用户名: 密码: 验证码:
导电导热酚醛复合材料合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随着电子信息产业的蓬勃发展,尤其是对于大功率电子器件,热管理和热发散已经变得越来越重要。新颖的轻质、高导热高分子材料越来越受到广大消费市场的青睐。酚醛树脂是世界上最早合成的树脂品种,由于其优秀的阻燃性和耐热性以及立体交联的网络结构,目前在民用、航空、建材领域仍具有无可替代的重要地位。研究导电导热酚醛树脂复合材料对于酚醛树脂的改性和功能化具有非常重要的应用价值。除了微米级陶瓷导热粒子之外,目前纳米填料也在飞速发展。石墨烯作为富勒烯家族成员,通常可以看成是单原子厚度的石墨。自从2004年被Geim和Novoselov等发现以来,备受全世界研究者们的关注。作为一种新材料,石墨烯具有独特的力学,光学,热学和电学性能,例如非整数的量子霍尔效应,超高的杨氏模量,热导率和比表面积等。然而大批量的制备石墨烯和其在复合材料中的均匀分散是目前迫切需要解决的难题。本论文主要研究内容包括:
     1)选用F/P摩尔比为1.32合成的甲阶PF为原料,氮化硼(BN)片和四角氧化锌晶须(T-ZnO)为填料合成了绝缘导热PF复合材料。研究发现BN填充的复合材料表现出明显的各向异性。对其进行Maxwell-Eucken方程和Nielsen方程理论模拟,高填充量时与实验值有较大程度的偏离,说明片状材料的取向特殊性。笔者首次尝试用四角状的氧化锌晶须与氮化硼混合杂化。结果证明杂化有效地提高了复合材料的热导率,协同效果明显:相比单独添加相同含量的BN,含30wt.%BN+30wt.%T-ZnO的复合材料的水平热导率提高了71.9%,垂直热导率提高了34.5%。弯曲强度比单一添加相同含量的BN提高了56.2%。一方面,立体结构的晶须易于桥连氮化硼片而形成立体的导热网络,另一方面,混合填充可以有效地提高填料在基体中的填充密度(空气中800℃燃烧后残留物的SEM照片得以证实),因此材料的热导率和力学性能均显著提高。
     2)为了进一步研究混合填料的协同效果,a)用相同的方法制备片状石墨(G)/氧化锌晶须/酚醛树脂复合材料。热导率结果显示:20wt.%T-ZnO/40wt.%G的酚醛复合材料水平热导率比同体积的石墨/酚醛复合材料的热导率提高了88.6%;垂直热导率比同体积的石墨/酚醛复合材料的热导率提高了40.2%。复合材料的弯曲强度和模量均有不同程度的提高。氧化锌晶须的加入克服了片状填料层与层之间较大的热阻问题,有效形成立体的导热网络。b)制备了氮化硼/中空玻璃微球杂化填充的酚醛复合材料,取得了导热协同效果。当HGM和BN总填料为60wt.%时,1:4     3)研究了一种在酚醛树脂聚合反应中有效地原位还原并功能化氧化石墨烯(GO)制备酚醛导电复合材料的方法。随着反应的进行,亲水性绝缘的氧化石墨变成疏水导电的石墨烯。不同于绝缘的氧化石墨烯和酚醛树脂,由于有效地原位还原和功能化,得到的酚醛复合材料具有高的电导率。仅添加0.85vol.%的GO,复合材料的电导率达到0.2S/m。同时赋予酚醛复合材料高的热稳定性和力学强度,仅添加2.3vol.%的GO,复合材料的热分解温度提高了76℃;仅添加1.7vol.%的GO,复合材料的弯曲强度和模量分别提高了318和56%。第一,解决了石墨烯还原的问题,第二,解决了石墨烯的剥离和分散难的问题,第三,部分的功能化解决了填料与基体的相容性难的问题,制备了性能优异的石墨烯/酚醛导电复合材料,且原料廉价易得,制备工艺简单,便于工业上生产。
As heat management and dissipation are becoming more and more crucial for highlyintegrated electronic devices with high-power output, novel heat releasing packagematerials are highly desired and the thermal conductivity of most polymers should besubstantially improved. Currently, Inorganic fllers, such as metal, ceramic and nanofillerwere used to improve thermal and electrical conductivities of polymers. In addition,graphene has attracted the attentions from the researches in the world since2004.As amember of fullerenes family, graphene is usually regarded as the single-atom-thick graphite,which possessed distinct properties, such as mechanical, optical, thermal and electricalproperties. However, there are many obstacles in the mass production and homogenousdispersion in host polymers need to be addressed. Graphene oxide (GO) is treated as theprecursor of graphene for its similarity to graphene. By thermal treatment or chemicalmethods, GO can be reduction to graphene, Amounts of oxygen-containing groups attachedon the surface of GO sheets provided active sites for the covalent modification.The detailsand results in this paper are as follows:
     1) PF/BN composites and PF/T-ZnO were prepared by a solution blending and curingmethod. With the addition of BN flakes, the thermal conductivity of PF is improvedaccompanying with an anisotropic thermal conductance, which is attributed to the naturaltendency for platelet fillers to align parallel with one another especially at high contents.Itis seen that Maxwell-Eucken model and Nielsen model are suitable to evaluate the thermalconductivity at low loadings of BN flakes. At a constant filler loading of60wt.%, thepartial replacement of BN with T-ZnO results in a striking synergistic effect on thermalconductivity of PF. With30wt.%BN and30wt.%T-ZnO, the in-plane thermalconductivity of composite shows71.9%higher than that of the PF composite with thesame BN content. The flexural strength of the PF composite is56.2%higher than that ofthe PF composite with60wt.%BN. Due to its stereo structure with four needles, T-ZnOplays an important role in bridging the BN flakes in through-plane and in-plane directions,thus facilitating the formation of heat conductance.
     2) In order to study synergetic effect of tetrapod-shaped ZnO whiskers and graphiteflakes, an similiar method is developed. A maximum in-plane thermal conductivity of9.2Wm-1K-1is observed with a T-ZnO/G mass ratio of1/2, which is88.6%higher than that ofPF/G composite with the same filler content. The flexural strength and elongation at break are also improved with filler content. The hollow glass microsphere (HGM) and BN flakewere filled into PF matrix with the same method. The results show that a striking synergiceffect on thermal conductivity with different HGM/BN mass ratio (1:4     3)An efficient one-step approach to reduce and functionalize graphene oxide (GO)during the in situ polymerization of phenol and formaldehyde was reported. Thehydrophilic and electrically insulating GO is converted to hydrophobic and electricallyconductive graphene with phenol as the main reducing agent. Simultaneously,functionalization of GO was realized by the nucleophilic substitution reaction of epoxidegroups of GO with hydroxyl groups of phenol or phenol prepolymer in the alkali condition.The electrical conductivity of PF composite with0.85vol.%of GO is0.2S/m, nearly nineorders of magnitude higher than that of neat PF. Moreover, the efficient reduction andfunctionalization of GO endows the PF composites with high thermal stability and flexuralproperties. A striking increase in decomposition temperature is achieved with2.3vol.%ofGO. The flexural strength and modulus of the PF composite with1.7vol.%GO areincreased by318and56%, respectively.
引文
[1]殷荣忠,山永年,酚醛树脂及其应用,北京:化学工业出版社,1990,1~25.
    [2]黄发荣,焦杨声,酚醛树脂及其应用,北京:化学工业出版社,2003,1~56.
    [3]唐路林,李乃宁,高性能酚醛树脂及其应用技术,北京:化学工业出版社,2008,6~45.
    [4] Louis, Pilato, Phenolic resins: A century of progress, Berlin: springer,2010,139~147.
    [5] H. B. J. Schurink, Pentaerythritol. Organic Syntheses, Coll,1941,1:425.
    [6] C. D. Gutsche, M. Iqbal. p-tert-butylcalix [4] arene. Organic Syntheses, Coll,1993,8:75.
    [7]伊廷会,酚醛树脂高性能化改性研究进展,热固性树脂,2001,16(4):29~33.
    [8] H. C. Engel, WARD Tech. Report,1952,52~156.
    [9] N. J. DeLollis, Adhesives, Adherend, Adhesion, New York: Kienger Publishing Company Inc.,1980,105~111..
    [10] Achary PS, Ramaswamy R. Reactive compatibilization of a nitrile rubber/phenolic resin blend:Effect on adhesive and composite properties, Journal of Applied Polymer Science,1998,69(6):1187~1201.
    [11] Kaynak C, Cagatay O. Rubber toughening of phenolic resin by using nitrile rubber and amino silane,Polymer Testing,2006,25(3):296~305.
    [12]李新明,李晓林,苏志强,张洋,丁腈橡胶共聚改性酚醛树,热固性树脂,2002,17(3):11~14.
    [13] Paul R.Michl. Process for producing phenolic resin composition and rubber compositioncontainining the composition, US,5098941[P],1992-5-24.
    [14]王延孝,郝珊英,丁腈橡胶增韧酚醛树脂,塑料工业,1984,1:43~45.
    [15]葛东彪,王书忠,胡福增,酚醛树脂增韧改性的进展,玻璃钢/复合材料,2003,5:37~41.
    [16] Anthony J P,Richard L R,Frank E C, Phenolic foam modified with phosphorus-containingisocyanate-terminated, US,4119584[P],1978-10-10.
    [17] Wu HD, Lee MS, Wu YD,et al, Pultruded fiber-reinforced polyurethane-toughened phenolic resin.II. Mechanical properties, thermal properties, and flame resistance, Journal of Applied Polymer Science,1996,62(1):227~234.
    [18] Wu HD, Ma CCM, Lee MS, et al, Pultruded fiber-reinforced polyurethane-toughened phenolic resin,I. Reactivity and morphology, Die Angewandte Makromolekulare Chemie,1996,235(1):35~45.
    [19]钱瑞莉,陈凤福,聚氨酯改性酚醛泡沫塑料,辽宁化工,1994(6):18~20.
    [20] Wang FY, Ma CCM, Wu WJ, Kinetic parameters of thermal degradation of polyethyleneglycol-toughened novolac-type phenolic resin, Journal of Applied Polymer Science,2001,80(2):188~196.
    [21] Wu H-D, Ma CCM, Chu PP, Hydrogen bonding in the novolac type phenolic resin blended withphenoxy resin, Polymer,1997,38(21):5419~5429.
    [22]葛东彪,王书忠,胡福增,聚醚增韧酚醛树脂及其泡沫的研究,玻璃钢/复合材料,2003(6):22~27.
    [23]郭锦棠,王新英,酚醛树脂的阻燃与增韧研究,燃烧科学与技术,2003,87(4):34~37.
    [24] Yang H, Wang X, Yuan H, et al, Fire performance and mechanical properties of phenolic foamsmodified by phosphorus-containing polyethers, J Polym Res.2012;19(3):1-10.
    [25] Abdalla MO, Ludwick A, Mitchell T, Boron-modified phenolic resins for high performanceapplications, Polymer,2003,44(24):7353~7359.
    [26]胡平,刘锦霞,张鸿雁等,酚醛树脂及其复合材料成型工艺的研究进展,热固性树脂,2006,21(1):36~41.
    [27]周重光,李桂芝,巩爱军,有机硅改性酚醛树脂热稳定性的研究,高分子材料科学与工程,2000,16(1):164~168.
    [28]华幼卿,吴一弦,张光复等,钼酚醛树脂的热性能和烧蚀性能的研究,高分子材料科学与工程,1990,1:37~41.
    [29]张光复,李桂珍.钼酚醛复合材料的热烧蚀性能分析,工程塑料应用,1985,4:1-5.
    [30]莫军连,齐暑华,张冬娜,邱华.纳米材料改性酚醛树脂研究进展,中国塑料,2009,3:8-12.
    [31] Hernández-Padrón G, Lima RM, Nava R, García-Gardu o MV, Casta o VM. Preparation andcharacterization of SiO2-functionalized phenolic resin hybrid materials, Advances in PolymerTechnology,2002,21(2):116~124.
    [32] Pappas J, Patel K, Nauman EB. Structure and properties of phenolic resin/nanoclay compositessynthesized by in situ polymerization, Journal of Applied Polymer Science,2005,95(5):1169~1174.
    [33]车剑飞,肖迎红,陆怡平等,纳米粒子改性硼酚醛树脂的研究,塑料工业,2001,29(6):17~18.
    [34]丁向前,刘长维,刘元明等,导电酚醛树脂的研究,热固性树脂,2006,21(6):32-35.
    [35]许晶玮,庞浩,胡美龙等,高分子/石墨复合材料的制备与导电性能的研究进展,化学通报,2007,8:577~579.
    [36] Kirkpatrick S, Percolation and Conduction, Reviews of Modern Physics,1973,45(4):574~588.
    [37] Aharoni SM, Electrical Resistivity of a Composite of Conducting Particles in an Insulating Matrix,Journal of Applied Physics,1972,43(5):2463~2465.
    [38] Janzen J, On the critical conductive filler loading in antistatic composites, Journal of AppliedPhysics,1975,46(2):966~969.
    [39] Stankovich S, Dikin DA, Dommett GHB,et al, Graphene-based composite materials, Nature,2006,442(7100):282~286.
    [40] Chen G, Weng W, Wu D et al, PMMA/graphite nanosheets composite and its conducting properties,European Polymer Journal,2003;39(12):2329~2335.
    [41] Garboczi EJ, Snyder KA, Douglas JF,et al, Geometrical percolation threshold of overlappingellipsoids, Physical Review E,1995,52(1):819~828.
    [42] Li W, Tang XZ, Zhang HB, et al, Simultaneous surface functionalization and reduction of grapheneoxide with octadecylamine for electrically conductive polystyrene composites, Carbon,2011,49(14):4724~4730.
    [43] Stankovich S, Dikin DA, Piner RD, et al, Synthesis of graphene-based nanosheets via chemicalreduction of exfoliated graphite oxide, Carbon,2007,45(7):1558~1565.
    [44] Zheng D, Tang G, Zhang HB, et al, In situ thermal reduction of graphene oxide for high electricalconductivity and low percolation threshold in polyamide6nanocomposites, Composites Science andTechnology,2012,72(2):284-289.
    [45] Park C, Ounaies Z, Watson KA, et al, Dispersion of single wall carbon nanotubes by in situpolymerization under sonication, Chemical Physics Letters,2002,364(3–4):303~308.
    [46] Sumita M, Takenaka K, Asai S. Characterization of dispersion and percolation of filled polymers:Molding time and temperature dependence of percolation time in carbon black filled low densitypolyethylene, Composite Interfaces,1995,3(3):253~262.
    [47] McLachlan DS, Measurement and analysis of a model dual-conductivity medium using ageneralised effective-medium theory, Journal of Physics C: Solid State Physics,1988,21(8):1521.
    [48] McLachlan DS, Blaszkiewicz M, Newnham RE, Electrical Resistivity of Composites, Journal of theAmerican Ceramic Society,1990,73(8):2187~2203.
    [49] Medalia AI, Electrical Conduction in Carbon Black Composites, Rubber Chemistry and Technology,1986,59(3):432~454.
    [50] Ezquerra TA, Kulescza M, Cruz CS, et al, Charge transport in polyethylene–graphite compositematerials, Advanced Materials,1990,2(12):597~600.
    [51] Felske JD, Effective thermal conductivity of composite spheres in a continuous medium withcontact resistance, International Journal of Heat and Mass Transfer,2004,47(14–16):3453~3461.
    [52] Hasselman, D.P.H., Johnson, L.F, Effective thermal conductivity with interfacial thermal barrierresistance, Journal of Composite Materials,1987,21(6):508~515.
    [53] Davis HT, Valencourt LR, Johnson CE, Transport Processes in Composite Media, Journal of theAmerican Ceramic Society,1975,58(9-10):446~452.
    [54] Landauer R, Electrical conductivity in inhomogeneous media, AIP Conference Proceedings,1978,40(1):2~45.
    [55] Hamilton RL, Crosser OK, Thermal Conductivity of Heterogeneous Two-Component SystemsmIndustrial&Engineering Chemistry Fundamentals,1962,1(3):187~191.
    [56] Agari Y, Uno T, Estimation on thermal conductivities of filled polymers, Journal of AppliedPolymer Science,1986,32(7):5705~5712.
    [57] Hakansson, Ross,G.R, Effective thermal conductivity of binary dispersed composites over wideranges of volume fraction, temperature, and pressure, Journal of Applied Physics,1990,68(7):3285-92.
    [58] Wu J, McLachlan DS, Percolation exponents and thresholds obtained from the nearly idealcontinuum percolation system graphite-boron nitride. Physical Review B,1997,56(3):1236~1248.
    [59] Russell HW, Principles of heat flow in porous insulators, Journal of the American Ceramic Society,1935,18(1-12):1~5.
    [60] Lewis TB, Nielsen LE, Dynamic mechanical properties of particulate-filled composites, Journal ofApplied Polymer Science,1970,14(6):1449~1471.
    [61] J. Gurland, Trans. Met. Soc. Aime,1966,236:642.
    [62] Mukhopadhyay R, De SK, Basu S, Effect of metal concentration on the electrical conductivity andsome mechanical properties of poly(methyl methacrylate)–copper composites, Journal of AppliedPolymer Science,1976,20(9):2575~2580.
    [63] Zhi L, Zhao T, Yu Y, Preparation of phenolic resin/silver nanocomposites via in situ reduction,Scripta Materialia,2002,47(12):875~879.
    [64] Warner JD, Pevzner M, Dean CJ, et al, Synthesis of hexafluoroisopropylidene-containingpolyimide-silver nanocomposite films evolving specularly reflective metal surfaces, Journal of MaterialsChemistry,2003,13(7):1847~1852.
    [65] Xie SH, Zhu BK, Li JB, et al, Preparation and properties of polyimide/aluminum nitride composites,Polymer Testing.2004;23(7):797-801.
    [66] Wang J, Yi XS, Preparation and the properties of PMR-type polyimide composites with aluminumnitride. Journal of Applied Polymer Science,2003;89(14):3913-3917.
    [67]王家俊,益小苏,导热型高性能树脂微电子封装材料之二:封装材料的导热和热膨胀性能,包装工程,2003,24(4):13~17.
    [68]林晓丹,曾幸荣,张金柱等, PPS导热绝缘塑料的制备及性能研究,塑料工业,2006,34(3):65~67.
    [69]张诚,周平,乔梁等,高导热高绝缘FEP/AIN复合材料的研究,塑料工业,2007,35(5):9~12。
    [70] Ahmad Z, Sarwar MI, Wang S, et al, Preparation and properties of hybrid organic-inorganiccomposites prepared from poly(phenylene terephthalamide) and titania, Polymer,1997,38(17):4523~4529.
    [71] Ishida H, Rimdusit S, Very high thermal conductivity obtained by boron nitride-filledpolybenzoxazine, Thermochimica Acta,1998,320(1):177~186.
    [72] Yang Z, Du G, Meng Q, et al, Synthesis of uniform TiO2@carbon composite nanofibers as anodefor lithium ion batteries with enhanced electrochemical performance, Journal of Materials Chemistry,2012,22(12):5848~5854.
    [73] Chuang WJ, Chiu WY, Tai HJ, Temperature-dependent conductive composites:poly(N-isopropylacrylamide-co-N-methylol acrylamide) and carbon black composite films, Journal ofMaterials Chemistry,2012,22(38):20311~20318.
    [74] Zhu J, Kim J, Peng H, et al, Improving the dispersion and integration of single-walled carbonnanotubes in epoxy composites through functionalization, Nano Letters,2003,3(8):1107~1113.
    [75] Zhu J, Peng H, Rodriguez-Macias F, et al. Reinforcing epoxy polymer composites through covalentintegration of functionalized nanotubes, Advanced Functional Materials,2004,14(7):643~648.
    [76] Kumar S, Dang TD, Arnold FE, et al, Synthesis, structure, and properties of PBO/SWNTcomposites, Macromolecules,2002,35(24):9039~9043.
    [77] Velasco-Santos C, Martínez-Hernández AL, Fisher FT, et al, Improvement of thermal andmechanical properties of carbon nanotube composites through chemical functionalization, Chemistry ofMaterials,2003,15(23):4470~4475.
    [78] Yeh MK, Tai NH, Lin YJ, Mechanical properties of phenolic-based nanocomposites reinforced bymulti-walled carbon nanotubes and carbon fibers, Composites Part A: Applied Science andManufacturing,2008,39(4):677~684.
    [79] Yeh MK, Tai NH, Liu JH, Mechanical behavior of phenolic-based composites reinforced withmulti-walled carbon nanotubes, Carbon,2006,44(1):1~9.
    [80] Xu Z, Gao C, In situ polymerization approach to graphene-reinforced nylon-6composites,Macromolecules,2010,43(16):6716~6723.
    [81] Zhao X, Zhang Q, Chen D, et al, Enhanced mechanical properties of graphene-based poly(vinylalcohol) composites, Macromolecules,2010,43(5):2357~2363.
    [82] Chen D, Zhu H, Liu T, In situ thermal preparation of polyimide nanocomposite films containingfunctionalized graphene sheets, ACS Applied Materials&Interfaces,2010,2(12):3702~3708.
    [83] Gogoi JP, Bhattacharyya NS, James Raju KC. Synthesis and microwave characterization ofexpanded graphite/novolac phenolic resin composite for microwave absorber applications, CompositesPart B: Engineering,2011,42(5):1291~1297.
    [84] Zhang X, Shen L, Xia X, Wang H, et al, Study on the interface of phenolic resin/expanded graphitecomposites prepared via in situ polymerization, Materials Chemistry and Physics,2008,111(2–3):368~374.
    [85] Song WL, Wang W, Veca LM, et al, Polymer/carbon nanocomposites for enhanced thermaltransport properties-carbon nanotubes versus graphene sheets as nanoscale fillers, Journal of MaterialsChemistry,2012,22(33):17133~17139.
    [86] Kusy RP, Turner DT, Electrical conductivity of a polyurethane elastomer containing segregatedparticles of nickel, Journal of Applied Polymer Science,1973,17(5):1631~1633.
    [87] Li L, Chung DDL, Thermally conducting polymer-matrix composites containing both AIN particlesand SiC whiskers, JEM,1994,23(6):557~564.
    [88]杜茂平,魏伯荣,宫大军,混合填料对导热硅橡胶性能的影响,有机硅材料,2007,21(6):325~328.
    [89] Zhou W, Qi S, Li H, et al, Study on insulating thermal conductive BN/HDPE composites,Thermochimica Acta,2007,452(1):36~42.
    [90] Simitzis J, Zoumpoulakis L, Soulis S, et al, Electrical conductivity and mechanical strength ofcomposites consisting of phenolic resin, carbon fibers, and metal particles, Journal of Applied PolymerScience,2011,121(4):1890~1900.
    [91] Luan VH, Tien HN, Cuong TV, et al, Novel conductive epoxy composites composed of2-Dchemically reduced graphene and1-D silver nanowire hybrid fillers, Journal of Materials Chemistry,2012,22(17):8649~8653.
    [92] Novoselov KS, Geim AK, Morozov SV, et al, Electric Field Effect in Atomically Thin Carbon Films,Science,2004,306(5696):666-669.
    [93] Balandin AA, Ghosh S, Bao W, et al, Superior Thermal Conductivity of Single-Layer Graphene,Nano Letters,2008,8(3):902~907.
    [94] Lee C, Wei X, Kysar JW, et al, Measurement of the Elastic Properties and Intrinsic Strength ofMonolayer Graphene, Science,2008,321(5887):385~388.
    [95] Potts JR, Dreyer DR, Bielawski CW, et al, Graphene-based polymer nanocomposites, Polymer,2011,52(1):5~25.
    [96] Kuilla T, Bhadra S, Yao D,et al, Recent advances in graphene based polymer composites, Progressin Polymer Science,2010,35(11):1350~1375.
    [97] Ranjbartoreh AR, Wang B, Shen X, et al, Advanced mechanical properties of graphene paper,Journal of Applied Physics,2011,109(1):014306~014306.
    [98] Novoselov KS, Jiang Z, Zhang Y, et al, Room-Temperature Quantum Hall Effect in Graphene,Science,2007,315(5817):1379.
    [99] Pop E, Mann D, Wang Q, et al, Thermal conductance of an Iindividual single-wall carbon nanotubeabove room temperature, Nano Letters,2005,6(1):96~100.
    [100] Zhu Y, Murali S, Cai W, et al, Graphene and graphene Oxide: synthesis, properties, andapplications, Advanced Materials,2010,22(35):3906~3924.
    [101] Schniepp HC, Li J-L, McAllister MJ, et al. Functionalized single graphene sheets derived fromsplitting graphite oxide, Journal of Physical Chemistry B,2006,110(17):8535~8539.
    [102] Stankovich S, Piner RD, Nguyen ST, wt al, Synthesis and exfoliation of isocyanate-treatedgraphene oxide nanoplatelets, Carbon,2006,44(15):3342~3347.
    [103] Dresselhaus MS, Dresselhaus G, Intercalation compounds of graphite, Advances in Physics,1981,30(2):139~326.
    [104] Avdeev VV, Martynov IU, Nikol'skaya IV, et al, Investigation of the graphite-H2SO4-gaseousoxidizer (Cl2, O3, SO3) system, Journal of Physics and Chemistry of Solids,1996,57(6–8):837~840.
    [105] Savoskin MV, Yaroshenko AP, Whyman GE, et al, New graphite nitrate derived intercalationcompounds of higher thermal stability, Journal of Physics and Chemistry of Solids,2006,67(5–6):1127~1131.
    [106] B. Brodie, On the Atomic Weight of Graphite, Phil. Trans,1869,149,249~259.
    [107] Staudenmaier L. Verfahren zur Darstellung der Graphits ure Berichte der deutschen chemischenGesellschaft,1898,31(2):1481~1487.
    [108] Hummers WS, Offeman RE, Preparation of graphitic oxide, Journal of the American ChemicalSociety,1958,80(6):1339~1339.
    [109] Lerf A, He H, Forster M, et al, Structure of graphite oxide revisited, The Journal of PhysicalChemistry B,1998,102(23):4477~4482.
    [110] Chae SJ, Güne F, Kim KK, et al, Synthesis of large-area graphene layers on poly-nickel substrateby chemical vapor deposition: wrinkle formation, Advanced Materials,2009,21(22):2328~2333.
    [111] Chen G, Wu C, Weng W, et al, Preparation of polystyrene/graphite nanosheet composite, Polymer,2003,44(6):1781~1784.
    [112] Yu A, Ramesh P, Sun X, et al, Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites, Advanced Materials,2008,20(24):4740~4744.
    [113] Tung VC, Allen MJ, Yang Y, et al, High-throughput solution processing of large-scale graphene,Nat Nano,2009,4(1):25~29.
    [114] Wu Z-S, Ren W, Gao L, et al, Synthesis of high-quality graphene with a pre-determined number oflayers, Carbon,2009,47(2):493~499.
    [115] McAllister MJ, Li JL, Adamson DH, et al, Single sheet functionalized graphene by oxidation andthermal expansion of graphite, Chemistry of Materials,2007,19(18):4396~4404.
    [116] Wu ZS, Ren W, Gao L, et al, Synthesis of graphene sheets with high electrical conductivity andgood thermal stability by hydrogen arc discharge exfoliation, ACS Nano,2009,3(2):411~417.
    [117] Zhou M, Wang Y, Zhai Y, et al, Controlled synthesis of large-srea and patterned electrochemicallyreduced graphene oxide Films, Chemistry–A European Journal,2009,15(25):6116~6120.
    [118] Stankovich S, Piner RD, Chen X, et al, Stable aqueous dispersions of graphitic nanoplatelets viathe reduction of exfoliated graphite oxide in the presence of poly(sodium4-styrenesulfonate), Journal ofMaterials Chemistry,2006,16(2):155~158.
    [119] Kim MC, Hwang GS, Ruoff RS, Epoxide reduction with hydrazine on graphene: A first principlesstudy, The Journal of Chemical Physics,2009,131(6):064704~064705.
    [120] Gao X, Jang J, Nagase S, Hydrazine and thermal reduction of graphene oxide: reactionmechanisms, product structures, and reaction design, The Journal of Physical Chemistry C,2009,114(2):832~842.
    [121] Ferna ndez-Merino MJ, Guardia L, Paredes JI, et al, Vitamin C is an ideal substitute for hydrazinein the reduction of graphene oxide suspensions, The Journal of Physical Chemistry C,2010,114(14):6426~6432.
    [122] Pei S, Zhao J, Du J, et al, Direct reduction of graphene oxide films into highly conductive andflexible graphene films by hydrohalic acids, Carbon,2010,48(15):4466~4474.
    [123] Moon IK, Lee J, Ruoff RS, et al, Reduced graphene oxide by chemical graphitization, NatCommun,2010,1:73.
    [124] Zhou T, Chen F, Liu K, et al, A simple and efficient method to prepare graphene by reduction ofgraphite oxide with sodium hydrosulfite, Nanotechnology,2011,22(4):045704.
    [125] Wang G, Yang J, Park J, et al, Facile synthesis and characterization of graphene nanosheets, TheJournal of Physical Chemistry C,2008,112(22):8192~8195.
    [126] Fan X, Peng W, Li Y, et al, Deoxygenation of exfoliated graphite oxide under alkaline conditions:A green route to graphene preparation, Advanced Materials,2008,20(23):4490~4493.
    [127] Wang Y, Shi Z, Yin J, Facile synthesis of soluble graphene via a green reduction of graphene oxidein tea solution and its biocomposites, ACS Applied Materials&Interfaces,2011,3(4):1127~1133.
    [128] Ma HL, Zhang HB, Hu QH, et al, Functionalization and reduction of graphene oxide withp-phenylene diamine for electrically conductive and thermally stable polystyrene composites, ACSApplied Materials&Interfaces,2012,4(4):1948~1953.
    [129] Gao W, Alemany LB, Ci L, et al, New insights into the structure and reduction of graphite oxide,Nat Chem,2009,1(5):403~408.
    [130] Liu K, Chen L, Chen Y, et al, Preparation of polyester/reduced graphene oxide composites via insitu melt polycondensation and simultaneous thermo-reduction of graphene oxide, Journal of MaterialsChemistry,2011,21(24):8612~8617.
    [131] Xu Y, Liu Z, Zhang X, et al, A graphene hybrid material covalently functionalized with porphyrin:Synthesis and optical limiting property, Advanced Materials,2009,21(12):1275~1279.
    [132] Bai H, Xu Y, Zhao L, et al, Non-covalent functionalization of graphene sheets by sulfonatedpolyaniline, Chemical Communications,2009,0(13):1667~1669.
    [133] Chunder A, Liu J, Zhai L, Reduced graphene oxide/poly(3-hexylthiophene) supramolecularcomposites, Macromolecular Rapid Communications,2010,31(4):380~384.
    [134] Qi X, Pu KY, Zhou X, et al, Conjugated-polyelectrolyte-functionalized reduced gGraphene oxidewith excellent solubility and stability in polar solvents, Small,2010,6(5):663~669.
    [135] Hao R, Qian W, Zhang L, et al, Aqueous dispersions of TCNQ-anion-stabilized graphene sheets,Chemical Communications,2008,0(48):6576~6578.
    [136] Wang Y, Chen X, Zhong Y, et al, Large area, continuous, few-layered graphene as anodes inorganic photovoltaic devices, Applied Physics Letters,2009,95(6):063302~063303.
    [137] Safavi A, Tohidi M, Mahyari FA, et al, One-pot synthesis of large scale graphene nanosheets fromgraphite-liquid crystal composite via thermal treatment, Journal of Materials Chemistry,2012,22(9):3825~3831.
    [138] Lee GW, Park M, Kim J, et sl, Enhanced thermal conductivity of polymer composites filled withhybrid filler, Composites Part A: Applied Science and Manufacturing,2006,37(5):727~734.
    [139] Jiajun W, XiaoSu Y, Effects of interfacial thermal barrier resistance and particle shape and size onthe thermal conductivity of AlN/PI composites, Composites Science and Technology,2004,64(10–11):1623~1628.
    [140] Hill RF, Supancic PH, Thermal conductivity of platelet-Filled polymer composites, Journal of theAmerican Ceramic Society,2002,85(4):851~857.
    [141] Fu JF, Shi LY, Zhong QD, et al, Thermally conductive and electrically insulative nanocompositesbased on hyperbranched epoxy and nano-Al2O3particles modified epoxy resin, Polymers for AdvancedTechnologies,2011,22(6):1032~1041.
    [142] Sim LC, Ramanan SR, Ismail H, et al, Thermal characterization of Al2O3and ZnO reinforcedsilicone rubber as thermal pads for heat dissipation purposes, Thermochimica Acta,2005,430(1–2):155~165.
    [143] Bujard P, Kuhnlein G, Ino S, et al, Thermal conductivity of molding compounds for plasticpackaging, Electronic Components and Technology Conference,1994Proceedings,44th,1994:159~163.
    [144] Yu S, Hing P, Hu X, Thermal conductivity of polystyrene–aluminum nitride composite,Composites Part A: Applied Science and Manufacturing,2002,33(2):289~292.
    [145] Zhou W, Thermal and dielectric properties of the AlN particles reinforced linear low-densitypolyethylene composites, Thermochimica Acta,2011,512(1–2):183~188.
    [146] Hsieh C-Y, Chung S-L, High thermal conductivity epoxy molding compound filled with acombustion synthesized AlN powder, Journal of Applied Polymer Science,2006,102(5):4734~4740.
    [147] Huang X, Iizuka T, Jiang P, et al, Role of interface on the thermal conductivity of highly filleddielectric Epoxy/AlN composites, The Journal of Physical Chemistry C,2012,116(25):13629~13639.
    [148] Zhou T, Wang X, Mingyuan GU, et al, Study of the thermal conduction mechanism ofnano-SiC/DGEBA/EMI-2,4composites, Polymer,2008,49(21):4666~4672.
    [149] Zhou W, Wang C, Ai T, et al, A novel fiber-reinforced polyethylene composite with added siliconnitride particles for enhanced thermal conductivity, Composites Part A: Applied Science andManufacturing,2009,40(6–7):830~836.
    [150] Zhou T, Wang X, Liu X, et al, Improved thermal conductivity of epoxy composites using a hybridmulti-walled carbon nanotube/micro-SiC filler, Carbon,2010,48(4):1171~1176.
    [151] He H, Fu R, Shen Y, et al, Preparation and properties of Si3N4/PS composites used for electronicpackaging, Composites Science and Technology,2007,67(11–12):2493~2499.
    [152] Sichel EK, Miller RE, Abrahams MS, et al, Heat capacity and thermal conductivity of hexagonalpyrolytic boron nitride, Physical Review B,1976,13(10):4607~4611.
    [153] Bujard P, Thermal conductivity of boron nitride filled epoxy resins: temperature dependence andinfluence of sample preparation, InterSociety Conference on Thermal Phenomena in the Fabrication andOperation of Electronic Components, USA, May1988.41~49.
    [154] Yung KC, Liem H, Enhanced thermal conductivity of boron nitride epoxy-matrix compositethrough multi-modal particle size mixing, Journal of Applied Polymer Science,2007,106(6):3587~3591.
    [155] Wattanakul K, Manuspiya H, Yanumet N, Effective surface treatments for enhancing the thermalconductivity of BN-filled epoxy composite, Journal of Applied Polymer Science,2011,119(6):3234~3243.
    [156] Zhou WY, Qi SH, Zhao HZ, et al, Thermally conductive silicone rubber reinforced with boronnitride particle, Polymer Composites,2007,28(1):23~28.
    [157] Huang MT, Ishida H, Investigation of the boron nitride/polybenzoxazine interphase, Journal ofPolymer Science Part B: Polymer Physics,1999,37(17):2360~2372.
    [158] Ma YL, Hu GS, Ren XL, Wang BB, Non-isothermal crystallization kinetics and melting behaviorsof nylon11/tetrapod-shaped ZnO whisker (T-ZnOw) composites, Materials Science and Engineering: A.2007,460–461(0):611~618.
    [159] Ma C, Chen E, Sun T, et al, Preparation and characterization of tetrapod-shaped ZnO whiskerfilled polyurethane cross-linked epoxy/polyurethane damping composites, Journal of Reinforced Plasticsand Composites,31(22):1564~1575.
    [160] Ren P, Liang G, Zhang Z, et al, ZnO whisker reinforced M40/BADCy composite, Composites PartA: Applied Science and Manufacturing,2006,37(1):46~53.
    [161] Zhou Z, Liu S, Gu L, Studies on the strength and wear resistance of tetrapod-shaped ZnOwhisker–reinforced rubber composites, Journal of Applied Polymer Science,2001,80(9):1520~1525.
    [162] Shi J, Wang Y, Gao Y, et al, Effects of coupling agents on the impact fracture behaviors ofT-ZnOw/PA6composites, Composites Science and Technology,2008,68(6):1338~1347.
    [163] Gopal P, Dharani LR, Blum FD, Fade and wear characteristics of a glass-fiber-reinforced phenolicfriction material, Wear,1994,174(1–2):119~127.
    [164] Morchat RM, Hiltz JA, A TGA study correlating polymer characteristics with smoke andflammability properties of polyester and phenolic resins, Thermochimica Acta,1991,192(0):221~231.
    [165] Yi G, Yan F, Mechanical and tribological properties of phenolic resin-based friction compositesfilled with4several inorganic fillers, Wear,2007,262(1–2):121~129.
    [166] Patton RD, Pittman Jr CU, Wang L, et al, Ablation, mechanical and thermal conductivityproperties of vapor grown carbon fiber/phenolic matrix composites, Composites Part A: Applied Scienceand Manufacturing,2002,33(2):243~251.
    [167] Luukko P, Alvila L, Holopainen T, et al, Effect of alkalinity on the structure ofphenol–formaldehyde resol resins, Journal of Applied Polymer Science,2001,82(1):258-262.
    [168] Park B-D, Riedl B, Yoon Soo K,et al, Effect of synthesis parameters on thermal behavior ofphenol–formaldehyde resol resin, Journal of Applied Polymer Science,2002,83(7):1415~1424.
    [169] Astarloa-Aierbe G, Echeverr a JM, Vázquez A, et al, Influence of the amount of catalyst and initialpH on the phenolic resol resin formation, Polymer,2000,41(9):3311~3315.
    [170] Astarloa Aierbe G, Echeverr a JM, Martin MD, et al, Influence of the initial formaldehyde tophenol molar ratio (F/P) on the formation of a phenolic resol resin catalyzed with amine, Polymer,2000,41(18):6797~6802.
    [171] Roczniak K, Biernacka T, Skar yński M, Some properties and chemical structure of phenolicresins and their derivatives, Journal of Applied Polymer Science,1983,28(2):531~542.
    [172] Manfredi LB, de la Osa O, Galego Fernández N, et al, Structure–properties relationship for resolswith different formaldehyde/phenol molar ratio, Polymer,1999,40(13):3867~3875.
    [173] Casiraghi G, Cornia M, Balduzzi G, et al, Non-transition metal assisted regio-and stereoselectivesynthesis of alkylidene-bridged oligomeric phenolic compounds, Industrial&Engineering ChemistryProduct Research and Development,1984,23(3):366~369.
    [174] Danusso F, Tieghi G, Strength versus composition of rigid matrix particulate composites, Polymer,1986,27(9):1385~1390.
    [175] M AJH, Kaviany M, Phonon Transport in Molecular Dynamics Simulations: Formulation andThermal Conductivity Prediction, Advances in Heat Transfer,2006,39:169~255.
    [176] Nielsen LE, Thermal conductivity of particulate-filled polymers, Journal of Applied PolymerScience,1973,17(12):3819~3820.
    [177] Xu Y, Chung DDL, Mroz C, Thermally conducting aluminum nitride polymer-matrix composites,Composites Part A: Applied Science and Manufacturing,2001,32(12):1749~1757.
    [178] Shi J, Wang Y, Li YL, et al,Effect of T-ZnOw dimension on properties of T-ZNOw/PA6composites,Chinese Journal of Polymer Science,2009,27(5):703-710..
    [179]李冬,杨士山等,中空微球对硅橡胶绝热材料性能的影响,化学新型材料,2012,40(1):81~83.
    [180] Tee DI, Mariatti M, Azizan A, et al, Effect of silane-based coupling agent on the properties ofsilver nanoparticles filled epoxy composites, Composites Science and Technology,2007;67(11–12):2584~2591.
    [181] Simitzis J, Zoumpoulakis L, Soulis S, et al, Electrical conductivity and mechanical strength ofcomposites consisting of phenolic resin, carbon fibers, and metal particles, Journal of Applied PolymerScience,2011,121(4):1890~1900.
    [182] Chie Gao et al. Synthesis of functionalized carbon nanotubes/phenolic nanocompositesand itselectrical and thermal conductivity measurements, Japanese Journal of Applied Physics,2009,48:6FF10-1~4.
    [183] Liao R, Tang Z, Lei Y, et al, Polyphenol-reduced graphene oxide: mechanism and derivatization,The Journal of Physical Chemistry C,2011;115(42):20740~20746.
    [184] Gao J, Liu F, Liu Y, et al, Environment-friendly method to produce graphene that employs vitaminC and amino acid, Chemistry of Materials,2010,22(7):2213~2218.
    [185] Sprengling GR, Hydrogen bonding in phenolic resin intermediates, Journal of the AmericanChemical Society,1954,76(4):1190~1193.
    [186] Lee YJ, Kuo SW, Huang WJ, et al, Miscibility, specific interactions, and self-assembly behavior ofphenolic/polyhedral oligomeric silsesquioxane hybrids, Journal of Polymer Science Part B: PolymerPhysics,2004,42(6):1127~1136.
    [187] Wu HD, Ma CCM, Chang FC, The solid state13C NMR studies of intermolecular hydrogenbonding formation in a blend of phenolic resin and poly(hydroxyl ether) of bisphenol A, MacromolChem Phys2000,201(11):1121~7.
    [188] Liang J, Wang Y, Huang Y, et al, Electromagnetic interference shielding of graphene/epoxycomposites. Carbon,2009,47(3):922~925.
    [189] Ansari S, Giannelis EP. Functionalized graphene sheet-poly(vinylidene fluoride) conductivenanocomposites,Journal of Polymer Science Part B: Polymer Physics,2009,47(9):888~897.
    [190] Lee YK, Kim DJ, Kim HJ, et al, Activation energy and curing behavior of resol-and novolac-typephenolic resins by differential scanning calorimetry and thermogravimetric analysis, Journal of AppliedPolymer Science,2003,89(10):2589~2596.
    [191] Trick KA, Saliba TE, Sandhu SS, A kinetic model of the pyrolysis of phenolic resin in acarbon/phenolic composite, Carbon,1997,35(3):393~401.
    [192] Liang J, Huang Y, Zhang L, et al, Molecular-level dispersion of graphene into poly(vinyl alcohol)and effective reinforcement of their nanocomposites, Adv Funct Mater,2009,19(14):2297-302.
    [193] Ramanathan T, Abdala AA, Stankovich S, et al, Functionalized graphene sheets for polymernanocomposites, Nat Nanotechnol,2008,3(6):327~31.
    [194] Higginbotham AL, Lomeda JR, Morgan AB, et al, Graphite oxide flame-retardant polymernanocomposites, ACS Appl Mater Interfaces,2009;1(10):2256~61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700