Shell of SouthernBean Mosaic Virus: AMolecular Dynamics Study [J]. Biophysical Journal96(4),1350-1363.
    [118] Sato, H.; Katano, M.; Takigawa, T.; Masuda, T. Estimation for the elasticity of vascularendothelial cells on the basis of atomic force microscopy and Young's modulus of gelatin gels[J]. Polym. Bull.2001,47(3-4),375-381.
    [119] Lian, C.; Lin, Z.; Wang, T.; Sun, W.; Liu, X.; Tong, Z. Self-reinforcement of PNIPAm-Laponite nanocomposite gels investigated by atom force microscopy nanoindentation [J].Macromolecules2012,45,7220-7227.
    [120] Wang, T.; Liu, D.; Lian, C.; Zheng, S.; Liu, X.; Tong, Z. Large deformation behaviorand effective network chain density of swollen poly(N-isopropylacrylamide)-Laponitenanocomposite hydrogels [J]. Soft Matter2012,8,774-783.
    [121] Haraguchi, K.; Takehisa, T.; Fan, S. Effects of clay content on the properties ofnanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay [J].Macromolecules200235,10162-10171.
    [122] Zheng, S.; Wang, T.; Liu, D.; Liu, X.; Wang, C.; Tong, Z. Fast deswelling and highlyextensible poly(N-isopropylacrylamide)-hectorite clay nanocomposite cryogels prepared byfreezing polymerization [J]. Polymer2013,54(7),1846-1852.
    [123] Loizou, E.; Butler, P.; Porcar, L.; Schmidt, G. Dynamic responses in nanocompositehydrogels [J]. Macromolecules200639,1614-1619.
    [124] Shibayama, M.; Tanaka, T.; Han, C. C. Small angle neutron scattering study on poly(N-isopropyl acrylamide) gels near their volume-phase transition temperature [J]. J. Chem. Phys.199297(9),6829-6841.
    [125] Nie, J.; Du, B.; Oppermann, W. Dynamic fluctuations and spatial Inhomogeneities inpoly(N-isopropylacrylamide)/blay nanocomposite hydrogels studied by dynamic lightscattering [J]. J. Phys. Chem. B2006110,11167-11175.
    [126] Xu, D.; Hodges, C.; Ding, Y.; Biggs, S.; Brooker, A.; York, D. Adsorption kinetics ofLaponite and ludox silica nanoparticles onto a deposited poly(diallyldimethylammoniumchloride) layer measured by a quartz crystal microbalance and optical [J]. Langmuir: the ACSjournal of surfaces and colloids2010,26,18105-18112.
    [127] Tellechea, E.; Johannsmann, D.; Steinmetz, N. F.; Richter, R. P.; Reviakine, I. Model-independent analysis of QCM data on colloidal particle adsorption [J]. Langmuir: the ACSjournal of surfaces and colloids200925,5177-5184.
    [128] Rodahl, M.; Hook, F.; Krozer, A.; Kasemo, B.; Breszinsky, P. Quartz crystalmicrobalance setup for frequency and Q-factor measurements in gaseous and liquidenvironments [J]. Rev. Sci. Instrum.1995,663924-3930.
    [129] Voinova, M. V.; Rodahl, M.; Jonson, M.; Kasemo, B. Viscoelastic acoustic response oflayered polymer films at fluid-solid interfaces: continuum mechanics approach [J]. Phys.Scrip.1999,59,391-396.
    [130] H k, F.; Kasemo, B.; Nylander, T.; Fant, C.; Sptt, K.; Elwing, H. Variations in coupledwater, viscoelastic properties, and film thickness of a mefp-1protein film during adsorptionand cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry,and surface plasmon resonance study [J].Anal. Chem.200173,5796-5804.
    [131] Keller, C. A.; Glasmaster, K.; Zhdanov, V. P.; Kasemo, B. Formation of supportedmembranes from vesicles [J]. Phys. Rev. Lett.2000,845443-5446.
    [132] Bottom, V. E. Introduction to quartz crystal unit design [M]. Van Nostrand ReinholdCo.: New York,1982.
    [133] Daikhin, L.; Urbakh, M. Influence of surface roughness on the quartz crystalmicrobalance response in a solution new configuration for QCM studies [J]. Faraday Discuss199710727-38.
    [134] Mongondry, P.; Nicolai, T.; Tassin, J.-F. Influence of pyrophosphate or polyethyleneoxide on the aggregation and gelation of aqueous laponite dispersions [J]. Journal of colloidand interface science2004,275(1),191-196.
    [135] Martin, C.; Pignon, F.; Piau, J.-M.; Magnin, A.; Lindner, P.; Cabane, B. Dissociation ofthixotropic clay gels [J]. Physical Review E2002,66(2),021401.
    [136] Hu, X.; Wang, T.; Xiong, L.; Wang, C.; Liu, X.; Tong, Z. Preferential adsorption ofpoly(ethylene glycol) on hectorite clay and effects on poly(N-isopropylacrylamide)/hectoritenanocomposite hydrogels [J]. Langmuir: the ACS journal of surfaces and colloids2010,26(6),4233-8.
    [137] Okay, O.; Oppermann, W. Polyacrylamide-clay nanocomposite hydrogels: rheologicaland light scattering characterization [J]. Macromolecules2007,40,3378-3387.
    [138] Shibayama, M.; Karino, T.; Miyazaki, S.; Okabe, S.; Takehisa, T.; Haraguchi, K. Smallangle neutron scattering study on uniaxially stretched poly(N-isopropylacrylamide)-claynanocomposite gels [J]. Macromolecules2005,3810772-10781.
    [139] Abdurrahmanoglu, S.; Okay, O. Rheological Behavior of Polymer-Clay NanocompositeHydrogels: Effect of Nanoscale Interactions [J]. Journal of Applied Polymer Science2010,116(4),2328-2335.
    [140] Yongtao, W.; Mengge, X.; Qingqing, F.; Yan, Z.; Hao, Y.; Meifang, Z. Noncovalentbinding interactions of polyacrylamide and clay in nanocomposite hydrogels [J]. J. Polym.Sci. B, Polym. Phys.2011,49(4),263-266.
    [141] Appel, R.; Xu, W.; Zerda, T. W.; Hu, Z. Direct observation of polymer network structurein macroporous N-isopropylacrylamide gel by Raman microscopy [J]. Macromolecules1998315071-5074.
    [142] Schmidt, P.; Dybal, J.; Rodriguez-Cabello, J. C.; Reboto, V. Role of water in structuralchanges of poly(AVGVP) and poly(GVGVP) studied by FTIR and Raman spectroscopy andab initio calculations [J]. Biomacromolecules20056,697-706.
    [143] Maeda, Y.; Sakamoto, J.; Wang, S.; Mizuno, Y. Lower critical solution temperaturebehavior of poly(N-(2-ethoxyethyl)acrylamide) as compared with poly(N-isopropylacrylamide)[J]. J. Phys. Chem. B2009,11312456-12461.
    [144] Dybal, J.; Trchov, M.; Schmidt, P. The role of water in structural changes of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide) studied by FTIR, Ramanspectroscopy and quantum chemical calculations [J]. Vibrational Spectroscopy20095144-51.
    [145] Schmidt, P.; Dybal, J.; Trchova, M. Investigations of the hydrophobic and hydrophilicinteractions in polymer-water systems by ATR FTIR and Raman spectroscopy [J]. VibrationalSpectroscopy2006,42278-283.
    [146] Chen, X. G.; Schweitzer-Stenner, R.; Krimm, S.; Mirkin, N. G.; Asher, S. A. N-methylacetamide and its hydrogen-bonded water molecules are vibrationally coupled [J]. J.Am. Chem. Soc.1994,11611141-11142.
    [147] Krimm, S. Modern Polymer Spectroscopy [M]. Wiley/VCH: FRG,1999.
    [148] Zhang, X.; Zhuo, R.; Yang, Y. Using mixed solvent to synthesize temperature sensitivepoly(N-isopropylacrylamide) gel with rapid dynamics properties.[J]. Biomaterials2002,23,1313-1318.
    [149] Tong, Z.; Zeng, F.; Zheng, X.; Sato, T. Inverse molecular weight dependence of cloudpoints for aqueous poly(N-isopropylacrylamide) solutions.[J]. Macromolecules1999,32,4488-4490.
    [150] Peng, F.; Li, G.; Liu, X.; Wu, S.; Tong, Z. Redox-responsive gel-sol/sol-gel transition inpoly(acrylic acid) aqueous solution containing Fe(III) ions switched by light [J]. J. Am.Chem. Soc.2008,130,16166-16167.
    [151] Hu, Z.; Zhang, X.; Li, Y. Synthesis and application of modulated polymer gels [J].Science1995,269525-527.
    [152] Zhang, X.; Pint, C. L.; Lee, M. H.; Schubert, B. E.; Jamshidi, A.; Takei, K.; Ko, H.;Gillies, A.; Bardhan, R.; Urban, J. J.; Wu, M.; Fearing, R.; Javey, A. Optically-and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites[J]. Nano Lett.2011,11,3239-3244.
    [153] Techawanitchai, P.; Ebara, M.; Idota, N.; Asoh, T. A.; Kikuchi, A.; Aoyagi, T. Photo-switchable control of pH-responsive actuators via pH jump reaction [J]. Soft Matter201282844-2851.
    [154] Bassik, N.; Abebe, B. T.; Lafin, K. E.; Gracias, D. H. Photolithographically patternedsmart hydrogel based bilayer actuators [J]. Polymer2010516093-6098.
    [155] Ohm, C.; Brehmer, M.; Zentel, R. Liquid crystalline elastomers as actuators and sensors[J].Adv. Mater.201022,3366-3387.
    [156] Nawroth, J. C.; Lee, H.; Feinberg, A. W.; Ripplinger, C. M.; McCain, M. L.; Grosberg,A.; Dabiri, J. O.; Parker, K. K. A tissue-engineered jellyfish with biomimetic propulsion [J].Nat. Biotechnol2012,30,792-797.
    [157] Maeda, S.; Hara, Y.; Sakai, T.; Yoshida, R.; Hashimoto, S. Self-walking gel [J]. Adv.Mater.2007,19,3480-3484.
    [158] Hoffman, A. S. Hydrogels for biomedical applications [J]. Adv. Drug Deliv. Rev.2002,54,3-12.
    [159] Schneider, G. B.; English, A.; Abraham, M.; Zaharias, R.; Stanford, C.; Keller, J. Theeffect of hydrogel charge density on cell attachment [J]. Biomaterials2004253023-3028.
    [160] Ajiro, H.; Watanabe, J.; Akashi, M. Cell adhesion and proliferation on poly(N-vinylacetamide) hydrogels and double network approaches for changing cellular affinities [J].Biomacromolecules2008,9,426-430.
    [161] Radmacher, M.; Tillman, R. W.; Gaub, H. E. Imaging viscoelasticity by forcemodulation with the atomic force microscope [J]. Biophys. J.199364,735-742.
    [162] Radmacher, M.; Fritz, M.; Cleveland, J. P.; Walters, D. R.; Hansma, P. K. Imagingadhesion forces and elasticity of lysozyme adsorbed on mica with the atomic forcemicroscope [J]. Langmuir: theACS journal of surfaces and colloids1994,10,3809-3814.
    [163] Radmacher, M.; Fritz, M.; Hansma, P. K. Imaging soft samples with the atomic forcemicroscope: gelatin in water and propanol [J]. Biophys. J.199569,264-270.
    [164] Nitta, T.; Haga, H.; Kawabata, K.; Abe, K.; Sambongi, T. Comparing microscopic withmacroscopic elastic properties of polymer gel.[J]. Ultramicroscopy2000,82,223-226.
    [165] Matzelle, T. R.; Geuskens, G.; Kruse, N. Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy[J]. Macromolecules200336,2926-2931.
    [166] Johnson, K. L. Contact Mechanics [M]. Cambridge University Press.: Cambridge,1985.
    [167] Furukawa, H.; Horie, K.; Nozaki, R.; Okada, M. Swelling-induced modulation of staticand dynamic fluctuations in polyacrylamide gels observed by scanning microscopic lightscattering [J]. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.2003,68,031406.
    [168] Michot, L. J.; Baravian, C.; Bihannic, I.; Maddi, S.; Moyne, C.; Duval, J. F. L.; Levitz,P.; Davidson, P. Sol-gel and isotropic/nematic transitions in aqueous suspensions of naturalnontronite clay. influence of particle Anisotropy.2. gel structure and mechanical properties[J]. Langmuir: theACS journal of surfaces and colloids200925127-139.
    [169] Paineau, E.; Bihannic, I.; Baravian, C.; Philippe, A.-M.; Davidson, P.; Levitz, P.; Funari,S. S.; Rochas, C.; Michot, L. J. Aqueous suspensions of natural swelling clay minerals.1.structure and electrostatic interactions [J]. Langmuir: the ACS journal of surfaces andcolloids2011,275562-5573.
    [170] Martin, C.; Pignon, F.; Magnin, A.; Meireles, M.; Leli vre, V.; Lindner, P.; Cabane, B.Osmotic compression and expansion of highly ordered clay dispersions [J]. Langmuir2006,224065-4075.
    [171] Nawroth, J. C.; Lee, H.; Feinberg, A. W.; Ripplinger, C. M.; McCain, M. L.; Grosberg,A.; Dabiri, J. O.; Parker, K. K. A tissue-engineered jellyfish with biomimetic propulsion [J].Nat. Biotechnol.2012,30792-797.
    [172] Hoffman, A. S. Hydrogels for biomedical applications [J]. Adv. Drug Deliver Rev.2002,433-12.
    [173] Ajiro, H.; Watanabe, J.; Akashi, M. Cell adhesion and proliferation on poly(N-vinylacetamide) hydrogels and double network approaches for changing cellular affinities [J].Biomacromolecules20089,426-430.
    [174] Na, Y. H.; Tanaka, Y.; Kawauchi, Y.; H., F.; Sumiyoshi, T.; Gong, J. P.; Y., O. Neckingphenomenon of double-network gels [J]. Macromolecules200639,4641-4645.
    [175] Yasuda, K.; Gong, J. P.; Katsuyama, Y.; Nakayama, A.; Tanabe, Y.; Kondo, E.; Ueno,M.; Y., O. Biomechanical properties of high-toughness double network hydrogels [J].Biomaterials2005,26,4468-4475.
    [176] Hu, X.; Xiong, L.; Wang, T.; Lin, Z.; Liu, X.; Tong, Z. Synthesis and dual response ofionic nanocomposite hydrogels with ultrahigh tensibility and transparence [J]. Polymer2009,501933-1938.
    [177] Zhu, M.; Xiong, L.; Wang, T.; Liu, X.; Wang, C.; Tong, Z. High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable2-(dimethylamino)ethyl methacrylate monomer [J]. Reactive&Functional Polymers2010,70,267-271.
    [178] Haraguchi, K.; Li, H. Control of the coil-to-globule transition and ultrahigh mechanicalproperties of PNIPA in nanocomposite hydrogels [J]. Angew. Chem. Int. Ed.2005,446500-6504.
    [179] Zheng, S.; Wang, T.; Liu, D.; Liu, X.; Wang, C.; Tong, Z. Fast deswelling and highlyextensible poly(N-isopropylacrylamide)-hectorite clay nanocomposite cryogels prepared byfreezing polymerization [J]. Polymer2013,54,1846-1852.
    [180] Sperling, L. H. Introduction to physical polymer science [M]. John Wiley and Sons, Inc:1986..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700