用户名: 密码: 验证码:
水辅助注塑聚烯烃基多相体系的形态与性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水辅助注塑(WAIM)技术可高效地成型形状复杂的中空或部分中空聚合物制品。由于WAIM工艺的复杂性,在其发展近期主要集中研究设备和工艺参数的优化,而对WAIM制品形态和结构演变机理的研究则偏少。因此,本文循序渐进地从研究WAIM单相聚烯烃形态和结构的演变机理出发,揭示利用共混改性和纳米复合技术调控WAIM聚烯烃形态和结构的机理,为实现WAIM聚烯烃制品高性能化和轻质化提供理论指导。
     本文首先研究WAIM高密度聚乙烯(HDPE)和聚丙烯(PP)制品的结晶形态。发现,两种WAIM聚烯烃制品都呈现独特的“外表层-芯层-内表层”的多层次结晶形态,这与熔体在WAIM中所经历的应力场和温度场密切相关。对WAIM HDPE制品,HDPE分子量对其结晶形态有明显的影响。WAIM高分子量HDPE制品外表层以取向片晶为主,芯层和内表层以球晶为主;而WAIM低分子量HDPE制品外表层、芯层和内表层都以环带球晶为主,差别在于内、外表层环带球晶的尺寸比芯层的小。对WAIM PP制品,其外表层和内表层都形成了取向的晶体结构,但取向区域的厚度仅约占制品残留厚度的2%,而除取向区域外的其它区域都以球晶为主,其中芯层球晶的尺寸最大,平均约为45m。通过改变熔体温度、注水压力和注水延迟时间等加工参数并不能有效调控WAIMPP制品的结晶形态,仅是降低熔体温度有利于制品中形成少量(低于10%)的晶型。
     通过对比研究普通注塑(CIM)和WAIM线性低密度聚乙烯(LLDPE)及LLDPE/HDPE共混物制品结晶形态的演变机理发现,CIM和WAIM LLDPE制品都以环带球晶为主,但HDPE的混入会影响LLDPE的结晶形态。在冷却速率较低(如CIM)时,HDPE先于LLDPE结晶,其晶片可诱导LLDPE发生异相成核而阻碍环带球晶的生长,此时较低含量(10wt%)的HDPE足以使LLDPE发生由环带球晶向普通球晶的转变;而在冷却速率较高(如WAIM)时,LLDPE可与HDPE同时结晶,在此情况下,混入10wt%的HDPE并不足以扰乱LLDPE的结晶过程,需将HDPE含量提高至30wt%才能有效阻碍LLDPE的结晶过程而导致其发生由环带球晶向普通球晶的转变。
     在探索如何调控WAIM PP制品结晶形态和结构的过程中,发现少量(6wt%)聚合物成核剂(苯乙烯-丙烯腈共聚物,SAN)的混入可实现在WAIM中通过改变工艺参数来调控PP基体的结晶形态和结构。在较低的熔体温度(如180或190℃)下,WAIM94/6PP/SAN共混物制品中可同时形成较高含量的晶型和横晶,例如制品外表层和芯层晶型的含量分别为30.7和18.4%,而靠近内表层的局部区域内则完全形成横晶。晶型的形成是由于SAN对PP具有较强的成核效应;横晶的形成则是由于高压水穿透引起的强剪切和快速冷却作用导致SAN液滴变形为纤维的同时也诱导PP分子链在SAN纤维表面形成大量的晶核,由于生长空间受限,晶片只能垂直于SAN纤维长度方向生长。此外,通过研究WAIM PP/SAN共混物制品的相形态和力学性能发现,在制品的整个壁厚方向上SAN几乎都变形为纤维状,而且WAIM PP/SAN共混物制品的冲击强度和拉伸强度较WAIM PP制品都有较明显的提高。因此,WAIM有望应用于一步成型原位微纤增强共混物制品。
     通过研究WAIM PP/埃洛石纳米管(HNTs)纳米复合材料制品的微观结构发现,WAIM中的强剪切作用可使HNTs沿流动方向高度取向。此外,在WAIM中,HNTs可诱导PP形成晶型,提高PP制品的结晶度,例如加入8wt%的HNTs可将PP制品的结晶度由35.5提高至43.5%。研究还发现,加入少量(2wt%)的HNTs即可提高PP制品的热稳定性,如PP制品的T5%和T10%分别提高22和19℃,且HNTs表面对PP分子链直接的稳定作用是使PP热稳定性提高的主因,而HNTs的阻隔效应和HNTs空腔对降解产物的诱捕效应是次要因素。
Water-assisted injection molding (WAIM) is an efficient molding technology that can beused to mold hollow or partially hollow polymer parts with complicated profile. Due to thecomplexity of WAIM process, the researchers mainly focused on the optimization of WAIMequipment and processing parameters in the recent stage of its development, whereas littlework has been done on the mechanism of morphology and structure development duringWAIM. Thus, in this dissertation, the morphology and structure development mechanism ofpolyolefin during WAIM was investigated firstly, and then the mechanism of manipulating themorphology and structure via blending and nano-compositing during WAIM was revealed soas to provide theoretical guidence for molding light-weight and high-performance polyolefinparts via WAIM.
     The crystal morphologies of both WAIM high-density polyethylene (HDPE) andpolypropylene (PP) parts were investigated. The results showed that both WAIM HDPE andPP parts showed unique “outer layer-core layer-inner layer” hierarchical crystal morphology,which was closely related to the stress and temperature fields that the melts experiencedduring WAIM. For the WAIM HDPE parts, the molecular weight of HDPE has a significantimpact on the crystal morphology. The WAIM part of the HDPE with higher molecular weightwas dominated by oriented lamellae in the outer layer, and spherulites in both core and innerlayers; whereas banded spherulites dominanted all three layers in the WAIM part of the HDPEwith lower molecular weight, despite that the sizes of banded spherulites in both outer andinner layers were smaller than those in the core layer. For the WAIM PP parts, oriented crystalstructures were observed in both outer and inner layers, but the thickness of these orientedareas was only2%of the whole residual wall thickness; spherulites with various sizes weredominant in the rest areas of the part, among which the core layer showed spherulites withlargest sizes (about45m in diameter). The processing parameters were not effective intailoring the crystalline morphology of the WAIM PP parts, despite that lowering the melttemperature was favorable for the formation of a small amount (lower than10%) of-formcrystal.
     The crystal morphologies and their development mechanism in both conventionalinjection molded (CIM) and WAIM LLDPE and LLDPE/HDPE parts were investigated. Theresults showed that banded spherulites dominated both CIM and WAIM LLDPE parts;however, the crystal morphology of LLDPE could be influenced by the HDPE. At low cooling rates (such as the situation in CIM), the heterogeneous nucleation effect of the HDPE on theLLDPE hindered the growth of banded spherulites, and a low concent (10wt%) of the HDPEcould result in the banding to nonbanding morphological transition of the LLDPE; whereas athigh cooling rates (such as the situation in WAIM), the HDPE and the LLDPE crystallizedsimultaneously, a content of10wt%HDPE is not high enough to hinder the crystallization ofthe LLDPE, but increased the HDPE content to30wt%could result in the banding tononbanding morphological transition of the LLDPE.
     In the process of exploring an effective way to tailor the crystal morphology andstructure of the WAIM PP part, the presence of a low content (6wt%) of polymer nucleatingagent (acrylonitrile–styrene copolymer, SAN) was found to be favorable for tailoring thecrystal morphology and structure of PP matrix by varying the processing parameters duringWAIM. At a melt temperature of180or190°C, a WAIM94/6PP/SAN blend part with highcontent of-form and transcrystal can be molded. For example, the-form content in theouter and core layers were30.7and18.4%, respectively; and a totally transcrystallized matrixcan be seen near the inner layer. The formation of-form was ascribed to the-nucleatingeffect of the SAN on PP; whereas the formation of the transcrystals was ascribed to the in situfibrillation of the SAN resulted from high shear and cooling rates by high-pressure waterpenetration during WAIM. Moreover, it was found that the whole residual wall of the WAIMPP/SAN blend part was dominanted by SAN microfiber, and both impact and tensilestrengthes were improved compared to those of WAIM PP part. Consequently, the WAIMwould be expected to directly mold in-situ microfibrillar reinforced blend parts.
     The microstructures of the WAIM PP/halloysite nanotube (HNTs) nanocomposite partswere investigated. The results showed that the high shear rates during WAIM resulted in thepreferential orientation of the HNTs in the flow direction. Moreover, during the WAIM, theHNTs could induce the-form of the PP, increasing the crystallinity of the WAIM PP part.For example, the addition of8wt%HNTs could incease the crystallinity from35.5to43.5%.Moreover, the addition of a low content (2wt%) of HNTs was enough to ehance the thermalstability of the WAIM PP/HNTs nanocomposite part. The T5%and T10%increased22and19°C,respectively. The direct stabilizing effect of HNTs on the PP contributed largely to theincreased thermal stability of the WAIM PP/HNTs nanocomposite parts rather than theirbarrier and entrapment effects on the volatile products.
引文
[1] Jiang S. F., Zheng W., Zhang J. B., et al. Experimental study on the influence ofparameters on the plastic parts quality of external gas-assisted injection molding [J].Applied Mathematics&Information Sciences,2012,6(3):665-671
    [2] Avery J. Gas-Assist Injection Molding—Principles and Applications [M]; Munich:Hanser Gardner Publications,2001
    [3] Li Q., Ouyang J., Yang B. X., et al. Numerical simulation of gas-assisted injectionmolding using CLSVOF method [J]. Applied Mathematical Modelling,2012,36(5):2262-2274
    [4] Polynkin A., Pittman J. F. T., Sienz J. Gas assisted injection molding of a handle:Three-dimensional simulation and experimental verification [J]. PolymerEngineering and Science,2005,45(8):1049-1058
    [5] Chau S. W. Three-dimensional simulation of primary and secondary penetration in aclip-shaped square tube during a gas-assisted injection molding process [J].Polymer Engineering and Science,2008,48(9):1801-1814
    [6] Sannen S., De Keyzer J., Van Puyvelde P. The influence of melt and processparameters on the quality and occurrence of part defects in water-assisted injectionmolded tubes [J]. International Polymer Processing,2011,26(5):551-559
    [7] Wang B., Huang H. X. Formation mechanism of crystal morphologies inLLDPE/HDPE blends investigated via water-assisted and conventional injectionmolding [J]. Polymer Engineering and Science,2012,52(1):117-124
    [8] Liu S. J. Water assisted injection molding: a review [J]. International PolymerProcessing,2009,24(4):315-325
    [9] Michaeli W., Brunswick A., Kujat C. Reducing cooling time with water-assistedinjection moulding [J]. Kunststoffe Plast Europe,2000,90(8):25-28
    [10] Knights M. Water injection molding makes hollow parts faster, lighter [J]. PlasticsTechnology,2002,48(4):42-47/62-63
    [11] Zheng G. Q., Huang L., Yang W., et al. Hierarchical crystalline structure of HDPEmolded by gas-assisted injection molding [J]. Polymer,2007,48(19):5486-5492
    [12] Huang L., Yang W., Yang B., et al. Banded spherulites of HDPE molded bygas-assisted and conventional injection molding [J]. Polymer,2008,49(19):4051-4056
    [13] Wang L., Yang B., Sun N., et al. Role of gas delay time on the hierarchicalcrystalline structure and mechanical property of HDPE molded by gas-assistedinjection molding [J]. Colloid and Polymer Science,2012,290(12):1133-1144
    [14] Sun N., Yang B., Wang L., et al. Crystallization behavior and molecular orientationof high density polyethylene parts prepared by gas-assisted injection molding [J].Polymer International,2012,61(4):622-630
    [15] Zheng G. Q., Yang W., Huang L., et al. The role of gas penetration onmorphological formation of polycarbonate/polyethylene blend molded bygas-assisted injection molding [J]. Journal of Materials Science,2007,42(17):7275-7285
    [16] Zheng G. Q., Yang W., Yin B., et al. Flow-induced fiber orientation in gas-assistedinjection molded part [J]. Materials Letters,2007,61(16):3436-3439
    [17] Huang H. X., Zhou R. H. Preliminary investigation on morphology inwater-assisted injection molded polymer blends [J]. Polymer Testing,2010,29(2):235-244
    [18] Huang H. X., Zhou R. H., Yang C. Fiber orientation propelled by high-pressurewater penetration in water-assisted injection molded fiber-reinforced thermoplasticspart [J]. Journal of Composite Materials,2013,47(2):183-190
    [19] Huang H. X., Wang B., Zhou W. W. Polymorphism in polyamide6and polyamide6/clay nanocomposites molded via water-assisted injection molding [J]. CompositesPart B-Engineering,2012,43(3):972-977
    [20] Lin K. Y., Liu S. J. Morphology of fluid assisted injection moldedpolycarbonate/polyethylene blends [J]. Macromolecular Materials and Engineering,2010,295(4):342-350
    [21] Liu S. J., Lin W. R., Lin K. Y. Morphological development in water assistedinjection molded polyethylene/polyamide-6blends [J]. Polymers for AdvancedTechnologies,2011,22(12):2062-2068
    [22] Rawson K. W., Allan P. S, Bevis M. J. Controlled orientation of reflective pigmentand optical property characterization of injection-molded polypropylene [J].Polymer Engineering and Science,1999,39(1):177-189
    [23] Kalay G., Allan P. S., Bevis M. J. Shear controlled orientation [J]. Kunststoffe PlastEurope,1997,87(6):27-29
    [24] Kalay G., Bevis M. J. Processing and physical property relationships in injectionmolded isotactic polypropylene.1. Mechanical properties [J]. Journal of PolymerScience Part B-Polymer Physics,1997,35(2):241-263
    [25] Kalay G., Bevis M. J. Processing and physical property relationships ininjection-molded isotactic polypropylene.2. Morphology and crystallinity [J].Journal of Polymer Science Part B-Polymer Physics,1997,35(2):265-291
    [26] Na B., Zhang Q., Fu Q., et al. Super polyolefin blends achieved via dynamicpacking injection molding: the morphology and mechanical properties ofHDPE/EVA blends [J]. Polymer,2002,43(26):7367-7376
    [27] Na B., Wang Y., Du R. N., et al. Crystal and phase morphology of dynamic packinginjection molded high-density polyethylene/ethylene vinyl acetate blends [J].Journal of Polymer Science Part B-Polymer Physics,2004,42(10):1831-1840
    [28] Gao J., Zhang Q., Wang K., et al. Effect of shearing on the orientation,crystallization and mechanical properties of HDPE/attapulgite nanocomposites [J].Composites Part A-Applied Science and Manufacturing,2012,43(4):562-569
    [29] Ning N. Y., Deng H., Luo F., et al. Effect of whiskers nucleation ability andshearing function on the interfacial crystal morphology of polyethylene (PE)/rawwhiskers composites [J]. Composites Part B-Engineering,2011,42(4):631-637
    [30] Yang J. H., Wang K., Su R., et al. Direct formation of nanohybrid shish-kebab in theinjection molded bar of polyethylene/multiwalled carbon nanotubes composite [J].Macromolecules,2009,42(18):7016-7023
    [31] Chen Y. H., Zhong G. J., Wang Y., et al. Unusual tuning of mechanical properties ofisotactic polypropylene using counteraction of shear flow and beta-nucleating agenton beta-form nucleation [J]. Macromolecules,2009,42(12):4343-4348
    [32] Bhattacharyya D., Fuchs C., Fakirov S. Microfibril reinforced polymer-polymercomposites: Application of Tsai-Hill equation to PP/PET composites [J].Composites Science and Technology,2006,66(16):3161-3171
    [33] Shields R. J., Bhattacharyya D., Fakirov S. Fibrillar polymer-polymer composites:morphology, properties and applications [J]. Journal of Materials Science,2008,43(20):6758-6770
    [34] Friedrich K., Evstatiev M., Fakirov S., et al. Microfibrillar reinforced compositesfrom PET/PP blends: processing, morphology and mechanical properties [J].Composites Science and Technology,2005,65(1):107-116
    [35] Shields R. J., Bhattacharyya D., Fakirov S. Oxygen permeability analysis ofmicrofibril reinforced composites from PE/PET blends [J]. Composites PartA-Applied Science and Manufacturing,2008,39(6):940-949
    [36] Fakirov S., Duhovic M., Maitrot P., et al. From PET nanofibrils to nanofibrillarsingle-polymer composites [J]. Macromolecular Materials and Engineering,2010,295(6):515-518
    [37] Duhovic M., Bhattacharyya D., Fakirov S., et al. Nanofibrillar single polymercomposites of poly(ethylene terephthalate)[J]. Macromolecular Materials andEngineering,2010,295(2):95-99
    [38] Zhang Y. C., Dai K., Tang J. H., et al. Anisotropically conductive polymercomposites with a selective distribution of carbon black in an in situ microfibrillarreinforced blend [J]. Materials Letters,2010,64(13):1430-1432
    [39] Xu X. B., Li Z. M., Yu R. Z., et al. Formation of in situ CB/PET microfibers inCB/PET/PE composites by slit die extrusion and hot stretching [J]. MacromolecularMaterials and Engineering,2004,289(6):568-575
    [40]聂敏,白时兵,王琪.芯棒与口模反向旋转挤出聚乙烯管结构与性能的研究[J].高分子学报,2011,(11):1291-1297
    [41] Nie M., Wang Q., Bai S. B. Morphology and Property of Polyethylene PipeExtruded at the Low Mandrel Rotation [J]. Polymer Engineering and Science,2010,50(9):1743-1750
    [42]郭岳,旋转挤出加工对HDPE管结构和性能影响的研究[D].四川大学博士学位论文,2010
    [43]黎珂,基于流场作用的聚丙烯基多相体系形态演变与性能研究[D].华南理工大学博士学位论文,2011
    [44] Liu Y. H., Zumbrunnen D. A. Toughness enhancement in polymer blends due to thein-situ formation by chaotic mixing of fine-scale extended structures [J]. Journal ofMaterials Science,1999,34(8):1921-1931
    [45] Liu Y. H., Zumbrunnen D. A. Emergence of fibrillar composites due to chaoticmixing of molten polymers [J]. Polymer Composite,1996,17(2):187-197
    [46] Zhang D. F., Zumbrunnen D. A. Influences of fluidic interfaces on the formation offine scale structures by chaotic mixing [J]. Transactions of the ASME. Journal ofFluids Engineering,1996,118(1):40-47
    [47] Zhang D., Zumbrunnen D. A., Liu Y. H. Morphology development in shear flows ofstraight and folded molten fibers [J]. AIChE Journal,1998,44(2):442-451
    [48] Danescu R. I., Zumbrunnen D. A. Creation of conducting networks among particlesin polymer melts by chaotic mixing [J]. Journal of Thermoplastic CompositeMaterials,1998,11(4):299-320
    [49] Chougule V. A., Zumbrunnen D. A. In situ assembly using a continuous chaoticadvection blending process of electrically conducting networks in carbonblack-thermoplastic extrusions [J]. Chemical Engineering Science,2005,60(8-9):2459-2467
    [50] Dharaiya D. P., Jana S. C., Lyuksyutov S. F. Production of electrically conductivenetworks in immiscible polymer blends by chaotic mixing [J]. Polymer Engineeringand Science,2006,46(1):19-28
    [51] Huang H. X., Huang Y. F., Wang C. Y., et al. Microstructure changes of apolypropylene/montmorillonite nanocomposite in a single screw extruder [J].Journal of Materials Science Letters,2003,22(21):1547-1549
    [52] Huang H. X., Wang C. Y., Huang Y. F., et al. Effect of mixing element in a singlescrew extruder in the microstructure of PP/MMT nanocomposites [C]. SPE ANTEC,2003,(2):2223-2227
    [53] Li K., Huang H. X. Detecting impact toughness ofpolypropylene/poly(ethylene-co-octene) blends with various morphologies inducedvia chaotic and shear mixing [J]. Polymer Engineering and Science,2012,52(10):2157-2166
    [54] Favis B. D. Factors influencing the morphology of immiscible polymer blends inmelt processing: Polymer blends [M]. New York: John Wiley&Sons,2000
    [55] Huang H. X. Macro, Micro and nanostructured morphologies of multiphasepolymer systems: Handbook of multiphase polymer systems [M]. Chichester: JohnWiley&Sons,2011
    [56] Plochocki A. P., Dagli S. S., Andrews R. D. The interface in binary mixtures ofpolymers containing a corresponding block copolymer: effects of industrial mixingprocesses and of coalescence [J]. Polymer Engineering and Science,1990,30(12):741-752
    [57] Potente H., Bastian M., Bergemann K., et al. Morphology of polymer blends in themelting section of co-rotating twin screw extruders [J]. Polymer Engineering andScience,2001,41(2):222-231
    [58] Chen H., Sundararaj K., Nandakumar K. Modeling of polymer melting, dropdeformation and breakup under shear flow [J]. Polymer Engineering and Science,2004,44(7):1258-1266
    [59] Scott C. E., Macosko C. W. Morphology development during the initial stages ofpolymer-polymer blending [J]. Polymer,1995,36(3):461-470
    [60] Scott C. E., Macosko C. W. Model experiments concerning morphologydevelopment during the initial stages of polymer blending [J]. Polymer Bulletin,1991,26(3):341-348
    [61] Sundararaj U., Macosko C. W., Shih C. K. Evidence for inversion of phasecontinuity during morphology development in polymer blending [J]. PolymerEngineering and Science,1996,36(13):1769-1781
    [62] Sundararaj U., Macosko C. W., Rolando R. J., et al. Morphology development inpolymer blends [J]. Polymer Engineering and Science,1992,32(24):1814-1823
    [63] Sundararaj U., Macosko C. W., Nakayama A., et al. Milligrams to kilograms: anevaluation of mixers for reactive polymer blending [J]. Polymer Engineering andScience,1995,35(1):100-114
    [64] Lee J. K., Han C. D. Evolution of polymer blend morphology during compoundingin an internal mixer [J]. Polymer,1999,40(23):6277-6296
    [65] Lee J. K., Han C. D. Evolution of polymer blend morphology during compoundingin a twin-screw extruder [J]. Polymer,2000,41(5):1799-1815
    [66] Wu Y., Jing S. W., Guo Q., et al. Morphological evolution ofpolypropylene/polystyrene blends in a twin-screw extruder [J]. Journal of AppliedPolymer Science,2011,119(4):1970-1977
    [67] Zuev V. V., Steinhoff B., Bronnikov S., et al. Flow-induced size distribution andanisotropy of the minor phase droplets in a polypropylene/poly (ethylene-octene)copolymer blend: Interplay between break-up and coalescence [J]. Polymer,2012,53(3):755-760
    [68] Huang H. X. HDPE/PA-6blends: Influence of screw shear intensity and HDPE meltviscosity on phase morphology development [J]. Journal of Materials Science,2005,40(7):1777-1779
    [69] Huang H. X., Huang Y. F., Yang S. L. Developing laminar morphology in higherviscosity ratio polyblends by controlling flow fields in a single-screw extruder [J].Polymer International,2005,54(1):65-69
    [70] Huang H. X., Huang Y. F., Li X. J. Detecting blend morphology developmentduring melt blending along an extruder [J]. Polymer Testing,2007,26(6):770-778
    [71] Zhong G. J., Li Z.M. Injection molding-induced morphology of thermoplasticpolymer blends [J]. Polymer Engineering and Science,2005,45(12):1655-1665
    [72] Karger-Kocsis J., Csikai I. Dynamic mechanical properties and morphology ofpolypropylene block copolymers and polypropylene/elastomer blends [J]. PolymerEngineering and Science,1987,27(4):241-253
    [73] Fellahi S, Favis B.D., Fisa B. Morphological stability in injection-mouldedhigh-density polyethylene/polyamide-6blends [J]. Polymer,1996,37(13):2615-2626
    [74] Li Z.M., Yang W., Yang S., et al. morphology-tensile behavior relationship ininjection molded poly(ethylene terephthalate)/polyethylene andpolycarbonate/polyethylene blends (I) Part I: Skin-core structure [J]. Journal ofMaterials Science,2004,39(2):413-431
    [75] Li Z.M., Yang W., Yang S., et al. Morphology-tensile behavior relationship ininjection molded poly(ethylene terephthalate)/polyethylene andPolycarbonate/polyethylene blends (II) Part I: Skin-core structure [J]. Journal ofMaterials Science,2004,39(2):433-443
    [76] Tribout C., Monasse B., Haudin J. M. Experimental study of shear-inducedcrystallization of an impact polypropylene copolymer [J]. Colloid and PolymerScience,1996,274(3):197-208
    [77] Vleeshouwers S., Meijer H. E. H. A rheological study of shear inducedcrystallization [J]. Rheologica Acta,1996,35(5):391-399
    [78] Andersen P., Carr S. Flow-induced crystallization of polypropylene in stretchedribbons [J]. Polymer Engineering and Science,1976,16(3):217-221
    [79] McHugh A. J., Guy R. K., Tree D. A. Extensional flow-induced crystallization of apolyethylene melt [J]. Colloid and Polymer Science,1993,271(7):629-645
    [80] Bushman A. C., McHugh A. J. Transient flow-induced crystallization of apolyethylene melt [J]. Journal of Applied Polymer Science,1997,64(11):2165-2176
    [81] Kimata S., Sakurai T., Nozue Y., et al. Molecular basis of the shish-kebabmorphology in polymer crystallization [J]. Science,2007,316(5827):1014-1017
    [82] Housmans J. W., Gahleitner M., Peters G. W. M., et al. Structure-property relationsin molded, nucleated isotactic polypropylene [J]. Polymer,2009,50(10):2304-2319
    [83] Schrauwen B. A. G., Von Breemen L. C. A., Spoelstra A. B., et al. Structure,deformation, and failure of flow-oriented semicrystalline polymers [J].Macromolecules,2004,37(23):8618-8633
    [84] Viana J. C., Cunha A. M., Billon N. The thermomechanical environment and themicrostructure of an injection moulded polypropylene copolymer [J]. Polymer,2002,45(15):4185-4196
    [85] Liu F. H., Guo C., Wu X., et al. Morphological comparison of isotacticpolypropylene parts prepared by micro-injection molding and conventionalinjection molding [J]. Polymers for Advanced Technologies,2012,23(3):686-694
    [86] Huang H. X. Self-reinforcement of polypropylene by flow-induced crystallizationduring continuous extrusion [J]. Journal of Applied Polymer Science,1998,67(12):2111-2118
    [87] Huang H. X. High property high density polyethylene extrudates prepared byself-reinforcement [J]. Journal of Materials Science Letters,1998,17(7):591-593
    [88] Shen J. B., Wang M., Li J., et al. In situ fibrillation of polyamide6in isotacticpolypropylene occurring in the laminating-multiplying die [J]. Polymers forAdvanced Technologies,2011,22(2):237-245
    [89] Li H., Huneault M. A. Crystallization of PLA/thermoplastic starch blends [J].International Polymer Processing,2008,23(5):412-418
    [90] Su Z. Q., Dong M., Guo Z. X., et al. Study of polystyrene and acrylomtrile-styrenecopolymer as special beta-nucleating agents to induce the crystallization of isotacticpolypropylene [J]. Macromolecules,2007,40(12):4217-4224
    [91] Su Z. Q., Chen X. N., Yu Z. Z. et al. Morphological distribution of polymericnucleating agents in injection-molded isotactic polypropylene plates and itsinfluence on nucleating efficiency [J]. Journal of Applied Polymer Science,2009,111(2):786-793
    [92] Qiu Z. B., Yan C. Z., Lu J. M., et al. Various crystalline morphology ofpoly(butylene succinate-co-butylene adipate) in its miscible blends withpoly(vinylidene fluoride)[J]. Journal of Physical Chemistry B,2007,111(11):2783-2789
    [93] Lu, J. M., Qiu Z. B., Yang W. T. Effects of blend composition and crystallizationtemperature on unique crystalline morphologies of miscible poly(ethylenesuccinate)/poly (ethylene oxide) blends [J]. Macromolecules,2008,41(1):141-148
    [94] Bai S. B., Wang Q. Effect of injection speed on phase morphology, crystallizationbehavior, and mechanical properties of polyoxymethylene/poly(ethylene-oxide)crystalline/crystalline blend in injection processing [J]. Polymer Engineering andScience,2012,52(9):1938-1944
    [95] Liu X. H., Wu Q. J. PP/clay nanocomposites prepared by grafting-melt intercalation[J]. Polymer,2001,42(25):10013-10019
    [96] Fornes T. D., Paul D. R. Crystallization behavior of nylon6nanocomposites [J].Polymer,2003,44(14):3945-3961
    [97] Todorov L. V., Viana J. C. Characterization of PET nanocomposites produced bydifferent melt-based production methods [J]. Journal of Applied Polymer Science,2007,106(3):1659-1669
    [98] Sun L., Yang J. T., Lin G. Y., et al. Crystallization and thermal properties ofpolyamide6composites filled with different nanofillers [J]. Materials Letters,2007,61(18):3963-3966
    [99] Du M. L., Guo B. C., Wan J. J., et al. Effects of halloysite nanotubes on kinetics andactivation energy of non-isothermal crystallization of polypropylene [J]. Journal ofPolymer Research,2010,17(1):109-118
    [100]章越,徐军,郭宝华.聚乳酸/凹凸棒土纳米复合材料的结构与性能[J].高分子学报,2012,(1):83-88
    [101] Maiti P., Okamoto M. Crystallization controlled by silicate surfaces in nylon6-claynanocomposites [J]. Macromolecular Materials and Engineering,2003,288(5):440-445
    [102] Wu T. M., Chen E. C. Polymorphic behavior of nylon6/saponite and nylon6/montmorillonite nanocomposites [J]. Polymer Engineering and Science,2002,42(6):1141-1150
    [103] Wu T. M., Liao C. S. Polymorphism in nylon6/clay nanocomposites [J].Macromolecular Chemistry and Physics,2000,201(18):2820-2825
    [104] Yebra-Rodríguez A., Alvarez-Lloret P., Rodríguez-Navarro A. B., et al.Thermo-XRD and differential scanning calorimetry to trace epitaxial crystallizationin PA6/montmorillonite nanocomposites [J]. Materials Letters,2009,63(13-14):1159-1161
    [105] Miri V., Elkoun S., Peurton F., et al. Crystallization kinetics and crystal structure ofnylon6-clay nanocomposites: combined effects of thermomechanical history, claycontent, and cooling conditions [J]. Macromolecules,2008,41(23):9234-9244
    [106] Liu M. X., Guo B. C., Du M. L., et al. Halloysite nanotubes as a novelbeta-nucleating agent for isotactic polypropylene [J]. Polymer,2009,50(13):3022-3030
    [107] Guo B. C., Zou Q. L., Lei Y. D., et al. Crystallization behavior of polyamide6/halloysite nanotubes nanocomposites [J]. Thermochimica Aata,2009,484(1-2):48-56
    [108] Yalcin B., Valladares D., Cakmak M. Amplification effect of platelet typenanoparticles on the orientation behavior of injection molded nylon6composites[J]. Polymer,2003,44(22):6913-6925
    [109] Yebra-Rodríguez A., Alvarez-Lloret P., Cardell C., et al. Crystalline properties ofinjection molded polyamide-6and polyamide-6/montmorillonite nanocomposites[J]. Applied clay Science,2009,43(1):91-97
    [110]黄汉雄,曲杰.水辅助注射成型设备[P].中国:200610034014,2006,03
    [111]鲁瀚元.水辅助注塑PP/EPDM共混物制品形态、结构与性能研究[D].华南理工大学硕士学位论文,2011
    [112] Olley R. H., Bassett D. C. An improved permanganic etchant for polyolefines [J].Polymer,1982,23(12):1707-1710
    [113] Qiao J. L., Guo M. F., Wang L. S., et al. Recent advances in polyolefin technology[J]. Polymer Chemistry,2011,2(8):1611-1623
    [114] Guo C., Liu F. H., Wu X., et al. Morphological evolution of HDPE parts in themicroinjection molding: Comparison with conventional injection molding [J].Journal of Applied Polymer Science,2012,126(2):452-462
    [115]汪志泳,水辅助注塑的数值模拟及共混物制品多层次结构[D],华南理工大学硕士学位论文,2013
    [116] Lotz B., Cheng S. Z. D. A critical assessment of unbalanced surface stresses as themechanical origin of twisting and scrolling of polymer crystals [J]. Polymer,2005,46(3):577-610
    [117] Strobl G. The physics of polymers [M]. Heidelberg: Springer,2007
    [118] Trifonova D., Drouillon P., Ghanem A., et al. Morphology of extruded high-densitypolyethylene pipes studied by atomic force microscopy [J]. Journal of AppliedPolymer Science,1997,66(3):515-523
    [119] Handge U. A., Hedicke-Hoechstoetter K., Altstaedt V. Composites of polyamide6and silicate nanotubes of the mineral halloysite: Influence of molecular weight onthermal, mechanical and rheological properties [J]. Polymer,2010,51(12):2690-2699
    [120]汪志泳,黄汉雄,汪斌.水辅助注塑中高压水穿透过程的数值模拟[J].化工学报,2013,64(4):1170-1175
    [121]周伟文,尼龙6及其纳米复合材料水辅助注塑研究[D].华南理工大学硕士学位论文,2010
    [122] Liu X. H., Zhang C. Y., Dai K., et al. Unexpected molecular weight dependence ofshish kebab in water-assisted injection molded HDPE [J]. Polymers for AdvancedTechnologies,2013,24(2):270-272
    [123] Varga J.-modification of isotactic polypropylene: preparation, structure,processing, properties, and application [J]. Journal of Macromolecular Science PartB: Physics,2002,41(4-6):1121-1171
    [124] Phillips A., Zhu P. W., Edward G. Polystyrene as a versatile nucleating agent forpolypropylene [J]. Polymer,2010,51(7):1599-1607
    [125] Liu X. H., Zheng G. Q., Dai K., et al. Morphological comparison of isotacticpolypropylene molded by water-assisted and conventional injection molding [J].Journal of Materials Science,2011,46(24):7830-7838
    [126] Huo H., Jiang S. C., An L. J., et al. Influence of shear on crystallization behavior ofthe phase in isotactic polypropylene with-nucleating agent [J]. Macromolecules,2004,37(7):2478-2483
    [127] Pfefferkorn D., Kyeremateng S. O., Busse K., et al. Crystallization and melting ofpoly(ethylene oxide) in blends and diblock copolymers with poly(methyl acrylate)[J]. Macromolecules2011,44(8):2953-2963
    [128] Araneda E., Leiva A., Gargallo L., et al. Crystallization behavior of PEO in blends ofpoly(ethylene oxide)/poly(2-vinyl pyridine)-b-(ethylene oxide) block copolymer [J].Polymer Engineering and Science,2012,52(5):1128-1136
    [129] Rostami S. Crystallization behaviour of a semicrystalline miscible blend [J]. Polymer,1990,31(5):899-904
    [130] Na B., Lv R. H., Xu W. F., et al. Enhanced crystallization of the gamma-form ofpropylene-ethylene copolymer in its miscible blends with propylene homopolymer[J]. Polymer International,2009,58(8):939-943
    [131] Galante M. J., Mandelkern L., Alamo R. G. The crystallization of blends of differenttypes of polyethylene: The role of crystallization conditions [J]. Polymer,1998,39(21):5105-5119
    [132] Frederix C., Lefebvre J. M., Rochas C., et al. Binary blends of linear ethylenecopolymers over a wide crystallinity range: Rheology, crystallization, melting andstructure properties [J]. Polymer,2010,51(13):2903-2917
    [133] Agamalian M., Alamo R. G., Kim M. H., et al. Phase behavior of blends of linearand branched polyethylenes on micron length scales via ultra-small-angle neutronscattering [J]. Macromolecules,1999,32(9):3093-3096
    [134] Alamo R. G., Graessley W. W., Krishnamoorti R. et al. Small angle neutronscattering investigations of melt miscibility and phase segregation in blends oflinear and branched polyethylenes as a function of the branch content [J].Macromolecules,1997,30(3):561-566
    [135] Rohindra D. Miscibility determination in poly(epsilon-caprolactone)/poly(vinylformal) blend by equilibrium melting temperature and spherulite morphology [J].Journal of Macromolecular Science Part B: Physics,2009,48(6):1103-1113
    [136] Wang Z. Q., An L. J., Jiang B. Z., et al. Periodic radial growth in ring-bandedspherulites of poly(ε-caprolactone)/poly(styrene-co-acrylonitrile) blends [J].Macromolecular Rapid Communications,1998,19(2):131-133
    [137] Pan P. J., Liang Z. C., Zhu B., et al. Blending effects on polymorphic crystallizationof poly(L-lactide)[J]. Macromolecules,2009,42(9):3374-3380
    [138] Chiu F. C., Fu Q., Hsieh E. T. Macromolecular weight dependence of meltcrystallization behavior and crystal morphology of low molecular weight linearpolyethylene fractions [J]. Journal of Polymer Research,1999,6(4):219-229
    [139] Aboel Maaty M. I., Bassett D. C. On fold surface ordering and re-ordering duringthe crystallizationof polyethylene from the melt [J]. Polymer,2001,42(11):4957-4963
    [140] Keith H. D., Padden F. J. Banding in polyethylene and other spherulites [J].Macromolecules,1996,29,7776-7786
    [141] Janimak J. J., Markey, L., Stevens G. C. Spherulitic banding in metallocenecatalysed polyethylene spherulites [J]. Polymer,2001,42(10):4675-4685
    [142] Lei Y. G., Chan C. M., Wang Y., et al. Growth process of homogeneously andheterogeneously nucleated spherulites as observed by atomic force microscopy [J].Polymer,2003,44(16):4673-4679
    [143] Nilsson F., Lan X., Gkourmpis T., et al. Modelling tie chains and trappedentanglements in polyethylene [J]. Polymer,2012,53(16):3594-3601
    [144] Hubert L., David L., Seguela R., et al. Physical and mechanical properties ofpolyethylene for pipes in relation to molecular architecture. I. Microstructure andcrystallisation kinetics [J]. Polymer,2001,42(20):8425-8434
    [145] Zhong G. J., Li L. B. Mendes E. et al. Suppression of skin-core structure ininjection-molded polymer parts by in situ incorporation of a microfibrillar network[J]. Macromolecules,2006,39(19):6771-6775
    [146] Zheng G. Q., Jia Z. H., Liu X. H., et al. Enhanced orientation of the water-assistedinjection-molded iPP in the presence of nucleating agent [J]. Polymer Engineeringand Science,2012,52(4):725-732
    [147] Wu C. M., Chen M., Karger-Kocsis J. The role of metastability in themicromorphologic features of sheared isotactic polypropylene melts [J]. Polymer,1999,40(15):4195-4203
    [148] Varga J., Menyhard A. Effect of solubility and nucleating duality ofN,N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structureof isotactic polypropylene [J]. Macromolecules,2007,40(7):2422-2431
    [149] Chen X., Mai K. C. Crystalline morphology and dynamical crystallization ofantibacterial-polypropylene composite [J]. Journal of Applied Polymer Science,2008,110(6):3401-3409
    [150] Na B., Guo M., Yang J. H., et al. Crystal morphology and transcrystallizationmechanism of isotactic polypropylene induced by fibres: interface nucleation versusbulk nucleation [J]. Polymer International,2006,55(4):441-448
    [151] Wang C., Liu C. R. Transcrystallization of polypropylene on carbon fibres [J].Polymer,1997,38(18):4715-4718
    [152] Liang Y. Y., Liu S. Y., Dai K., et al. Transcrystallization in nanofiberbundle/isotactic polypropylene composites: effect of matrix molecular weight [J].Colloid and Polymer Science,2012,290(12):1157-1164
    [153] Wang Y. M., Tong B. B., Hou S. J., et al. Transcrystallization behavior at thepoly(lactic acid)/sisal fibre biocomposite interface [J]. Composites Part A: AppliedScience and Manufacturing,2011,42(1):66-74
    [154] Wang C., Liu C. R. Transcrystallization of polypropylene composites: nucleatingability of fibres [J]. Polymer,1999,40(5):289-298
    [155] Thomason J. L., Van Rooyen A. A. Transcrystallized interphase in thermoplasticcomposites. I. Influence of fibre type and crystallization temperature [J]. Journal ofMaterials Science,1992,27(4):889-896
    [156] Azzurri F., Alfonso G. C. Insights into formation and relaxation of shear-inducednucleation precursors in isotactic polystyrene [J]. Macromolecules,2008,41(4):1377-1383
    [157] Thomason J. L., Van Rooyen A. A. Transcrystallized interphase in thermoplasticcomposites. II. Influence of interfacial stress, cooling rate, fibre properties andpolymer molecular weight [J]. Journal of Materials Science,1992,27(4):897-907
    [158] Li Z. M., Li L. B., Shen K. Z., et al. Transcrystalline morphology of an in situmicrofibrillar poly(ethylene terephthalate)/poly(propylene) blend fabricated througha slit extrusion hot stretching-quenching process [J]. Macromolecular RapidCommunications,2004,25(4):553-558
    [159] Wang C., Liu C. R. Transcrystallization of PTFE fiber PP composites-III. Effect offiber pulling on the crystallization kinetics [J]. Journal of Polymer Science PartB-Polymer Physics,1998,36(8):1361-1370
    [160] Zheng G. Q., Yang W., Liu C. T., et al. Transcrystallinity in apolycarbonate(PC)/polyethylene(PE) blend prepared by gas-assisted injectionmolding: a n ew understanding of its formation mechanism [J]. Journal ofMacromolecular Science, Part B: Physics,2008,47():829-836
    [161]郑国强.气体辅助注射成型制品的形态结构及性能[D].四川大学博士学位论文,2007
    [162] Su R., Wang K., Zhang Q., et al. Effect of melt temperature on the phasemorphology, thermal behavior and mechanical properties of injection-moldedPP/LLDPE blends [J]. Chinese Journal of Polymer Science,2010,28(2):249-255
    [163] Wang C., Liu F. H., Huang W. H. Electrospun-fiber induced transcrystallization ofisotactic polypropylene matrix [J]. Polymer,2011,52(5):1326-1336
    [164] Koo K. K., Inoue T., Miyasaka K. Toughened plastics consisting of brittle particlesand ductile matrix [J]. Polymer Engineering and Science,1985,25(12):741-746
    [165] Fakirov S., Bhattacharyya D., Shields R. J. Nanofibril reinforced composites frompolymer blends [J]. Colloids and Surfaces A-Physicochemical and EngineeringAspects,2008,313(SI):2-8
    [166] Jayanarayanan K, Thomas S, Joseph K. In situ microfibrillar blends and compositesof polypropylene and poly(ethylene terephthalate): Morphology and thermalproperties [J]. Journal of Polymer Research,2011,18(1):1-11
    [167] Xu H. S., Li Z. M., Wang S. J. et al. Rheological behavior of PET/HDPE in-situmicrofibrillar blends: Influence of microfibrils’ flexibility [J]. Journal of PolymerScience Part B: Polymer Physics,2007,45(10):1205-1216
    [168] Jiang L., Liu B., Zhang J. W. Novel high-strength thermoplastic starch reinforcedby in situ poly(lactic acid) fibrillation [J]. Macromolecular Materials andEngineering,2009,294(5):301-305
    [169] Wang L. S., Chen H. C., Xiong Z. C., et al. A completely biodegradable poly[(L-lactide)-co-(ε-caprolactone)] elastomer reinforced by in situ poly(glycolic acid)fibrillation: manufacturing and shape-memory effects [J]. MacromolecularMaterials and Engineering,2010,295(4):381-385
    [170] Shields R. J., Bhattacharyya D., Fakirov S. Fibrillar polymer–polymer composites:morphology, properties and applications [J]. Journal of Materials Science,2008,43(20):6758-6770
    [171] Kalaitzidou K., Fukushima H., Drzal L. T. A new compounding method forexfoliated graphite–polypropylene nanocomposites with enhanced flexuralproperties and lower percolation threshold [J]. Composites Science Technology,2007,67(10):2045-2051
    [172] Yoo Y. J., Paul D. R. Effect of organoclay structure on morphology and propertiesof nanocomposites based on an amorphous polyamide [J]. Polymer2008,49(17):3795-3804
    [173] Mueller M. T., Krause B., Poetschke P. A successful approach to disperse MWCNTsin polyethylene by melt mixing using polyethylene glycol as additive [J]. Polymer2012,53(15):3079-3083
    [174] Weon J. I., Sue H. J. Effects of clay orientation and aspect ratio on mechanicalbehavior of nylon-6nanocomposite [J]. Polymer2005,46(17):6325-6334
    [175] Ferreira J. A. M., Reis P. N. B., Costa J. D. M. et al. A study of the mechanicalproperties on polypropylene enhanced by surface treated nanoclays [J]. CompositesPart B: Engineering,2011,42(6):1366-1372
    [176] Chen Y. J., Guo Z. H., Fang Z. P. Relationship between the distribution oforgano-montmorillonite and the flammability of flame retardant polypropylene [J].Polymer Engineering Science,2012,52(2):390-398
    [177] Guo B. C., Zou Q., Lei Y. D., et al. Structure and performance of polyamide6/halloysite nanotubes nanocomposites [J]. Polymer Journal,2009,41(10):835-842
    [178] Lecouvet B., Sclavons M., Bourbigot S., et al. Water-assisted extrusion as a novelprocessing route to prepare polypropylene/halloysite nanotube nanocomposites:Structure and properties [J]. Polymer,2011,52(19):4284-4295
    [179] Ye Y. P., Chen H. B., Wu J. S., et al. Evaluation on the thermal and mechanicalproperties of HNT-toughened epoxy/carbon fibre composites [J]. Composites Part B:Engineering,2011,42(8):2145-2150
    [180] Sandip R., Amit D., Gert H. Tube-like natural halloysite/fluoroelastomernanocomposites with simultaneous enhanced mechanical, dynamic mechanical andthermal properties [J]. European Polymer Journal,2011,47(9):1746-1755
    [181] Liu M. X., Guo B. C., Du M. L., et al. Properties of halloysite nanotube–epoxyresinhybrids and the interfacial reactions in the systems [J]. Nanotechnology,2007,18(9pp):455703
    [182] Lecouvet B., Gutierrez J. G., Sclavons M., et al. Structure-property relationships inpolyamide12/halloysite nanotube nanocomposites [J]. Polymer Degradation andStability,2011,96(2):226-235
    [183] Du M. L., Guo B. C., Jia D. M. Thermal stability and flame retardant effects ofhalloysite nanotubes on poly(propylene)[J]. European Polymer Journal,2006,42(6):1362-1369
    [184] Lertiwimolnum W., Vergnes B. Influence of compatibilizer and processing conditionson the dispersion of nanoclay in a polypropylene matrix [J]. Polymer,2005,46(10):3462-3471
    [185] Zhao Y., Huang H. X. Dynamic rheology and microstructure of polypropylene/claynanocomposites prepared under Sc-CO2by melt compounding [J]. Polymer Testing,2008,27(1):129-134
    [186] Medellin-Rodriguez F. J., Burger C., Hsiao B. S., et al. Time-resolved shearbehavior of end-tethered Nylon6-clay nanocomposites followed by non-isothermalcrystallization [J]. Polymer,2001,42(21):9015-9023
    [187] Marcilla A., Gomez A., Menargues S., et al. Pyrolysis of polymers in the presenceof a commercial clay [J]. Polymer Degradation and Stability,2005,88(3):456-460
    [188] Zanetti M., Camino G., Reichert P., et al. Thermal behavior of poly(propylene)layered Silicate nanocomposites [J]. Macromol Rapid Commun2001,22(3):176-180
    [189] Golebiewsk J., Galeski A. Thermal stability of nanoclay polypropylene compositesby simultaneous DSC and TGA [J]. Composites Science and Technology,2007,67(15-16):3442-3447
    [190] Somani R. H., Hsiao B. S., Nogales A., et al. Structure development during shearflow-induced crystallization of i-PP: In-situ small-angle x-ray scattering study [J].Macromolecules,2000,33(25):9385-9394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700